Supporting Superpages in Non-Contiguous Physical Memory

Yu Du, Miao Zhou, Bruce R. Childers, Daniel Mossé, and Rami Melhem
Department of Computer Science University of Pittsburgh
{fisherdu,miaozhou,childers,mosse,melhem}@cs.pitt.ed

Abstract to 49.6% performance improvement can be obtained by uti-

For memory-intensive workloads with large memory foot-IIZIng 64KB superpages for SPEC CPU2006 workloads [16].

prints, superpages are effective to avoid address traiusiat However, Fradltlonal superpages require the physu.:al mgmo

: s to be contiguous, which is problematic wheage retirement
overhead, which can be a critical performance bottleneck. A . ; .
)) . Is used to avoid uncorrectable errors in memory. Page fetire
superpage is a large virtual memory page that is mapped tg . ; . ; .
)) . : ment is a lightweight mechanism that retires/marks pages as

an equivalently-sized amount of contiguous physical mgmor . .
. : unusable [1, 29] and prevents them from being allocated in
pages. Superpage mapping assumes physical memory dogs ; . : .
. ; T) : the future; the drawbacks include creating holes, rengderin

not contain retired pages, which is an important technique t . . .

physical memory not completely contiguous. We illustrate

improve memory resilience: the OS avoids allocating phys,[-hese ssues with three SCenarios.

ical pages that have detected errors. Retired pages creaté) ,
unusable “holes” in the physical memory. We show that even First, when memory errors are considered, allocation of

a small percentage of retired pages makes it very difficult t¢® 1arge contiguous physical memory block (superpage) is
find enough contiguous memory to form superpages. more difficult. Recent studies show that modern DRAM er-

; tes are orders of magnitude higher than previously re-
To address this problem, we propose GTSM, gap- rorra X
tolerant sequential mappinghat allows superpages to be ported [25, 14]. Error Correcting Codes (ECC) are commonly

formed even in the presence of retired physical pages. A newsed to protect memory from one or multiple bit errors. Re-
page table format is also proposed to support GTSM Thisent studies also showed that memory blocks that suffer from
format has similar storage efficiency as traditional sugzgp correctable memory errors are much likely to subsequently

ing to hold address translations in the last-level cache. T fface uncorrectable errors [25]. A field study showed that re-

further compress the page table and improve cache hit rated""9 1% of pages can gover 92% of memory errors [14].)
for address translation in large memory footprint workisad S€cond, when techniques to reduce power are used (as is
we also propose an extended format that reduces the page tgcreasingly the case), more page retirement can be intro-
ble size by 50%. In comparison to an ideal memory withouuced. For example, the DRAM refresh interval can be in-
any retired physical pages, we show that our technique, Witﬁ:reased [2, 17] to save static power. Given t_hat the refresh
retired pages, achieves nearly 96.8% of the performance ghterval of a DRAM cell must be shorter than its data reten-

traditional 2MB superpaging. tion time, and that cell retention time is not uniform (due to
process variation), a small portion of cells have much gmnort
1. Introduction retention than other cells. Traditionally, DRAM refresh in

terval is determined by the cells with the shortest retentio
With the rise of big data and cloud computing, workloadtime. However, a recent study shows that retiring no more
memory footprints keep increasing, putting more pressare Othan 2% of memory pages can extend DRAM refresh interval
the virtual memory subsystem, whose performance still eedfrom 64ms to 256ms [2].

to be improved for large applications [4]. Performance ever Third, non-volatile memories are being introduced in
head includes a large number of Translation Lookaside B“ffe(hybrid) main memory systems to reduce memory static
(TLB) misses, which cannot be mitigated by simply increas-power [22, 33, 23]. These non-volatile memories, however,
ing the number of TLB entries, given thatincreasing TLB sizepave [imited write endurance [21], and cells gradually be-
causes longer access latency and increases energy consuiifine non-programmable “bad” cells. Mechanisms have been
tion. A sqution for memory-intensive workloads yvith large proposed for error correction [24], but their limited eroor-
memory footprints and random access patterns is to Use Slction resources can tolerate limited number of errors. Whe
perpages [4], which map a large contiguous virtual memory,correctable memory errors occur, page retirement is. used

range to an equal-sized physical memory range. Therefore, Although page retirement is a simple and effective way to

the number of entries in the TLB and page tables is dras“étddress different sources of memory errors, the retired$ag

cally reduced (by the ratio .Of superpage 10 page size, typLq, create many unusable holes in the physical address spac
cally 2MB and 4KB, respectively). One study showed that YPand render the space non-contiguous. As we show in Sec-

*This research is supported partially by National SciencenBation i[ion 2-31_ even a S_ma” number of memary errors can make
grants CNS-1012070 to the PCM@Pitt research group. it very difficult to find enough contiguous physical memory

blocks to support traditional superpages. Page retireisent 64-bit Virtual Address

not the only reason to have non-contiguous physical memor] 5& e | PMUEIndes | PRFEIadex [PDEbdex [PTE fdex | Page Offser
Memory fragmentation and non-migratable memory (e.g., 10 Page Map
memory holes) can also make it difficult to find contiguous Level4 Page
physical memory blocks to construct superpages. Table ~ Directory
In this work, we propose a new approach to construct SucR3 —» PT";E;? Page
perpages from non-contiguous physical memory. By utiliz- PMLAE | Direztlory
ing a block selection bitmap, a superpage is mapped to mul- POPE Page
tiple equal-sized small memory blocks (i.e., physical gage S 5DE L Table
instead of a single large contiguous memory block. The ap-

PDE ¢

proach is supported through a page table format that comple-
ment; existing ones. ' S 2MB supotpage
This paper makes the following contributions: ——

— 1GB superpage

_ =1

Physical

i Address
e In Section 2, we add to the knowledge that superpages are () x86-64 page table
critical for workloads with large memory footprints and
simply increasing the size of 4KB-page TLB is not enough. %62 3251 Page-Table L s e
. . . N . - . - -\
e In Segtlon 3, we describe a negap-tolerant sequential x| Available Base Address 0 Al AVL IGIGIAIC W /P
mapping that includes (a) a new page table format, and o) 4KE PDE
(b) an access mechanism to support superpages for non- (b) 4KB-page
contiguous physical memory. We also describe a new page ;3 62 231 Physical Page A0 120 9876543210
table compression scheme that uses (a) a variant of the newx| Available | o = 44 o 0 | avtjajrpiaciw | P

page table format to further reduce the page table size by
half, and (b) a matching algorithm to construct the com-
pressed page table. Figure 1: VA-to-PA translation in the x86-64 architecture.

e In Section 5, we present a quantitative analysis show:

: ; : . TE). For each valid 4KB virtual page, the translation en-
ing that our gap-tolerant sequential mapping can achlevép. !
96.8% of the performance of an ideal 2MB superpageé”es (PML4E, PDPE and PDE) point to the base address of

