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ABSTRACT 
Bayesian Knowledge Tracing (BKT) has been in wide use for 
modeling student skill acquisition in Intelligent Tutoring Systems 
(ITS). BKT tracks and updates student’s latent mastery of a skill 
as a probability distribution of a binary variable. BKT does so by 
accounting for observed student successes in applying the skill 
correctly, where success is also treated as a binary variable. While 
the BKT served the ITS community well, representing both the 
latent state and the observed performance as binary variables is, 
nevertheless, a simplification. In addition, BKT as a two-state and 
two-observation first-order HMM is prone to noise in the data. In 
this paper, we present work that uses feature compensation and 
model compensation paradigms in an attempt to conceptualize a 
more flexible and robust BKT model. Validation of this approach 
on the KDD Cup 2010 data shows a tangible boost in model 
accuracy well over the improvements reported in the literature. 
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1. INTRODUCTION 
Bayesian Knowledge Tracing (BKT) is one of the most popular 
student modeling techniques in the field of Intelligent Tutoring 
Systems (ITS). It has been used for 20 years now, and it has 
served the educational community well. Among the major 
weaknesses of BKT are the non-identifiability of the parameters, 
parameter degeneracy [1], and, in general, susceptibility to the 
noise in the naturally-occurring data. BKT is, by definition, a first-
order Hidden Markov Model (HMM) with a binary latent variable 
representing student knowledge and a binary observed variable 
indicating student performance. While representing latent student 
knowledge as a binary variable with known and unknown states has 
been widely accepted by the Intelligent Tutoring Community (ITS), it 
is, no doubt, a simplification. Accounts of the need for a larger 
number of latent states can be found in the literature, including but not 
limited to the work of Aleven et al. [2]. 

Practical issues occur in other fields where first-order HMMs are 
used intensively (e.g., speech recognition, handwriting 
recognition, etc.). In these fields, it is common to adopt various 
compensation measures including model compensation and 
feature compensation [3]. In this paper, we are applying both 

compensation paradigms to create a variant of BKT – Spectral 
BKT – in an attempt to overcome some of BKT’s shortcomings. 
Spectral BKT uses spectral observations – n-grams of the 
consecutive original unary observations of correct and incorrect 
skill application. It also relies on an extended set of latent states. 
While a number of Spectral BKT configurations can be 
conceived, we constructed and empirically tested a setup with 
eight spectral observations (3-grams of original observations) and 
four states. To validate the Spectral BKT approach uses an openly 
available KDD Cup 2010 data set of the 2008-2009 Carnegie 
Learning's Cognitive Tutor data. The resulting improvement is 
well above all reported in the literature. 

2. RELATED WORK 
2.1 Bayesian Knowledge Tracing 
Bayesian Knowledge Tracing (BKT) was introduced by Corbett 
and Anderson [4] in 1995. The standard BKT model assumes that 
student knowledge of a particular skill is an unobserved binary 
latent variable that changes based on the binary correctness of the 
observed student performance. Standard BKT has 4 parameters. 
Probability of knowing skill a priori (pInit), probability of 
learning the skill after each opportunity to apply it (pLearn), 
probability of making a mistake when applying an already known 
skill (pSlip), and probability of luckily producing a correct 
response when the skill is not known (pGuess). The probability of 
knowledge decay (pForget) is assumed to be zero in standard 
BKT. In general, a HMM with two states and two observations 
that has a total of 10 numeric values would be said to have 5 
parameters (last value in every row is redundant). However, since 
forgetting is set to zero, BKT is assumed to have 4 parameters. 

A large volume of work has been published on fitting BKT 
models and its variations. Wang and Beck [6] introduced two 
hierarchical factors into BKT to account for and compare class 
and student level parameter variability. Xu and Mostow [7] blend 
BKT approach with logistic regression and create an LR-DBN 
model that is capable of addressing multiple skill coding for a 
single step (something that BKT technically doesn’t, due to 
conditional independence assumptions). González-Brenes et al. 
[8] generalized BKT model to address a feature-rich context 
addressing multiple skills per step, temporal features, and expert 
knowledge. Another work of Pardos and Heffernan is an 
extension of BKT call KT-IDEM [9]. It addressed item variance 
in the data via introducing item difficulty observable nodes. 

