
Page 1

 1

Virtual Memory

 2

Virtual Memory

•  Main memory is “cache” for secondary storage

•  Secondary storage (disk) holds the complete
“virtual address space”

•  Only a portion of the virtual address space lives
in the physical address space at any moment of
time

Page 2

 3

Virtual addresses

Physical memory caches
part of the virtual space
into a physical memory

Disk storage contains the
virtual address space

Address translation
physical addresses

Virtual Memory

•  Main memory is a cache for secondary storage

 4

Advantages

•  Illusion of having more physical memory
–  Disk acts as the primary memory
–  Comes from the days of limited memory systems

•  Multiple programs share the physical memory
–  Permit sharing without knowing other programs
–  Division of memory among programs is “automatic”

•  Program relocation
–  Program addresses can be mapped to any physical location
–  Physical memory does not have to be contiguous

•  Protection
–  Per process protection can be enforced on pages

Page 3

 5

Basic VM Issues

missing item fetched from secondary memory only on the occurrence
 of a fault --> demand load policy

cache
pages

mem disk

frame

CPU

registers

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

missing item fault

physical address OS performs
this transfer

CPU

 6

Pages: Virtual Memory Blocks

•  Page faults: the data is not in memory, retrieve it
from disk

–  Huge miss penalty (millions of cycles - disk access), thus
pages should be fairly large (e.g., 4KB) to amoritize the high
access time

–  Reducing page faults is important due to high access time
»  LRU is worth the price, fully associative mapping

–  Can handle the faults in software instead of hardware
»  the cost is in the disk access: so we have time to do more

clever things in the OS
–  Use write-back because write-through is too expensive

»  write-through not reasonable due to high cost of disk

Page 4

 7

Address Translation

Virtual page number Page offset

Physical page number Page offset

Translation

31 11 0

11 0 29

Virtual address

Physical address

Full associativity (tag is the virtual page number)
Tag comparison is replaced by a table lookup
This example: 4GB virtual memory, 1GB physical memory, page size
is 4KB (212), with 218 physical pages.

 8

Page Tables

V a l i d
1
1
1
1
0
1
1
0
1
1
0
1

Virtual page
number

Physical memory

Disk storage Page table

How do we know what’s where? On disk? In memory?

Is virtual page mapped?
Where is the virtual page?

 Memory - physical page
 Disk - location

Page 5

 9

Page Tables for Address
Translation

VA
vpage no. offset

10

Index into
page table

Page Table
Base Reg

V Access
Rights PA

Page table
 located in physical

memory

Physical memory
address

PA ppage no. offset

 11

Page Tables

Virtual page
number

Memory space

Page table

Page offset Page address
 register

+

•  Page address register - start of a process’s
 page table
•  Page table + PAR - part of process context
•  Each memory reference requires two memory
 operations
•  Page fault needs memory operation + disk access

Start of page table

Physical page

Physical address

Page 6

 13

Page Table Entries
(determined by architecture)

•  Valid bit - has the page been loaded
•  Read and write permissions - can the user

program read and write to this page
•  Dirty bit - has the physical page been written to

and will need to be written back to disk when
replaced

•  Use bit - has the page been used recently
•  Physical memory page - mapping of virtual page

to physical page in memory
•  Disk location - mapping of virtual page to virtual

page on disk

 15

Multi-Level Page Tables

•  PT (linear structure) can be very large!
–  32-bit addr (232 bytes), 4KB (212 bytes) page, 4B PT entry
–  1M entries, each 4 bytes = 4MB per page table
–  Hundreds of processes => Hundreds of MB for PT

•  Turn PT into a tree (hierarchy) structure
–  Divide PT into page sized chunks
–  Hold only the part of PT where PT entries are valid
–  Directory points to portions of the PT
–  Directory says where to find PT, or that chunk is invalid

Page 7

 16

Multi-Level Page Tables

1 100

0

0

1 107

1 10 r

0

1 12 lrw

1 13 rw

0

0

1 29 rw

1 30 rw

V V Flgs Page Page

Directory Page table

Only 2 pages of
the PT are valid

Other chunks of the table
have no valid mappings

Allocates space proportionally
to amount of address space
being used

 17

Multi-Level Page Tables
•  What happens when we can’t fit the page

directory into a single page?
–  Divide up into a hierarchy (tree) of directories

1 100

0

0

1 110

V Page

1 130

0

0

1 131

V Page

1 10 r

0

1 12 lrw

1 13 rw

V Flgs Page

Page table

Level 1 Directory

Level 0 Directory

 0 3 2 Page Ofs

Level 1 Level 0 Pg Idx

Address: Each part of address
selects an entry in a table

Page 8

 18

Multi-Level Page Table

AMD Opteron
•  64 bit virtual address space, 40 bit physical address space
•  Each table has 512 entries (9-bit field), 8 bytes per entry
•  Page size is 4KB (12-bit page offset)
•  (512 entries * 8 bytes each = 4,096 bytes = 4KB)

 19

Page Size

•  Arguments for larger page size
–  Leads to a smaller page table
–  May be more efficient for disk access (block size of disk)
–  Larger page size - TLB entries capture more addresses per

entry, so there are fewer misses, with the “right locality”
»  TLB misses can be significant

–  x86 page sizes: 4KB, 2MB, 4MB, 1GB

•  Arguments for smaller page size
–  Conserves storage space - less fragmentation

Page 9

 20

Translation Look-aside Buffer
(TLB)

•  Reduce memory reference time if we can store
the page table in hardware

•  Essentially, caching of the PT
–  TLB Entry: Tag is virt. page and data is PTE for that tag

Virtual
space

(on disk)

Page
table Memory references

(virtual address) TLB

Physical
address

Physical
memory

 21

TLBs are usually small, typically not more than 128 - 256 entries even on high
end machines. This permits fully associative lookup on these machines.
Most mid-range machines use small n-way set associative organizations.

TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 t t 1/2 t

Translation
with a TLB

CPU

Overlap the cache access with the TLB access:high order bits of the
VA are used to look in the TLB while low order bits are used as index
into cache

① 

② 

③ 

Fastest path

Page 10

 22

TLBs are usually small, typically not more than 128 - 256 entries even on high
end machines. This permits fully associative lookup on these machines.
Most mid-range machines use small n-way set associative organizations.

TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 t t 1/2 t

Translation
with a TLB

CPU

Overlap the cache access with the TLB access:high order bits of the
VA are used to look in the TLB while low order bits are used as index
into cache

① 

②  ③  TLB hit, cache miss

 23

TLBs are usually small, typically not more than 128 - 256 entries even on high
end machines. This permits fully associative lookup on these machines.
Most mid-range machines use small n-way set associative organizations.

TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 t t 1/2 t

Translation
with a TLB

CPU

Overlap the cache access with the TLB access:high order bits of the
VA are used to look in the TLB while low order bits are used as index
into cache

① 

② 

③  Slowest path
TLB miss,
Cache miss

Page 11

 24

Translation Look-aside Buffers

•  Relies on locality
–  If access has locality, then address translation has locality
–  The address translations are cached by the TLB

•  One address translation maps a page worth of
memory addresses, so the TLB can be small

–  From 32-256 entries & Usually fully associative

•  Separate instruction and data TLBs
•  Multi-level TLBs (I-TLB, D-TLB, L2-TLB)
•  TLB Miss handling in HW or SW (PT walk)
•  Entries may be tagged with process identifier to

avoid flushing whole TLB on process switch

 25

Overlapped Cache & TLB Access

TLB PA Cache

10

index

1 K

VA page # disp
20 12

assoc
lookup

PA
page #

TLB
Hit/
Miss PA

tag Data
Cache
Hit/
Miss

=

IF TLB hit and cache hit and (cache tag = PA) then deliver data to CPU
ELSE IF TLB hit and (cache miss or cache tag != PA) THEN
 access memory with the PA from the TLB
ELSE do standard VA translation

y

y-2
2

Limited to small caches, large page sizes, or high n-way set
associative caches if you want a large cache

Page 12

 28

Protection

•  Context switch
–  Save state needed to restart process when switched out for

another process

•  Process state needs to be protected from
different processes

–  Can’t write to disk: Too expensive
–  Keep state in memory for multiple processes at one time

•  Protection needed so one process can’t overwrite
or access another process’ state

–  Also, sharing code (libraries), data, interprocess
communication, etc.

 29

Protection

•  Address ranges
–  Base address register
–  Bound address register
–  Valid address: Base register <= Address <= Bound register

•  User processes can’t change base or bound
registers

–  OS changes registers on a context switch

•  Requires distinguishing between user and OS
code - user and kernel modes

Page 13

 30

Protection CPU Mechanisms

•  Kernel and user mode to indicate what is running

•  CPU state that can be read by user but not
written; e.g., user and kernel mode bit, base/
bound registers, exception enable/disable

•  Mechanisms to go between modes
–  System call: TRAP or similar causes transfer to kernel mode

and a call into the OS
–  System return: when returning from TRAP, transfer back to

user mode

 31

Protection with VM

•  Virtual memory - protection on a per page basis

•  Read/write permissions - text pages may be
marked read-only

•  User/kernel permissions - pages can be written
only by the kernel (e.g., page table!)

–  Page tables are protected and can’t be overwritten by other
processes (OS ensures)

•  Requires read/write and user/kernel bits
maintained by the CPU

Page 14

 32

Alpha 21064
•  Separate Instr & Data

TLB
•  TLBs fully associative
•  TLB updates in SW

(“Priv Arch Libr”)
•  Caches 8KB direct

mapped, write thru
•  Critical 8 bytes first
•  Prefetch instr. stream

buffer
•  2 MB L2 cache, direct

mapped, WB (off-chip)
•  256 bit path to main

memory, 4 x 64-bit
modules

•  Victim Buffer: to give
read priority over write

•  4 entry write buffer
between D$ & L2$

Stream
Buffer

Write
Buffer

Victim Buffer

Instr Data

 33

Instruction access
Step 1:
Virtual page sent to TLB

Step 2:
Page offset to L0 cache

Step 3:
TLB searched (12)
Translate address

Step 4:
Translated address
matches cache tag

Step 5:
Send 8 bytes to CPU

Page 15

 34

Instruction access
L0 cache miss
Step 6:
L2 accessed

Step 7:
Check prefetch buffer

Step 8:
Prefetch buffer hit, send
8 bytes to CPU

Step 9:
Full buffer written to cache

 35

Instruction access
L0 cache miss - no hit in
prefetch buffer
Step 10:
Index and tag for L2

Step 11:
Check cache hit

Step 12:
Return critical 16 bytes to
CPU first , followed by the
next 16 bytes

Step 13:
Next sequential line is
requested and loaded into
the stream buffer

Page 16

 36

Instruction access
L0 cache miss - no hit in
prefetch buffer - L2 miss
Step 14:
Send address to memory

Step 15:
When replacing a dirty line,
put it into the victim buffer
so it can be written later

Step 16:
New data loaded into the
cache

Step 17:
Old data written from victim
buffer