(without retired pages) for memory with retired pages. Ithe ??thlivil noc\i/s'.thThiilée of thet;ranslatlosn l(;nttry atl etgch
Further, in Section 2 we describe the basics of x86-64 addreseve IS ytes. With a page, there are ransiation

translation, and in Section 4 we describe our experiment ntries per node, which are indexed by 9 virtual addre_ss bits
. . . nly 48 virtual address bits are used in current x86-64 imple
setting and workloads. Sections 6 and 7 summarize relate

work and conclusions mentations: the high 36 bits (9 x 4) are used to traverse the
' page table levels and the low 12 bits are the page offset.
2. Background and Motivation Besides the TLB, recently accessed translation entries are
also cached in the MMU as patrtial translations, which can be
To simplify the presentation, we use x86-64 as our basetine aused to speed up page walking [3]. For example, PDE entries
chitecture. The proposed ideas are applicable to otheeproc can be cached in a PDE cache. If the PDE of a virtual address
sor architectures that support superpages. To furthediggmp hits in the PDE cache, the page walker needs to access only
the presentation, a traditionéigeis 4KB andsuperpageare the last-level PTE to complete address translation.
2MB, unless otherwise noted. Our scheme can support other X86-64 superpage implementation has a similar structure.
superpage sizes (e.g., 1GB superpages are also common). Because the mapping is one-to-one, a 2MB superpage needs
)) only a three-level PT (PML4, PDPE and PDE). The 7th bit
2.1. X86-64 Virtual Address Translation of a PDE indicates whether the PDE points to a page table

Virtual memory mechanisms use page tables (PTs) to map b@f— PTEs, or to the physical base address of a 2MB superpage.
tween virtual pages and physical pages for every memory afigures 1(b) and 1(c) show the format of PDE as a 4KB-page
cess. To speed up translation, physical addresses of kecent2nd 2MB-page PDE, respectively. Similarly, for a 1GB super-
accessed virtual pages are cached in the TLB. On a TLB misBad€, the 7th bit of a PDPE indicates whether a PDPE points
a hardware page walker traverses the page table to transldf2@ Page directory table of PDEs, or to the physical base ad-
the virtual page address. dress of the superpage.

In x86-64, as shown in Figure 1(a), the PT has four levy 5 ynderstanding Address Translation Overhead
els, and a system registe€R3 points to the PT root node.
The corresponding translation entry at each levePagie- There are three performance advantages to superpagés. Firs
Map Level-4 Entr(PMLA4E), Page Directory Pointer Entry superpages increase TLB reach by the ratio of the size of a
(PDPE),Page Directory EntryPDE) andPage Table Entry superpage to a normal-page-size page (i.e., TLB can cache

(c) 2MB-page PDE

2-3 orders of magnitude larger address space), reducing TLErge memory footprints (16GB), the performance overhead
miss rate. Second, superpages reduce the number of leved§accessing PTEs is dominated by main memory accesses.
during page walk, consequently reducing the latency of a In conclusion, to avoid address translation overhead from
TLB miss. Third, superpages significantly reduce the size obecoming a performance bottleneck, it is critical for work-

the PT,; Table 1 shows PT sizes for different workload memiloads with large memory footprints to support superpages,
ory footprints and page sizes. Note that for a workload withwhich avoids accessing PTEs.

a 16GB memory footprint, the PT size for a traditional 4KE
page is 32MB, which is already beyond the capacity of th
Last Level Cache (LLC) for most processors. With 2MB sL
perpages, the size of the page table is reduced to just 64KB
easily fit in the cache.

§ —
HAERER
Memory Footprint| 1GB | 16GB 5
4KB page 2MB | 32MB 0 -

m No PTE PTE - Ideal LLC Hit ®PTE -Memory

CPI

2MB superpage | 4KB | 64KB 512-entry | 256K-entry | 512-entry | 512-entry | 256K-entry | 512-entry
1GB superpage 8B 128B 4KB 4KB 2MB 4KB 4KB 2MB
1GB ‘ 16GB

Table 1: Page table sizes for different workload memory foot -
prints and page sizes assuming an 8-byte page table
entry.

Figure 2: CPI breakdown with different problem sizes and TLB
configurations for the GUPS workload.

2.3.P Retirement and Memory Fragmentation
To further understand the overhead of address translation,3 age Retirement and Memory Fragmentatio

we characterized the performance of different problemssizeGiven that superpages need contiguous physical memory, the
and TLB configurations for the GUPS workload [10], which physical memory can become fragmented when there is even
is memory-intensive with a random access pattern. We use small percentage of retired pages. Figure 3 shows the prob-
cycles per instruction (CPI) for performance. We studyehre ability of finding a contiguous memory block (of sizes 2MB,
TLB configurations: a 512-entry 4KB-page TLB, a 512-entry128KB, 64KB and 32KB) as a function of percentage of
2MB-page TLB and an 256K-entry 4KB-page TLB, which retired 4KB pages (retired pages are uniformly distributed

is much larger than any practical TLB design. Recent workThe probability of allocating a 2MB superpage quickly ap-
shows that TLB reach can be improved by coalescing multiproaches zero if the number of retired pages increases (e.g.
ple TLB entries with similar contents [20, 19]. The effeetiv for 0.5% retired pages, the probability is less than 8%)sThi
TLB reach of a 256K-entry 4KB-page TLB is 1GB, which is implies that a traditional superpage implementation véllip

an upper bound that can be achieved by TLB coalescing. effective with retired pages. Nevertheless, it is reldgieasy

As shown in the left side of Figure 2, when memory foot-to find small contiguous memory areasvhen the percent-
print is 1GB, a 256K-entry 4KB TLB has similar perfor- age of the retired pages is small. To ensure that at least 60%
mance as a 512-entry 2MB TLB, since the memory footprintof the memory blocks are contiguous, the threshold on the
is not larger than the 1GB TLB reach. When the memorypercentage of the retired pages for 128KB, 64KB and 32KB
footprint increases to 16GB (right side of Figure 2), which Superpages is 1.6%, 3.1% and 6.1%, respectively.
is much more than the 1GB TLB reach, the performance im- In the next section we describe a new method to construct
provement from increasing TLB reach becomes very smalsuperpages from multiple small memory fixed-sized areas in-
but superpages perform very well. stead of a single large contiguous memory area.

Figure 2 characterizes the CPU cycles for an instruction ony
average, to understand the sources of the address translati
overhead. We note that approximately 15 cycles are needalle develop a new mapping to support superpages in memory
to access data, execute the instruction and account foessldr with retired pages, and the necessary hardware to implement
translation overhead in the first 3 levels (up to PDE, labeledhis mapping.

No PTE in the figure). Compared to a 512-entry 2MB-page, I
TLB, the additional address translation overhead of a 4KB§'1' Problem Definition
page TLB mainly comes from accessing PTEs. The goal is to find storage-efficient page table formats to

The number of cycles to access PTEs can be broken dowaiccommodate superpages in the context of non-contiguous
into two components: the cycles to access PTEs assuminghysical memory. We identified four requirements to achieve
all PTEs always fit in the LLC (PTE-Ideal LLC hit, middle this goal:
cycles), and the cycles to access main memory if a PTE i§¢. Allow mapping a superpage to multiple non-contiguous
not cached (PTE-Memory, at the top). For workloads with memory area;

. Superpage in Non-Contiguous Memory

—2MB 128KB - - -64KB — -32KB 4KB 63 0

100% s N N ey O N) O B
r\.\

(]

1 S~ S — (a) A memory slice is divided into 64 B-blocks.

a 80% =
- 5 T~ —~— 32 B-blocks (grey) are selected to construct a superpage.
o ~. -
> 2 oo S — 6362 52 51 2120 131211 9876543210
] < —
=% ~ - - N . K P PIPU[R
3 g Sea x| Available Physical Page Base Address 0 Al AVL [G|1|D|A|CIW/ |/ |P
© 40% S T D|T|S |W]
o 9 S~ 127
o2 = a ; ;
a (&o 20% ‘ Block Selection Bitmap ‘

=

g 0% T T T T T T T (b) Gap-tolerant PDE (GT-PDE) format.

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0%

Percentage of Retired Pages Figure 5. Gap-tolerant PDE (GT-PDE) format.

