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Virtual Memory 
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Virtual Memory 

•  Main memory is “cache” for secondary storage 

•  Secondary storage (disk) holds the complete 
“virtual address space” 

•  Only a portion of the virtual address space lives 
in the physical address space at any moment of 
time 
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Virtual addresses 

Physical memory caches 
part of the virtual space 
into a physical memory 

Disk storage contains the 
virtual address space 

Address translation 
physical addresses 

Virtual Memory 

•  Main memory is a cache for secondary storage  
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Advantages 

•  Illusion of having more physical memory 
–  Disk acts as the primary memory 
–  Comes from the days of limited memory systems 

•  Multiple programs share the physical memory 
–  Permit sharing without knowing other programs 
–  Division of memory among programs is “automatic” 

•  Program relocation  
–  Program addresses can be mapped to any physical location 
–  Physical memory does not have to be contiguous 

•  Protection 
–  Per process protection can be enforced on pages 
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Basic VM Issues 

missing item fetched from secondary memory only on the occurrence 
      of a fault  -->  demand load policy 

cache 
pages 

mem disk 

frame 

CPU 

registers 

Addr Trans 
Mechanism 

fault 
handler 

Main 
Memory 

Secondary 
Memory 

missing item fault 

physical address OS performs 
this transfer 

CPU 
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Pages: Virtual Memory Blocks 

•  Page faults:  the data is not in memory, retrieve it 
from disk 

–  Huge miss penalty (millions of cycles - disk access), thus 
pages should be fairly large (e.g., 4KB) to amoritize the high 
access time 

–  Reducing page faults is important due to high access time 
»  LRU is worth the price, fully associative mapping 

–  Can handle the faults in software instead of hardware 
»  the cost is in the disk access: so we have time to do more 

clever things in the OS 
–  Use write-back because write-through is too expensive 

»  write-through not reasonable due to high cost of disk 
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Address Translation 

Virtual page number Page offset 

Physical page number Page offset 

Translation 

31 11 0 

11 0 29 

Virtual address 

Physical address 

Full associativity (tag is the virtual page number) 
Tag comparison is replaced by a table lookup 
This example: 4GB virtual memory, 1GB physical memory, page size  
is 4KB (212), with 218 physical pages. 
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Page Tables 

V a l i d 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 

Virtual page 
number 

Physical memory 

Disk storage Page table 

How do we know what’s where? On disk? In memory? 

Is virtual page mapped? 
Where is the virtual page? 

 Memory - physical page 
 Disk - location 
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Page Tables for Address 
Translation 

VA 
vpage no. offset 

10 

Index into 
page table 

Page Table 
Base Reg 

V Access 
Rights PA 

Page table 
 located in physical 

memory 

Physical memory 
address 

PA ppage no. offset 
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Page Tables 

Virtual page 
number 

Memory space 

Page table 

Page offset Page address 
 register 

+ 

•  Page address register - start of a process’s 
  page table 
•  Page table + PAR - part of process context 
•  Each memory reference requires two memory 
  operations 
•  Page fault needs memory operation + disk access 

Start of page table 

Physical page 

Physical address 
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Page Table Entries 
(determined by architecture) 

•  Valid bit - has the page been loaded 
•  Read and write permissions - can the user 

program read and write to this page 
•  Dirty bit - has the physical page been written to 

and will need to be written back to disk when 
replaced 

•  Use bit - has the page been used recently 
•  Physical memory page - mapping of virtual page 

to physical page in memory 
•  Disk location - mapping of virtual page to virtual 

page on disk 
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Multi-Level Page Tables 

•  PT (linear structure) can be very large! 
–  32-bit addr (232 bytes), 4KB (212 bytes) page, 4B PT entry 
–  1M entries, each 4 bytes = 4MB per page table 
–  Hundreds of processes => Hundreds of MB for PT 

•  Turn PT into a tree (hierarchy) structure 
–  Divide PT into page sized chunks 
–  Hold only the part of PT where PT entries are valid 
–  Directory points to portions of the PT 
–  Directory says where to find PT, or that chunk is invalid 
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Multi-Level Page Tables 