2.2 Empirical Problems of BKT 
A noticeable portion of the work on BKT models is devoted to 
discussing problems researchers face when fitting them to the 
data. Baker et al. [1], when talking about the contextual estimation 
of guess and slip parameters in BKT, stipulate that their model is 
less prone to the BKT model degeneracy. What is often meant by 

 

 



degeneracy are the cases when probabilities of slipping and 
guessing assume unjustifiably high values, and this often calls for 
the use of parameter caps. BKT model degeneracy is the artifact 
of the known issue in HMM called label switching [10]. The issue 
is made more convoluted by the fact that forgetting is not allowed 
to vary in BKT and is set to zero. 
Work by Beck and Chang [11] discusses an example of yet 
another problem of BKT – identifiability. There often exists a 
range of parameter value sets that result in the same likelihood 
given the data it’s estimated on. Falakmasir and colleagues [12] 
have encountered the same problem in their previous work on the 
Spectral Learning approach to fitting BKT models. In that work, 
the formulation of the best-fitting parameter search problem was 
transformed into the spectral space, where a global optimum of 
the objective function is guaranteed to be reached. When 
translating the spectral solution back to the HMM space, the 
authors had to define a heuristic to pick the most plausible 
parameters from an infinite set of equally good parameter sets. 

2.3 Theoretical Issues with BKT 
Arguably, it’s the two Markov assumptions and the setup of the 
BKT that result in its known shortcomings. First, is the Limited 
Horizon Assumption states that the probability of being in a state 
at time t depends only on the state at time t-1. This kind of HMM 
is called a first-order HMM since it only has a memory of one 
previous time slice. Second Markovian assumption is the 
Stationary Process Assumption that the conditional distribution 
over the next state given the current state does not change over 
time. Given the fact that BKT has only one parameter to capture 
state transition, student learning rate is forced to remain constant.  

Both, the limited memory, and the constant learning rate are 
simplifications and one can easily construct a case for a more 
flexible representation of skill learning. For example, between the 
unknown state and known state there can be states that capture the 
preliminary stage of learning when the student having just seen 
one or two problems is mostly guessing. Before transitioning to 
the known state, the skill could be in the state that often results in 
slips since student's knowledge is not strong enough. Another 
likely reason for BKT’s limitations is sensitivity to noise. In BKT, 
Gaussian noise is assumed for the latent (knowing the skill) and 
the observed variables. However, when dealing with naturally 
occurring data, the signal to noise ratio might drop considerably. 
As a result, one might arrive at degenerate model parameters.  

There are two main approaches to handling noise in HMM: 
feature compensation and model compensation. In feature 
compensation, the noisy traits (for example, observations) are 
enhanced to remove the effect of the noise. In model 
compensation, the original models are mapped into a new model 
that can be learned from the noisy observations. It has been 
empirically established that feature compensation is simpler and 
more efficient to implement, but model compensation has the 
potential for the greater robustness [3]. 

3. SPECTRAL BKT 
In this work, we are attempting to combine feature compensation 
and model compensation to overcome the shortcomings of the 
standard BKT that assumes an ideal noise-free environment and is 
represented by a first-order HMM. We address feature 
compensation by changing the way we treat the observations. 
Instead of a single observation, we are considering n-grams – 
sequences of consecutive observations for the skill, where next n-
gram observation inherits n-1 atomic observations from the 
previous one. In NLP, 3-grams are often successfully used for 

feature compensation and we have empirically found that 3-grams 
work sufficiently well while 2-grams do not. From the 
information-theoretic point of view, the entropy rate of Hidden 
Markov Processes with two states proved to have at most second 
order behavior (captured by second-order HMM) [13]. This 
means that if we consider the data to be generated by a relatively 
noise-free naturally-occurring process and that the skills are fine-
grained enough, we only need to look at 3-grams of the 
observations in order to find the true model. One may use n-grams 
with n greater than 3. However, the computations involved would 
grow exponentially. Figure 1 shows how the original sequence of 
observations is encoded into 3-grams. 