Figure 3: Probability of a memory block (of sizes 2MB, 128KB, cal page. This flexibility is not free: the storage cost of fine
64KB and 32KB) to be contiguous (no retired pages) grained paged mapping is orders of magnitude higher than tra
for different percentages of retired 4KB pages. ditional superpage mapping. Figure 4(c) shows how GTSM

S Mapped Page Retired 4KB Page d_ivides a virtual superpage into.multiple fixed-size snralle
virtual blocks, which are sequentially mapped to mem&y (
PA blocks or building blocks). B-blocks are bigger than a regular

| (BP_’LTSEM the size of a superpage. Note that the utilization of memory

is not only 50% with GTSM because remaining unmapped
fragmented memory can still be used for traditional pages.
To maintain a one-to-one mapping between virtual blocks
. and B-blocks, exactly half of the B-blocks participate ie th
sie. mapping, given the size of the memory slice. Any B-block
that contains at least one retired page cannot be used for
GTSM. Note that GTSM is a generalized form of traditional
superpage mapping, but it is more flexible to take into ac-
count retired pages. If there is no retired pages in a memory
slice, GTSM creates the same (i.e., contiguous) memory map-
= ping as traditional superpage mapping. By sacrificing fliéxib
T e T8 (D) Fincrainedbaged (6 G ity of small/traditional page mapping, GTSM toleratesnesti
pages and maintains a page table that has similar storage effi
ciency as superpage mapping.
2. Have similar size as traditional superpage table format;
3. Guarantee that address translation is completed in a fix

nLIJImber_of steps; and, d traditional For a 2MB superpage, PDE (page directory entry) is the
4. Allow mixing superpages and traditional pages. last level of address translation; the PDE format contdips t

For backward compatibility and deployment, our new PTppysica| page frame base address and control flags of the su-
format is an optional extension to allow a portion of the mem- erpage (present bit, access bit, dirty bit, etc.). To stppo

ory to be mg_pped as superpages and the rest of memory SM, the 8-byte PDE is extended to a 16-byte GT-PDE
follow a traditional PT format. (Gap-Tolerant PDE). Figure 5(a) shows a memory slice di-
vided into 64 B-blocks with half of the B-blocks selected to
construct a GTSM superpage. As shown in Figure 5(b), to
When the physical memory is littered with retired pages, it isminimize the impact on the OS, we keep the first 64 bits of a
problematic to find a large contiguous memory block to esGT-PDE the same as a traditional 2MB-page PDE. An extra
tablish a mapping. We devis&hp-tolerant Sequential Map- 64-bit B-block selection bitmap is appended for GTSM. The
ping (GTSM) to support superpages in memory with retiredcorresponding bit will be set to 1 if the B-block is selected i
pages. Figure 4 shows three ways to map a virtual menthe mapping. Otherwise, the bit will be set to 0.
ory space (VA) of the size of a superpage to physical mem- Figure 6(a) shows address translation of a traditional 2MB-
ory (PA) that contains errors (marked with an X). Figure 4(a)page PDE. The 9-bit PDE index/block offset is used to select
shows traditional superpage mapping, that maps VA to cora PDE among 512 regular PDEs. The 9-bit PTE index will
tiguous PA (in this case, there is no contiguous physicatepa be kept unchanged in the translated physical address. Since
that can accommodate a superpage). the default size of each page directory table is 4KB, it can
Figure 4(b) is the traditional page mapping, where eacthold 256 GT-PDEs instead of 512 regular PDEs. To avoid
virtual page can be mapped to an arbitrary non-retired physchanging the size of the page directory table (4KB) and the

j}Bui]ding page and together form a memaljce, whose size is twice

Figure 4: Examples of different address mapping schemes.

co3- Gap-tolerant Page Directory Entry (GT-PDE)

3.2. Gap-tolerant Sequential Mapping (GTSM)

VA PDE Index PTE Index / Page Offset 100% T
©) Block Offset (9) (12) 90% /,/
1

[-T4]
£
g 80% !
sy 7% '
£€q 6o% i
| PDE | O 50% / !
© © 40% :
F g 30% / '
T w 20% / "
s 10% :
o 0% ——/ ! ‘
e 0% 20% 40% 60% 80% 100%

PA ‘ Physical Page Base Address ‘ Block Offset ‘ Page Offset ‘
(€1) ©) 12

(a) Address translation of a 2MB-page PDE.

Percentage of Usable B-blocks

Figure 7: Probability to construct a valid GT-PDE mapping for
different percentages of usable B-blocks.

VA ‘ GT-PDE Index ‘ Block Block Page Offset ‘
& Index () | Ot () (12 B-blocks usable. Recall that the remaining memory capacity
can be mapped as traditional pages.
GT-PDE Block Selection 3.4. Tolerating More Retired Pages
Bitmap (64)
There is a trade-off between B-block size and number of re-
tired pages allowed (robustness of mechanism). The B-block
v Y Y size used by a 4MB-page GT-PDE is 128KB. From Figure 3
PA Phys?cal Page Base Address / ‘ Bitmap Block Page Offset ‘ We see that to tolerate more retired pages, a smaller B-block
SlicelBasclddress| @9} Oifet(6)M MOfel(5) az size should be chosen (to ensure enough usable B-blocks ex-
(b) Address translation of a 4MB-page GT-PDE. ist to find a valid mapping).

When the bit of the block selection bitmap represents a
smaller B-block, the format of the GT-PDE is not changed

size of the mapped memory range (1GB), each GT-PDE entrgnd the size of the superpage represented by a GT-PDE is re-
needs to map a 4MB superpage instead of a traditional 2mgluced. To avoid changing the size of the mapped memory
superpage. Based on GTSM, a 4MB superpage is mappd@nge (1GB), the page directory table needs to be expanded

to a 8MB memory slice. Since each memory slice has 640 hold more GT-PDEs. This change to use large pages (e.g.,
B-blocks, the size of each B-block is 128KB. 16KB) as the page directory table is feasible. Some architec

Figure 6(b) shows the address translation of a 4MB-pagd-"es: like ARM, already have this capability.

GT-PDE. Only the upper 8 bits of the PDE index are needed Ve limit the B-block size to 128KB, 64KB or 32KB. Ta-
to index a GT-PDE entry among 256 GT-PDEs. Since eaclp'e 2 shows the basic parameters of GT-PDEs. Supporting

B-block is 128KB, only the low 5 bits of PTE index are used 16KB or smaller B-blocks requires changing the GT-PDE for-

as block offset and kept unchanged during address tramslati mat to have more bits for the physical page bgse.addres.s. Al-
The remaining 5 bits between GT-PDE index and block offsef0Ugh supporting 256KB or larger B-block size is possible,
are treated as block index. Block index is translated usieg t 't IS not considered for two reasons. First, 256KB or larger
block selection bitmap of the selected GT-PDE. Same as §Plock size implies tolerating fewer retired pages (< 1%),
2MB-page PDE, the physical page base address field of a G¥hich is not our goal. Second, the size of the page dlrgctory
PDE entry is 31 bits. Because the mapped sliced is aIigneH"ble will be smaller than 4KB an.d.become parjually filled
at an 8MB boundary, the low 2 bits of the physical page basé"e" wasted space) assuming a minimum page size of 4KB.

address field are always zeros and ignored in the translated

Figure 6: Address translation using GT-PDE-4MB.