1 100 

0 

0 

1 107 

1 10 r 

0 

1 12 lrw 

1 13 rw 

0 

0 

1 29 rw 

1 30 rw 

V V Flgs Page Page 

Directory Page table 

Only 2 pages of 
the PT are valid 

Other chunks of the table 
have no valid mappings 

Allocates space proportionally 
to amount of address space 
being used 
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Multi-Level Page Tables 
•  What happens when we can’t fit the page 

directory into a single page? 
–  Divide up into a hierarchy (tree) of directories 

1 100 

0 

0 

1 110 

V Page 

1 130 

0 

0 

1 131 

V Page 

1 10 r 

0 

1 12 lrw 

1 13 rw 

V Flgs Page 

Page table 

Level 1 Directory 

Level 0 Directory 

 0 3 2 Page Ofs 

Level 1 Level 0 Pg Idx 

Address: Each part of address 
selects an entry in a table 
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Multi-Level Page Table 

AMD Opteron 
•  64 bit virtual address space, 40 bit physical address space 
•  Each table has 512 entries (9-bit field), 8 bytes per entry 
•  Page size is 4KB (12-bit page offset) 
•  (512 entries * 8 bytes each = 4,096 bytes = 4KB) 
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Page Size 

•  Arguments for larger page size 
–  Leads to a smaller page table 
–  May be more efficient for disk access (block size of disk) 
–  Larger page size - TLB entries capture more addresses per 

entry, so there are fewer misses, with the “right locality” 
»  TLB misses can be significant 

–  x86 page sizes: 4KB, 2MB, 4MB, 1GB 

•  Arguments for smaller page size 
–  Conserves storage space - less fragmentation 
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Translation Look-aside Buffer 
(TLB) 

•  Reduce memory reference time if we can store 
the page table in hardware 

•  Essentially, caching of the PT 
–  TLB Entry: Tag is virt. page and data is PTE for that tag 

Virtual  
space 

(on disk) 

Page 
table Memory references 

(virtual address) TLB 

Physical 
address 

Physical 
memory 
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TLBs are usually small, typically not more than 128 - 256 entries even on high 
end machines.  This permits fully associative lookup on these machines.  
Most mid-range machines use small n-way set associative organizations. 

TLB 
Lookup Cache Main 

Memory 

VA PA miss 

hit 

data 

Trans- 
lation 

hit 

miss 

20 t t 1/2 t 

Translation 
with a TLB 

CPU 

Overlap the cache access with the TLB access:high order bits of the 
VA are used to look in the TLB while low order bits are used as index 
into cache 
 

①    

②    

③    

Fastest path 
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TLBs are usually small, typically not more than 128 - 256 entries even on high 
end machines.  This permits fully associative lookup on these machines.  
Most mid-range machines use small n-way set associative organizations. 

TLB 
Lookup Cache Main 

Memory 

VA PA miss 

hit 

data 

Trans- 
lation 

hit 

miss 

20 t t 1/2 t 

Translation 
with a TLB 

CPU 

Overlap the cache access with the TLB access:high order bits of the 
VA are used to look in the TLB while low order bits are used as index 
into cache 
 

①    

②    ③    TLB hit, cache miss 
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TLBs are usually small, typically not more than 128 - 256 entries even on high 
end machines.  This permits fully associative lookup on these machines.  
Most mid-range machines use small n-way set associative organizations. 

TLB 
Lookup Cache Main 

Memory 

VA PA miss 

hit 

data 

Trans- 
lation 

hit 

miss 

20 t t 1/2 t 

Translation 
with a TLB 

CPU 

Overlap the cache access with the TLB access:high order bits of the 
VA are used to look in the TLB while low order bits are used as index 
into cache 
 

①    

②    

③    Slowest path 
TLB miss, 
Cache miss 
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Translation Look-aside Buffers 

•  Relies on locality 
–  If access has locality, then address translation has locality 
–  The address translations are cached by the TLB 

•  One address translation maps a page worth of 
memory addresses, so the TLB can be small 

–  From 32-256 entries & Usually fully associative 

•  Separate instruction and data TLBs 
•  Multi-level TLBs (I-TLB, D-TLB, L2-TLB) 
•  TLB Miss handling in HW or SW (PT walk) 
•  Entries may be tagged with process identifier to 

avoid flushing whole TLB on process switch 
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Overlapped Cache & TLB Access 