The model compensation is addressed by adding two intermediate 
states between the unknown and known to the original BKT. Once 
the new observations are defined, the new model that we will call 
Spectral BKT (due to the use of spectral observations) can be 
treated as a first order HMM for the purposes of fitting the 
parameters.  

In Spectral BKT, state 1 is the known state and state 4 is the 
unknown state. States 2 and 3 we leave unlabeled at this point. 
Like in the standard BKT, once the student is in the known state 
we assume no un-learning. Moreover, the probability of going 
from the unknown state directly to the known state is zero. Finally, 
once the knowledge transitions from the unknown state, there’s no 
return. Given these assumptions, the sparsity structure changes the 
number of state transition parameters from 1 in standard BKT to 6 
in Spectral BKT. By enforcing the sparsity structure in our 
transition matrix, we guarantee the forward progressing from 
unknown to known in each iteration and prevent the EM 
algorithm from learning degenerate models. We assume no further 
sparsity in any of the 4 priors and 4*7=28 values of the 
observation matrix, we have (4-1)+6+(7-2)*4=37 parameters in 
this particular Spectral BKT conceptualization. 
The transformation of the original data for fitting the new Spectral 
BKT is fairly simple (rf. Figure 1). However, when we talk about 
model predictions, the Spectral BKT produces probability 
distributions over 8 3-gram observations and one has to make 
special arrangements to convert them to 2 (probability of correct 
and of incorrect) in order to compare it with the standard BKT 
algorithm fairly. First, we ordered the spectral observations from 
000 to 111 linearizing a partial order heuristic (rf. Figure 2a). 
According to this heuristic a spectral observation 011 is the 
second best indication of success after observation 111. Spectral 
observation 101 is third best with, potentially, a careless slip in 
the middle. Spectral observations 001 and 110 were a judgment 
call. We have placed 001 before 110, assuming it is an early 
indicator of learning, and 110 is a premature indicator of learning 
with a failure in the end. 

When mapping 8 values to binary success and failure, we came up 
with three rules. A regular rule splits 8 probabilities exactly in 
half and sums of the two groups are the new probability of correct 
and incorrect (third column in Figure 2a). The regular rule can 
also be interpreted as looking at the third bit of each 3-gram A 
strict rule is more stringent about which observation probabilities 
are counted toward success. A relaxed rule is more. Since our 
Spectral BKT produces a first 8-probability predictions starting 
with the third original observation (due to the use of 3-grams), we 
have also devised mapping of the 8 probabilities to produce 
predictions for the first two observations. These mappings are 
given in Figure 2b,c and reference the spectral observations from 
Figure 2a. For example, if the observed data contained 
observations 0, 1, and 0, and the Spectral BKT prediction of 



correctness was {0, 0, 0.1, 0.1, 0.1, 0.2, 0.2, 0.3}, then, according 
to the regular mapping rules, probabilities of correct for the three 
observations would have been 0.4, 0.3, and 0.2.  

4. DATA 
To validate our models we used data from KDD Cup 2010 
donated by Carnegie Learning, Inc. and available for downloading 
at http://pslcdatashop.web.cmu.edu/KDDCup. Of the two datasets 
available we chose Bridge to Algebra. This dataset contains about 
20 million transactions belonging to over 6 thousand students 
working on nearly 150 sections of mathematics curriculum 
practicing around 1650 skills. The dataset contains information 
about curriculum context (unit and section the student is in), 
problem context (problem name and problem step name), 
cognitive skill labels, timing, as well as correctness of the first 
attempt to solve the problem step and assistance information 
(number of hints requested and number of errors). The KDD Cup 
2010 is currently the largest freely available collection of learner 
data. That and the fact that this data was collected by Carnegie 
Learning's Cognitive Tutor that uses BKT model makes it a good 
candidate for testing the Spectral BKT. According to the custom 
of the Carnegie Learning’s Cognitive Tutor, skills were 
considered unique within each curriculum section even if the skill 
label repeated across several sections. Also, we have treated an 
absence of the skill (a null skill) as a special skill. 