physical address. To translate block indke¥0-31), the block GT-PDE Mode gi-iock ;ia:gitor _I?ﬁrtuer:ﬁolrdage

selection bitmap is scanned to find tKeselected bit, whose Table Si)z/e

position in the bitmap (0 - 63) indicates the B-block that the ——ZyBpage | 128KB | 4KB 1.6%

virtual block is mapped to. 2MB-page | 64KB SKB 3.1%
Because at least half of the B-blocks in the memory slice | 1MB-page | 32KB 16KB 6.1%

.mUSt have no r.e“red pa_ges, we _ShOW in _Flgure 7the prObabII'i'able 2: Parameters of GT-PDEs with different B-block sizes.

ity of constructing a valid mapping for different percergag

of usable B-blocks, which are assumed to be randomly dis-

tributed in memory. A threshold of 60% is enough for most The translation process of GT-PDE with a smaller B-block
memory slices (93.3%) to find a valid mapping. Because onlsize is similar to a 4MB-page GT-PDE. However, with a
half of the B-blocks in a slice are used in GTSM, the memorysmaller B-block size, fewer address bits are used as bldek of
capacity that can be mapped with GT-PDE is 46.6% with 60%et. At the same time, the page directory table is expanded to

14131211 98 76 54 3

210
P[P |UR

4KB-page PDE GT-PDE 6362 525

1 27
Physical Page Base

26 12
63 70 63 7 0 N i _ | ;
‘ ‘0‘ ‘ ‘ ‘1‘ ‘ «| Available Address Offset-A ‘ Offset-B | 0 A AVL |G|1|D|A <[:) ¥//S (NP
B-block Size = 128KB - - 127
‘ ‘0‘ ‘ ‘ Block Selection Bitmap ‘ ‘ Block Selection Bitmap ‘
T
——————————————————————————————————————— (a) Paired GT-PDE (P-GT-PDE)
‘ ‘0‘ ‘ ‘ ‘ 1‘ ‘ Physical Memory
B-block Size = 64KB ‘ ‘ ‘ ‘ Memory Chunk 0
Zero Padding Block Selection Bitmap | | (28MB) | I '
; (2805 Stice 0 |
_______________________________________ Slice 1 BAV | Matchin
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Memory Chunk 1 34g> P-GT-PDEs
0 1 : §
‘ Zero Padding ‘ ‘ Block Selection Bitmap ‘ : Slice M
B-block Size=32KB —— 7 | e
ock Size ‘ Zero Padding ‘ ‘ ‘ 1‘ ‘ Memory Chunk N
‘ Zero Padding ‘ ‘ Block Selection Bitmap ‘ (b) Construction of P-GT-PDEs
Figure 8: Decoding GT-PDE. Figure 9: P-GT-PDE and its construction.

hold more GT-PDEs. More address bits are used to locate thge T.B [20, 19]. Similarly, it is possible to halve the size

GT-PDE in the page directory table. of the page directory table by coalescing every two adjacent
GT-PDEs. Figure 9(a) shows a Paired GT-PDE (P-GT-PDE)
format to support GT-PDE coalescing. To coalesce two GT-
When GT-PDE is enabled, a page directory table can storDEs with P-GT-PDE, two GT-PDEs use memory slices in
both 4KB-page PDEs and GT-PDEs at the same time. Each smaller range (128MB). Only the low 6 bits of physical
4KB-page PDE has the PT base address that points to the PPRge base address are different for the two slices. Also, the
of PTEs. Each PTE will further point to each mapped 4KBtwo GT-PDEs need to have the same block selection bitmap.
pages. Each GT-PDE directly points to the physical base adherefore, the low 6 bits of physical page base address of the
dress of the mapped memory slice. 4KB-page PDEs neesecond GT-PDE can be stored in the unused field (bit 15-20)
zero padding to fill the unused space if the page directorgf the first GT-PDE to form a P-GT-PDE. As shown in Fig-
table is expanded. Figure 8 shows how to decode addresseee 9(a), when a P-GT-PDE is accessed, it is simple to restore
using GT-PDE for various B-block sizes (see explanations behe coalesced GT-PDEs by masking the Offset-B field as ze-
low). When GT-PDE is enabled, the page directory table igos and overriding the Offset-A field with the value of the
accessed at aligned 16-byte granularity. Similar to a tradiOffset-B field.
tional 2MB-page PDE, the 7th bit of the accessed 16-byte is Figure 9(b) shows the matching process to construct P-GT-
utilized to determine whether a PDE is a 4KB-page PDE or éPDEs. First, the physical memory is divided into multiple
GT-PDE. If the 7th bit is zero, the PDE should be decoded agligned 128MB memory chunks. Each chunk is further di-
a 4KB-page PDEs, otherwise the PDE should be decoded agded into memory slices. Based on the distribution of re-
a GT-PDE. tired pages, each slice has a 64-bit Block Availability \dect
When B-block size is 128KB, every 16 bytes of the page(BAV), which indicates which B-blocks of the slices can be
directory table can store either two 4KB-page PDEs or onaised in the P-GT-PDE mapping. If a B-block is usable, the
GT-PDE. There is no padding needed. When B-block size igorresponding bit in BAV is set to 1, otherwise it is set to
64KB, the size of the page directory table is doubled. To en@. A matching algorithm finds memory slices that should be
sure 4KB-page PDEs are evenly distributed in the page diregaired.
tory table, each 4KB-page PDE needs to be padded with an Algorithm 1 is our matching algorithm to find GT-PDE
8-byte zero padding. When B-block size is 32KB, each 4KBypairs to construct P-GT-PDEs. First, for each memory chunk,
page PDE needs to be padded with a 24-byte zero paddinge can get a BAV for each memory slice. A 128MB memory
The storage overhead of the padding is small because the doghunk has 64 2MB-size slices or 32 4MB-size slices. Then,
inant storage cost of 4KB-page PDEs comes from their PTEBAVs are sorted based on the number of usable B-blocks in
When B-block size is 32KB, if the first access of a 4KB-pageascending order. The algorithm sequentially scans theirema
PDE points to the bottom-half 16 bytes, which are the zergng BAVs to find two unprocessed BAVs that can be paired
padding, a second access to the top-half 16 bytes is needeg@ing the bitwise-AND. If the result has at least 32 bits set,
Similar to the storage cost, the performance overhead of thghe slices can share a valid block selection bitmap. Magchin
extra access is small because the dominant address tramslatcontinues until there are no more unprocessed BAVs. A spe-
overhead is from accessing PTEs. cial case is a memory slice which does not have any retired
. page, whose top half and bottom half slices caBeki-Paired
3.6. Compressing GT-PDEs For a Self-Paired P-GT-PDE, the block selection bitmaplis al
Recent research showed that TLB entries with similar conones.
tents can be coalesced to store more address translations inBecause the matching algorithm is done locally for each

3.5. Mixing Traditional Pages and Superpages

Algorithm 1 Construction of P-GT-PDEs in a Memory When a GT-PDE/P-GT-PDE is accessed, the hardware

Chunk page table walker needs to translate the block index to a
Parameters: bitmap offset using the block selection bitmap. As shown
Bo-..Bn: a group of BAVs in Figure 10(b), each PDE cache entry needs an extra 15-

Initialize the state of each BAV tonprocessed byte storage tp store. the block selection bitmap (8 byted) an
Sort BAVs based on the number of usable B-blocks of each BAdea- Dyte-granularity prefix sums (7 bytes). When a GT-PDE/P-

dant order. - _ GT-PDE is loaded into a PDE cache entry, byte-granularity
Any BAVS with all B-blocks usable are marked &sif-Paired prefix sums are calculated and cached to reduce translation |
while the number ofinprocesse®AVs > 2 do t As sh in Fi 10(b). byt larit fi
Scan the BAV list to find the firdnprocesse®AV B;. en_cy. S shown In Figure ()' Y e-granu_ arity premnx sum
for each remaininginprocesse®AV B; do S, is the accumulated number of 1s of the firgtl bytes of
Bmerged= Bi bitwise AND B;. the block selection bitmap. Similar bit-counting logic is a
if the number of usable B-blocks Bfrergea> 32then ready implemented in modern processors and can be reused
Record(B;, Bj) as a valid P-GT-PDE. . .
Mark B, and B asPaired to reduce hardware implementation cost. For example, x86-
Go to find next unprocessed BA¥! to process. 64 POPCNT instruction counts the number of 1's of a 64-bit
end if register in 3 cycles.S;, which is the number of 1s of the
endfor whole block selection bitmap, is not stored because it ienev
Mark B; asDiscarded . X
end while used in address translation.