TLB PA Cache 

10 

index 

1 K 

VA page # disp 
20 12 

assoc 
lookup 

PA 
page # 

TLB 
Hit/ 
Miss PA 

tag Data 
Cache 
Hit/ 
Miss 

= 

IF TLB hit and cache hit and (cache tag = PA) then deliver data to CPU 
ELSE IF TLB hit and (cache miss or cache tag != PA) THEN 
               access memory with the PA from the TLB 
ELSE do standard VA translation 

y 

y-2 
2 

 
Limited to small caches, large page sizes, or high n-way set 
associative caches if you want a large cache 
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Protection 

•  Context switch 
–  Save state needed to restart process when switched out for 

another process 

•  Process state needs to be protected from 
different processes 

–  Can’t write to disk: Too expensive 
–  Keep state in memory for multiple processes at one time 

•  Protection needed so one process can’t overwrite 
or access another process’ state 

–  Also, sharing code (libraries), data, interprocess 
communication, etc. 
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Protection 

•  Address ranges 
–  Base address register 
–  Bound address register 
–  Valid address: Base register <= Address <= Bound register 

•  User processes can’t change base or bound 
registers 

–  OS changes registers on a context switch 

•  Requires distinguishing between user and OS 
code - user and kernel modes 
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Protection CPU Mechanisms 

•  Kernel and user mode to indicate what is running 

•  CPU state that can be read by user but not  
written; e.g., user and kernel mode bit, base/
bound registers, exception enable/disable 

•  Mechanisms to go between modes 
–  System call: TRAP or similar causes transfer to kernel mode 

and a call into the OS 
–  System return: when returning from TRAP, transfer back to 

user mode 
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Protection with VM 

•  Virtual memory - protection on a per page basis 

•  Read/write permissions - text pages may be 
marked read-only 

•  User/kernel permissions - pages can be written 
only by the kernel (e.g., page table!) 

–  Page tables are protected and can’t be overwritten by other 
processes (OS ensures) 

•  Requires read/write and user/kernel bits 
maintained by the CPU 
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Alpha 21064 
•  Separate Instr & Data 

TLB 
•  TLBs fully associative 
•  TLB updates in SW 

(“Priv Arch Libr”) 
•  Caches 8KB direct 

mapped, write thru 
•  Critical 8 bytes first 
•  Prefetch instr. stream 

buffer 
•  2 MB L2 cache, direct 

mapped, WB (off-chip) 
•  256 bit path to main 

memory,  4 x 64-bit 
modules 

•  Victim Buffer: to give 
read priority over write 

•  4 entry write buffer 
between D$ & L2$ 

Stream 
Buffer 

Write 
Buffer 

Victim Buffer 

Instr Data 
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Instruction access 
Step 1:  
Virtual page sent to TLB 
 
Step 2: 
Page offset to L0 cache 
 
Step 3: 
TLB searched (12) 
Translate address 
 
Step 4: 
Translated address 
matches cache tag 
 
Step 5: 
Send 8 bytes to CPU 
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Instruction access 
L0 cache miss 
Step 6: 
L2 accessed 
 
Step 7: 
Check prefetch buffer 
 
Step 8: 
Prefetch buffer hit, send 
8 bytes to CPU  
 
Step 9: 
Full buffer written to cache 
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Instruction access 
L0 cache miss - no hit in 
prefetch buffer 
Step 10: 
Index and tag for L2 
 
Step 11: 
Check cache hit 
 
Step 12: 
Return critical 16 bytes to 
CPU first , followed by the 
next 16 bytes 
 
Step 13: 
Next sequential line is 
requested and loaded into 
the stream buffer 
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Instruction access 
L0 cache miss - no hit in 
prefetch buffer - L2 miss 
Step 14: 
Send address to memory 
 
Step 15: 
When replacing a dirty line, 
put it into the victim buffer 
so it can be written later 
 
Step 16: 
New data loaded into the 
cache 
 
Step 17: 
Old data written from victim 
buffer 