5. MODEL VALIDATION 
For the purposes of training the models, we have transformed the 
original data with unigram observations into a dataset with 3-gram 
observations. We ran 10-fold student-based and item-based cross-
validations that each produced a set of predictions for the 
transformed 3-gram data. To fit and cross-validate the models we 
used the hmmsclbl tool – a C/C++ utility specially developed to 
work with large data sets and successfully used in [5] (available 
for download at http://github.com/IEDMS/standard-bkt). Standard 
BKT outputs two predictions per data row – probability of correct 
application of the skills in question and the probability of 
incorrect application. Spectral BKT works with 8 spectral 
observations and its predictions come in the form of probability 
distributions of 8 values per row of the predicted data. Spectral 
BKT models predictions were mapped from the 8-values onto the 
2-value probability distribution schema in Figure 2. The summary 
of the cross-validation results for the training dataset is listed in 
Table 1. Here we list the performance of standard BKT next to the 
performance of Spectral BKT model. We only list results the 
relaxed 3-gram-to-unigram mapping, since regular and strict 
mapping performed worse. We tested several solver algorithms 
hmmsclbl supports, including EM and stochastic gradient 
descent. EM gave a consistently better performance, but the 
margin was small: within 1% in accuracy and 0.03 in RMSE. 

When running student-stratified cross-validation, we were 
repeatedly hiding the full data belonging to 10% of the students. 
In item-stratified cross-validation, the transactions belonging to 
problems that we intended to hide could appear in individual 
students’ data in arbitrary locations. For the purposes of item-
stratification, we have marked the data of 10% of the items as 
unobserved but accounted for the opportunity to apply skills. 

Standard BKT model has 4 parameters per skill. Spectral BKT 
model, as per our conceptualization of the transition matrix, has 
37. The number of parameters being an order of magnitude 
higher, the AIC and BIC metrics that penalize for that go up 3% 
and 9% (item-stratified cross-validation). In the case of student-
stratified cross-validation, both AIC and BIC are decreaseв by 
21% and 13%. Accuracy and RMSE in case of Spectral BKT 
improve a lot. To the best of our knowledge, the overall accuracy 
of BKT or its variations was never reported to be above 90% on 
the dataset we used and Spectral BKT hits an impressive 92%. 

Recall that we had to back-predict the predictions of Spectral 
BKT for student skill opportunities one and two due to the use of 
3-gram observations. For this purpose, in Table 1 we list the 
additional accuracy and the RMSE values for student skill 
opportunity 1 alone (7% of the data), opportunity 2 alone (6% of 
the data), and opportunity 3 and further (87% of the data). To no 
surprise, the first opportunity prediction of Spectral BKT is 
slightly worse than the one of standard BKT by a margin in the 

Table 1. Comparison of cross-validation results for standard BKT and Spectral BKT 

     All opportunities Opportunity 1 Opportunity 2 Opportunity 3+ 

Model Par/skill CV AIC BIC Acc.* RMSE Acc. RMSE Acc. RMSE Acc. RMSE 

BKT 4 item 15380089 15478083 0.8609 0.3293 0.7469 0.4112 0.8099 0.3731 0.8740 0.3181 

Spectral BKT 37 item 15853433 16758456 0.9208 0.2472 0.7472 0.4146 0.8915 0.2940 0.9337 0.2289 

BKT 4 student 13947080 14045074 0.8659 0.3153 0.7435 0.4108 0.8126 0.3665 0.8799 0.3020 

Spectral BKT 37 student 11553442 12458465 0.9196 0.2405 0.7469 0.4130 0.8897 0.2937 0.9325 0.2210 

* For a reference, the majority class accuracy of predicting correct response for every row is 0.8569.  