For each address translation using GT-PDE/P-GT-PDE, the
128MB memory chunk, the time complexity of the algorithm byte-granularity prefix sums are compared with the value of
is proportional to memory capacity. We tested our serial verblockindex The (i + 1) byte of the block selection bitmap
sion of the algorithm on a 2.8GHz Intel Xeon E5-2680v2 procontains the matched bit position § > blockindexand
cessor. It takes less than 0.1s to find all BAV pairs for 128GBS_; < blockindex After the matched byte is determined, bit-

memory. granularity prefix sums are calculated for each bit position
) of the matched byte. The eight bit-granularity prefix sums
3.7. Hardware Implementation are compared with the value bfockindex- §_1 + 1, the bit

To support GTSM, we introduce three hardware change?.os't'on of the matched bit-granularity prefix sum is thesra

First, a new 64-bit Gap-Tolerant Page Table Control Registe ated bitmap offset. Also, address translation using toelol

: selection bitmap can be done in parallel with other openatio
(GTPTCR) is used to manage the parameters of GTSM. Se 1at are needed to fill a TLB miss (e.g., validating the access
ond, the hardware page walker is extended to support Ioadinﬁ 9. 9

. .) . . fights of the superpage). We assume that loading a TLB en-
missed TLB entries from GT-PDEs. Third, the PDE cache Intry from a GT-PDE takes an extra 3 cycles than a traditional

the M.MU Is extended to hold 16-pyte GT_PDES' Next, WePDE. We also carried out a sensitivity study on this penalty
describe these hardware changes in detail. .
(see Section 5).

p Asdsggwg_:_n_ F(;gurf 1o(ﬁ)’thZTr%?Ahas thrbeledﬂe#]s: GT, In this work, we assume that the baseline processor has a
an ' Indicates whether IS enabled. 1he pag 2-entry PDE cache to store recently-accessed PDEs [3, 6].

table of a process can use both 4KB-page PDE and tradition he total storage overhead to support GT-PDE is 488 bytes:

2MB-page PDE. Or the page table of a process can use bo b .

. ; . X ytes(GT PTCR + 32 x 15bytes(PDE cache entrigs
.4KB page PDE and GT-PDE. To avoid adding an extra flag To minimize the changes to the MMU, our design does not
in the PDE, the page table of a process cannot use both tra-

ditional 2MB-page PDE and GT-PDE. P indicates whetherc ange the TLB hierarchy. The hardware page table walker

P-GT-PDE format is used. BS indicates the B-block size. IfIs enhanced to support GTSM. When address translation is

BS isn, the corresponding B-block size i€ 2 4KB. The completed, a 4KB TLB entry is inserted into the TLB hierar-

remaining unused bits in GTPTCR are reserved for future ethy for the trqn;lated address. Early X86_6.Af processors hav
also used a similar method to support traditional superpage

tension. Table 3 shows the PDE modes that are defined by t%ternatively, the TLB hierarchy can be enhanced to provide

GTPTCR. native support for GT-PDE.

0 0| O - 2MB-page PDE
110 3 32KB 1MB-page GT-PDE To enable GTSM, the OS needs to support functions to 1)
1|0 4 64KB 2MB-page GT-PDE configure GTPTCR; 2) determine whether to use traditional
1]0| 5 128KB 4MB-page GT-PDE or GT-PDE superpages based on the setting of GTPTCR; 3)
1 1] 3 32KB 2MB-page P-GT-PDE track memory slices that can be mapped as GTSM super-
1 11] 4 64KB 4MB-page P-GT-PDE| pages; and, 4) install and release GTSM superpages.

Table 3: List of all PDE modes in GTPTCR. To track memory slices that can be mapped as GT-PDE

superpages, a BAV array can be used to store the usability in-

63 87 2 1 0

slice. Main memory capacity is 128GB with 50ns access la-
0 BS P, tency.
To evaluate different page table designs, we extended PTL-

(a) Gap-Tolerant Page Table Control Register (GTPTCR) sim with a TLB performance model. The L1 DTLB has 64

entries for 4KB pages and 32 entries for 2MB pages. The
Virtual Address PDE L1 ITLB has 64 entries for 4KB pages. The unified L2 TLB
Tag has 512 entries for both 4KB and 2MB pages. L1 TLB miss
penalty is 7 cycles if it hits in L2 TLB.

Besides the two-level TLB, a MMU cache [3] is mod-
eled. The MMU cache has 32 PDE/GT-PDE cache entries,
32 PDPE cache entries and 2 PML4E cache entries. Al-
(b) PDE Cache Entry to support GT-PDE/P-GT-PDE though the number of entries in the PDPE is larger than
usual, we increased it to reduce TLB miss penalty for work-
loads with large memory footprints, as suggested in previ-

formation of B-blocks. Each memory slice has a dedicate®YS work [3, 6]. The MMU cache is indexed by virtual ad-

64-bit BAV. When the B-block size is 128KB, the memory dress and is concurrently looked up with L2 TLB [3]. We
storage cost of the BAV array is 128KB for 128GB main assume 5 cycles for the hardware page walker to access a

memory. If the B-block size is halved, the memory StoragePTE/PDE/PDPE/PML4E not including the cycles to load the

cost of the BAV array will be doubled. ;enktry Ll 'ihescachle/ rrlemory hieragf:rhgbl\évg astsutr:]]e tzzt it
When the OS boots, it initializes the BAV array using a akes an extra s cycles toaccess a > 1- ue o the adaress

. .translation latency using the block selection bitmap. The
fault map of pages with errors. The fault map can be ei;
hardware page walker is not speculative (all configurajions

ther stored in a permanent storage or constructed with mem-"_. . o
P 9 Since the B-block size is larger than a traditional page of

ory built-in self-test (BIST) during boot. The OS needs to b ¢\ "o erimented with 32KB, 64KB and 128KB), the
keep the BAV array updated by using information from kernel : . . A
selection of B-blocks in a memory slice has negligible im-

physical page allocator (e.g., Linux Buddy Allocator). @rac . .
i . . pact on performance. For L1 and L2 cache, if a virtual page
memory page of a B-block is allocated, the corresponding b|IP mapped to different B-blocks, data at a given virtual ad-

of the BAV needs to be set to 0. Once all the memory pages o S .

: . dress is still mapped to the same cache set. The selection of
a B-block are freed, the corresponding bit of the BAY neecdeifferent B-blocks only affects the value of cache tags, the
to be setto 1. A memory slice can be used for GT-PDE mem- y gs,

ory allocation if more than half of its B-blocks are usable. T cache replacement sequence is kept unchanged. The memory

avoid scanning the BAV array for each GT-PDE memory alloP29¢3 for the page table are pre-aliocated to simplify tine si

cation, all BAVs that can be used for GT-PDE allocations car‘hulatlon process. A similar reservatlon-based_allocattmln:p
. . . . as been used to allow MMU cache coalescing [6].
be maintained in a dedicated list.

. We use a Monte Carlo method to calculate the effective
Unlike GT-PDE, P-GT-PDE should be used only for Pro-capacity of different GT-PDE/P-GT-PDE designs with differ
cesses with very large memory footprints, and compressin

; 8nt percentages of retired pages. To reduce the error intro-
GT-PDEs can further reduce TLB miss penalty. Because th‘aucgd by the? Monte Carlo pmgthod we modeled randomly-
matching algorithm described in Section 3.6 needs to be apy_. - : . ' .
plied to the BAV array to find BAVs that can be paired, it is Wistributed retred pages in a large physical memory sample

more expensive to make memory allocation with P—GT—PDE(16PI3 capacity). We use Intel RdRand instruction [15] to

- . iff f reti ith if
than GT-PDE. To utilize P-GT-PDE, physical memory shouldgenerate fj' grept percentages of retired pages with aumi
e random distribution.
be allocated at the early stage of the process lifetime and re
leased when the process is completed. 4.2. Workloads
In this paper, we assume that all processes use the sa
B-block size. To support per-process B-block size, the O

needs to track BAVs at multiple granularities.

Block Selection Bitmap

Se | Ss | Sa | Ss | S2 | Si | So

Figure 10: Hardware implementation of GT-PDE.

e . .
glnce we study address translation overhead of virtual mem-
ory, we consider memory-intensive benchmarks with large
memory footprints. We use these applications because they

4. Experimental Methodology are becoming prevalent and suffer the most from address
translation overhead. We choo&&JPS[10], Cannealfrom
4.1. Configuration PARSEC [8] and 7 benchmarks from Problem Based Bench-

mark Suite [26]. GUPSis a popular benchmark to test ran-
We use PTLsim [31], a cycle-accurate simulator, for perfordom memory access performanéannealis a cache-aware
mance evaluation. The simulation parameters are detailed simulated annealing kernel to minimize the routing cost of a
Table 4. The CPU is configured as a 3GHz out-of-order proehip designDict is a benchmark to test performance of batch
cessor core with a 256KB L2 cache and a 2MB LLC cachensertion, deletion and search operations with a dictipnar

CPU Core 3GHz, out-of-order, 32KB L1 I/D portion of their total memory footprints during the simula-

L2 Cache 256KB, 8-way, 64-byte line size, tion interval. A 512-entry 2MB-page L2 TLB can provide
8-cycle latency enough memory coverage (1GB). Most workloads have neg-

LLC 2MB per core, 32-way, ligible TLB misses with ideal 2MB superpage.
64-byte line size, 20-cycle latency

L1DTLB 64-entry 4-way 4KB page Characterizing Applications: PTE Access Breakdown
32-entry 4-way 2MB page Since accessing PTEs is a major source of address transla-

L1ITLB 64-entry 4-way 4KB page tion overhead for workloads with large memory footprints,

L2 TLB 512-entry 4-way 4KB/2MB page Figure 11 shows the breakdown of PTE accesses based on
7-cycle latency whether the PTE is accessed in memory, LLC, or L2 cache.

MMU Cache | 32-entry 4-way PDE/GT-PDE cache We assume that the L2 cache is the fastest cache large enough
32-entry 4-way PDPE cache to cache PTEs; essentially, caching PTEs in the L1 cache
2-entry PMLAE cache could cause significant adverse cache pollution and sgverel
5-cycle PTE/PDE/PDPE/PMLAE access harm performance. The breakdown of PTE accesses is an in-
8-cycle GT-PDE access herent characteristic of each workload, and is sensititkeo

Main Memory | 128GB DRAM, 50ns latency .

memory footprints of the workloads. The workloads that we
Table 4: System settings. studied can be divided into two categories. The slower PT ac-
cess category are those applications that have a largemporti
(i.e., more than 10%) of PTE accesses to memory, given that
the access to memory is 7.5 times slower than LBTIPS
Cannea] dict andBFS The second category are those appli-
cations that have faster time to access PTs, with few PTE ac-
cess to memorysetCoverMST, SPMV, matchingandMIS.

data structure BFSruns a breadth first search in a directed
graph. SetCoverfinds an approximate solution to the NP-
hard set cover problemMST finds the minimum spanning
tree (MST) in an undirected grapl&PMVis multiplication
between a sparse matrix and a dense maliatchingfinds

a maximal matching in an undirected graphiS finds a max-
imal independent set (MIS) in an undirected graph. With o B Memory = LLCHit M L2 Hit
current simulator, only single-threaded workloads ardueve

<€ 100%
ated. Multi-threaded workloads should have similar resul _§ gg;
given there will be even larger memory requirements by m & 70%
tiple applications or threads running concurrently. Thespr a 60%
sure on the cache and sizes of page tables tend to be ¢ § igf
bigger. ; 38?
o 10%
Name Memory TLB Miss PKI | Mem. Footprint(GB) 0%
Reads PKI| 4KB | 2MB | Touched Total
GUPS 17.9 17.9 134 4.0 4.1
Car_meal 24.4 21.2 2.9 3.7 4.0 Figure 11: PTE access breakdown.
dict 23.1 21.4 0.0 0.7 6.5
BFS 93.2 88.1 4.4 1.4 7.4
setCover 60.4 494 | 0.0 0.9 7.8 5. Results
MST 50.0 43.2 0.0 1.0 13.0
SPMV 128.7 1135| 0.0 1.7 73 This section presents simulation results of GT-PDE/P-GT-
matching 119.1 109.7| 0.0 0.9 6.2 PDE superpages. We show how performance is improved in
MIS 144.4 124.3| 0.0 1.3 7.3 comparison to traditional 4KB pages. We also shideal

case, that is, traditional 2MB superpages with no retired
pages (in other words, no errors occur in memory). Tradi-
tional 2MB superpage is only suitable for memory where re-
For the graph benchmarks, we use R-MAT graphs [9] as théred pages are rare. In the figures, we use GT-RDIB-
input. ForDict, we use an uniform random distribution as the to denotexMB-page GT-PDE. Similarly, we use P-GT-PDE-
input. For each workload, we skipped the initialization plha XxMB to denotexMB-page P-GT-PDE.
and simulated 2 billion instructions. All benchmarks are 64 .
bit binaries, compiled with gcc 4.1.2. Table 5 shows the num-5'1' TLB Miss Penalty
ber of memory reads per 1000 instructions (PKI), TLB MissSince our proposed design does not change the TLB hierar-
PKI after a 512-entry L2 TLB (both 4KB pages and 2MB chy, it has the same TLB miss PKI as the traditional 4KB
pages), and memory footprints of each workload (both the tgpage baseline. As a superpage table format, GT-PDE does
tal footprint and the size of memory touched by the 2B-cyclenot need to access a PTE for each page table walk, which sig-
simulation we ran). Most workloads can only touch a smallnificantly reduces the TLB miss penalty. Figure 12 shows the

Table 5: Simulated workloads and PKils.