 
Figure 1. New n-gram observations 

 
Figure 2. Mapping spectral observations from a distribution 
over 8 probabilities to 2: a) predicting starting with a 3rd 
original observation when two prior observations are 
available. b) & c) predicting original observations 2 and 1. 



third digit of both accuracy and RMSE, both around 74% and 0.41 
respectively. On the second opportunity prediction, Spectral BKT 
has a decisive edge of almost 9% and 0.08 in RMSE. On the third 
opportunity and further, Spectral BKT has a comfortable 
advantage of around 5% in accuracy and 0.09 in RMSE. 

6. DISCUSSION 
The performance of the Spectral BKT demonstrated a tangible 
improvement over standard BKT and only with an incremental 
change in the underlying computations. We attribute the boost in 
predictive performance to the several factors. First, feature 
compensation via considering 3-grams of original observations 
allows for a more stable estimate of the learning process. In a 
sequence of responses {0,1,0,1,1}, the third value of 0 would be 
treated a potential slip by the standard BKT. At the same time, 
Spectral BKT would consider it, as a part of the first triple {0,1,0} 
to be the noisy guessing, and then, in the second triple {1,0,1}, as 
part of the noisy slipping. Finally, in the third triple {0,1,1}, 0 
would be considered to be a part of noise-free learning pattern. 
The fact that there are more than 2 states allows Spectral BKT to 
represent an intermediate configuration of student learning in 
addition to just known or unknown. As a result, Spectral BKT is 
able to deal with the noise in the observations better.  

The interpretation of a new conceptualization of the process of 
learning remains an open question. Having agreed on that state 1 
is the known state and state 4 is the unknown state, we could offer 
several hypotheses of what the remaining middle states are. The 
first hypothesis relates to the linear view of the stages of 
mastering the skill. When a student just started learning and only 
seen a few problems, their knowledge is overly specific, and they 
would end up guessing and failing a lot. We can call this state 3 – 
too-specific. Once the student sees more problems and starts to 
generalize the knowledge, they would still occasionally slip due to 
over-generalization. We can call this state 2 – too-general.  
Our second hypothesis is related to a publication by Aleven and 
colleagues [2]. In this work, authors study the metacognitive 
behavior of students by administering two types of tutors. First, 
the cognitive tutor that implements a mastery learning approach. 
Second, the meta-cognitive tutor used a previously created model 
of effective and ineffective help-seeking behavior in order to 
study the effect of different meta-cognitive traits on learning. 
Authors conclude that the use of the standard BKT model with 
two states might be limiting the capability of the meta-cognitive 
tutor to offer effective help due to lack of intermediate states 
between the known state and unknown state that might give us a 
better insight into student behavior. In the light of the work by 
Aleven et al., the progression of the states could be reflecting an 
interaction of binary latent capturing skill mastery (known, 
unknown) with the binary latent capturing effective use of meta-
cognitive strategies (2 mastery states * 2 metacognitive states = 4 
overall states). To address this hypothesis, one might consider 
step durations (available in the original dataset) or design and run 
a focused investigation like the one in [2]. 

In our work, we used 3-grams of original binary observations, 
giving us 8 new spectral observations and we also used 4 states. 
This particular setup can be changed in the search of a better 
Spectral BKT model. Increasing the number of states could be 
potentially beneficial. However, one must be careful, for as the 
number of states grows, the chance to observe relevant patterns of 
binary observations drops and the Spectral BKT might be under-
defined and this could have problems with performing on unseen 

data whether the patterns missing from the training set are present. 
When there are fewer states that there are spectral observations, 
the states serve the aggregation role. We empirically tried 
configurations of Spectral BKT with 2 states and 4 bigram 
spectral observations that did not result in an improvement over 
standard BKT, as well as a configuration with 8 states and 16 4-
gram spectral observations that did not result in a tangible 
improvement over the configuration we discussed in this paper. 
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