M 4KB GT-PDE-IMB M GT-PDE-2MB W GT-PDE-4MB ——Ideal (2MB) GT-PDE-4MB (128KB) — - -GT-PDE-2MB (64KB)
187.8 P-GT-PDE-2MB (32KB) — -GT-PDE-1MB (32KB) -==-- Non-retired Pages

- 100
E 0 g)‘,100% e,
22 60 g 80% \\
w S o
H o\
93 I I & R —
e M b f o . -
o [7} N
> =% o S
z S{—) (\Q/’b\ & é(% OAQ'\ § @4 \&Q% $ 5 0% S
© N L Y <& T~
C 52 g 0% 00 T e S—e o
. . 0% 1% 2% 3% 4% 5% 6% 7% 8%
Figure 12: Average TLB miss penalty. Percentage of Retired Pages
WA4KB W GT-PDE-IMB W GT-PDE-2MB W GT-PDE-4MB W Ideal (2MB) Figure 14: Superpage percentage of different GT-PDEs.
1.8
[$) .
_% 16 performance of GT-PDE for 1MB, 2MB, and 4MB are all sim-
214 ilar because they use the same address translation precedur
g 12 and have similar TLB miss penalty. Due to the same reasons
S0 (both fit in the L2 or LLC), even though the paired schemes
08 (P-GT-PDE, not shown) reduce the page table size by 50%,
6\5@ 00@ & £ (}0@ & <§ é.\\(\% &® é&@o they have similar performance as GT-PDE. We derr_lon_strate
& & 7 & & the performance advantage of a smaller page table size in Sec

tion 5.4.

In our default configuration, the L2 cache is the highest
average TLB miss penalty of the traditional 4KB page baserye| to cache the page table. We also evaluated the config-
line and GT-PDEs. Compared with Figure 11, we observration that PTEs can be cached in the L1 cache. For the
strong correlation between PTE access breakdown and the (gorkloads that we studied, the performance change is very
duction of TLB miss penalty. FOBUPS Canneadictand gmall (< 0.1%) compared to our default configuration for the
BFS average TLB miss penalty reduces by 40-160 CPU cyaditional 4KB pages. On the other hand, there is extra 1%
cles because a significant portion of PTEs are accessed frogyrformance gain on average if GT-PDEs can be cached in
memory for the traditional 4KB page baseline. For the workyhe 1 cache instead of only in the L2 cache.
loads we studied, the average TLB miss penalty of GT-PDE
for 1MB, 2MB, and 4MB are all similar because the page
tables fit in the same cache level.

Figure 13: IPC normalized to traditional 4KB page baseline.

5.3. Memory Capacity Used as Superpages

5.2. Performance . .
Figure 14 showsuperpage percentagéhat is, the percent-

Figure 13 shows IPC improvement over the traditional 4KBage of memory capacity that can be used as superpages us-
page baseline. The graph shows the improvement for GTrg different page table formats. Using more superpages
PDE with different superpage sizes atdbal superpages is beneficial due to the speedup achieved (recall that super-
(i.e., superpages with no retired/faulty pages). Simddfiy- pages do not need to traverse the last level of page tables).
ure 12, we observe strong correlation between PTE acce$¢ote that the remaining non-retired memory pages can still
breakdown and IPC performance improvement. GolPS be used and mapped using traditional 4KB-page PDEs. For
Cannea) BFSanddict, we observe significant performance traditional 2MB superpages, the percentage quickly drops t
improvement (20% to 60%) with GT-PDEs because PTE©D%. For GT-PDEs, the superpage percentage to utilize GT-
are no longer accessed from memory. BetCover MST, PDEs drops to 50% with increased retired pages, because
SPMV, matchingandMIS, we observe moderate performance each memory slice is likely to have at least one retired page.
improvement because these workloads access PTESs that akhen there is a retired page, only 50% of B-blocks of a mem-
mostly cached in the L2 and the LLC; the address translatiolory slice can be used in the GT-PDEs. As shown in the fig-
overhead is not significant enough to cause a large differenaure, to have 50% superpage percentage, the thresholds of re-
in the IPC, which is approximately 2% to 8IS has the tired pages should be 1.4%, 2.8% and 5.5% for B-block sizes
lowest performance gain (2.6%)11S has 90% PTE accesses of 128KB, 64KB and 32KB, respectively. The superpage
to the L2 cache, and is less sensitive to address translatiqgrercentage of P-GT-PDE-2MB (paired approach) is bounded
overhead. On average, GT-PDE-4MB achieves 96.8% perfofrom below by GT-PDE-2MB and above by GT-PDE-1MB.
mance of Ideal. The 3.2% overhead mainly comes from th&€€ompared to GT-PDE-2MB, the smaller B-block size allows
extra 3 cycles to translate and access GT-PDE entries frofR-GT-PDE-2MB to tolerate more retired pages while main-
the cache hierarchy. For the workloads we studied, the IP@aining the same page table size.

W4KB 1 GT-PDE-IMB M GT-PDE-2MB M GT-PDE-4MB M Ideal (2MB) W32 m64 H128 W256 m512
1.2
g 10
§ 0.8
= 0.6
©
£ 04
So2
0.0

Figure 15: IPC with different problem sizes normalized to a Figure 17: IPC of GT-PDE-4MB with different PDE cache sizes
problem size of 64MB using traditional 4KB page. normalized to 32-entry PDE cache.
MO =3 m6mom12 n15 5.6. Sensitivity to GT-PDE Cache Size
1.02
g 1 Figure 17 shows the IPC improvement of GT-PDE-4MB with
Eg-zg a larger PDE cache. The results are normalized to the 32-
Tg 0.4 | entry PDE cache baseline. As shown in the figure, the perfor-
zs 092 | mance is not very sensitive to the size of the PDE cache (the
0.9 range of the Y-axis is quite small); 32 or 64 entries are ehoug
60‘2" Q@ & L o@ § Q@ @o% N for the PDE ca(_:he. In fact, the maximum imprO_/ement of
& ‘oé& o @'5‘9 eo"(\ making cache sizes much larger is less by approximately 2%
® on average (see last column of the figure).
Figure 16: IPC of GT-PDE-4MB with different translation laten-
cies of GT-PDEs normalized to a default latency of 5.7. Comparing to TLB Coalescing
3 cycles.

TLB coalescing is a technique which can substantially in-
5.4. Sensitivity to Problem Size crease TLB reach by coalescing multiple adjacent PTEs into
a single TLB [20, 19]. Note that for our target workloads,
Figure 15 shows IPC oaBUPSwith different problem sizes that is, those with large memory footprints, the gain of TLB
and page table formats. We choose to eval@i®Shecause coalescing is not as significant as for smaller applications
it is a common benchmark in scalability studies, given that Figure 18 shows the performance comparison between
its memory footprint varies with problem size from 64MB to TLB coalescing and GT-PDE. We evaluated the configuration
64GB. As shown in the figure, the performance of traditionalthat the 512-entry L2 TLB supports 8x and 32x TLB coalesc-
4KB pages is sensitive to the problem size. When the problering, which merges adjacent 8 PTEs and 32 PTEs, respectively.
size is increased from 64MB to 8GB or more, IPC reduces byn order to avoid favoring our own scheme, we assume no
40% or more due to increased address translation overheagktra CPU cycles to load L2 TLB entry with TLB coalesc-
On the other hand, the performance advantage of superpagies). As shown in the figure, the performance gain with TLB
is significantly increased with lager problem size. When thecoalescing is virtually nonexistent because TLB reachilis st
problem size is 8GB, the IPC of GT-PDE-4MB superpage idimited even with 32x TLB coalescing considering workloads
63.4% better than 4KB page. The performance of GT-PDEsvith large memory footprints. For address translations tha
with different B-block sizes shows difference when the probare missed in the TLB, the dominant performance overhead
lem size is very large. When the problem size is 64GB, GTis from accessing PTEs. To avoid address translation becom-
PDE-4MB is 16.6% better than GT-PDE-1MB because of theing a performance bottleneck, it is critical to eliminateEPT
smaller size of the page table. Since the major advantage eifccesses by supporting superpages.
P-GT-PDE is to reduce the size of the page table, this also im-
plies that P-GT-PDE should only be used for processes wit. Related Work

very large memory footprints. Both software and hardware changes are necessary to sup-

5.5. Sensitivity to GT-PDE Address Translation Latency ~ Port superpages. Talluri et al. discussed the tradeoffs and
challenges to support superpages in hardware [28]. Ganapa-
Figure 16 shows the IPC of GT-PDE-4MB assuming differ-thy and Schimmel described possible ways to support super-
ent translation latencies of GT-PDEs. All results are ndrma pages in the OS [11]. Navarro et al. described a design to
ized to the default 3-cycle extra latency. As shown in the figtransparently support superpages in the OS [18]. Zhang et
ure, the performance overhead is mostly consistent ameng thal. described a design to map superpages to disjoint physica
workloads and is less than 1% if GT-PDE translation latencypages using traditional base page table format [32]. Irr thei
is 6 cycles instead of 3 cycles. proposed design, page table still needs to be accessed when

8x TLB Coalescing m 32x TLB Coalescing ® GT-PDE-4MB Ideal (2MB)

[2]

1.8
g 16 (3]
]
814 [4]
T 12
£ 1o 51
2 ddoddm
0.8 : [6]
& > & O & & N S
R L TR éz@ S Y & [7
& @'b ng

(8l
Figure 18: IPC of TLB coalescing and GT-PDE normalized to

traditional 4KB page baseline.

(9]

there is a cache miss. To the best of our knowledge, this i§10]
the first work to propose a new storage-efficient superpagﬁll]
format designed for memory with retired pages.

There are much work on improving TLB performance. [12]
TLB hit rate can be improved by sharing TLB entries among [13]
CPU cores [27, 30, 5]. TLB miss penalty can be reduced by
prefetching [7]. Recently, TLB coalescing has been studied[14
to improve TLB reach [19, 20]. Similar to TLB coalescing,
MMU cache coalescing has been proposed to reduce TL
miss penalty [6]. Our work does not require any changes to[;
TLB and is orthogonal to the work proposed for TLB perfor-
mance improvement. For workloads with large memory foot- [17]
prints, improving the TLB performance alone is not enough [18]
to solve the problem.

Memory errors can be tolerated using managed runtimefi9
systems [13], but this requires the program to be written in
managed code (e.g., Java). Our work can be used for botth
managed code and unmanaged code. Gandhi et al. describgzh]
an escape filter design which handles a total of 16 retired
pages with a 256-bit on-chip bloom filter [12]. GTSM is de- [22]
signed to tolerate significantly more retired pages (e.§%ol

or 2GB of retired pages in a 128GB main memory). 23]

[24]

Superpages are critical for workloads with large memory-foo [25]
prints. Traditional 2MB superpages are not suitable for mem [26]
ory with retired pages, because a superpage must be mapped
to large contiguous physical memory. We proposed gap{27]
tolerant sequential mapping (GTSM) to allow mapping a su- 28]
perpage to memory with retired pages. We proposed GT—PDE[
which has a block selection bitmap to support GTSM. We [29]
also proposed P-GT-PDE, a variant of GT-PDE, which can re-
duce the size of the page table by 50%. Our evaluation show$s0]
that the performance of GT-PDE and P-GT-PDE is close to
the ideal 2MB superpaging (i.e., with no retired pages). For
large-footprint workloads, the 4MB-page GT-PDE achieves [31]
96.8% of traditional 2MB superpaging, while tolerating mem (3
ory faults.

7. Conclusion

References 133

[1] “Linux memory page offlining,” 2009, https://www.kernetg/doc.

S. Baek, S. Cho, and R. Melhem, “Refresh now and then|EBE
TC, 2013.
T. W. Barr, A. L. Cox, and S. Rixner, “Translation cachirgkip, don’t
walk (the page table),” ilSCA 2010.

A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, ffiEient
virtual memory for big memory servers,” ISCA 2013.

A. Bhattacharjee, D. Lustig, and M. Martonosi, “Sharasttlevel tibs
for chip multiprocessors,” ilPCA, 2011.

A. Bhattacharjee, “Large-reach memory management unitesstin
MICRO, 2013.

A. Bhattacharjee and M. Martonosi, “Inter-core coopiseatlb for
chip multiprocessors,” InSPLOS2010.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec lenc
mark suite: Characterization and architectural implicatjom PACT,
2008.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A rsbte model
for graph mining,” inlICDM, 2004.

J. Dongarra and P. Luszczek., “Introduction to the hpellenge
benchmark suite.” http://icl.cs.utk.edu/hpcc/pubs/

N. Ganapathy and C. Schimmel, “General purpose operaistgem
support for multiple page sizes,” WSENIX ATC 1998.

J. Gandhi, A. Basu, M. M. Swift, and M. D. Hill, “Efficietnemory
virtualization,” in MICRO, 2014.

T. Gao, K. Strauss, S. M. Blackburn, K. S. McKinley, D.rgar, and

J. Larus, “Using managed runtime systems to tolerate holes am-we
able memories,” iPLDI, 2013.

] A. A.Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmags don't

strike twice: understanding the nature of dram errors aadmiplica-
tions for system design,” IASPLO$2012.

] Intel, “Intel 64 and ia-32 architectures developer'snual.” 1997.

W. Korn and M. S. Chang, “Spec cpu2006 sensitivity to menpage
sizes,”"SIGARCH CANvol. 35, no. 1, 2007.

J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retentaware
intelligent dram refresh,” ilSCA 2012.

J. Navarro, S. lyer, P. Druschel, and A. Cox, “Practitednsparent
operating system support for superpag&GOPS Oper. Syst. Rev.
vol. 36, no. Sl, 2002.

B. Pham, A. Bhattacharjee, Y. Eckert, and G. Loh, “Inciag tlb
reach by exploiting clustering in page translations HRCA 2014.

20] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacleatj€olt: Co-

alesced large-reach tlbs,” MICRO, 2012.

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinieas L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-basedmai
memory with start-gap wear leveling,” MICRQO, 2009.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scakabligh per-
formance main memory system using phase-change memory technol-
ogy,” in ISCA 2009.

L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placerirehy-
brid memory systems,” itCS, 2011.

S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Ugg eot ecc,
for hard failures in resistive memories,” iSCA 2010.

B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram esiiarthe wild:
A large-scale field study,” ISIGMETRICS2009.

J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Ardty, H. V.
Simhadri, and K. Tangwongsan, “Brief announcement: The prabl
based benchmark suite,” BPAA 2012.

S. Srikantaiah and M. Kandemir, “Synergistic tlbs fogiperfor-
mance address translation in chip multiprocessordyli@RO, 2010.
M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson, “Tdzoffs in
supporting two page sizes,” ISCA 1992.

D. Tang, P. Carruthers, Z. Totari, and M. W. Shapiro,s8ssment of
the effect of memory page retirement on system ras against hegdw
faults,” in DSN 2006.

C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, .ARamirez,
A. Mendelson, N. Navarro, A. Cristal, and O. Unsal, “Didi: tMi
gating the performance impact of tlb shootdowns using a shitred
directory,” inPACT, 2011.

M. T. Yourst, “Ptlsim: A cycle accurate full system x8@-énicroar-
chitectural simulator,” iINSPAS$2007.

L. Zhang, E. Speight, R. Rajamony, and J. Lin, “Enigma: htec-
tural and operating system support for reducing the impaatidfess
translation,” inICS, 2010.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable andgpeffi-
cient main memory using phase change memory technologh5 G,
2009.

