Parallel Processing

» Uniprocessors (single core) come to an end

— Slowing ability to extract ILP, increasing cost for ILP

— Power consumption limits

Do many tasks at once: design for task parallelism
Shift to cloud, data intensive which are highly parallel
Improvement in parallel processing architecture
Benefits from easier replication (e.g., verification)

N~

Task level parallelism with
Multiple Instruction, Multiple Data (MIMD)

Parallel Processing

* Multithreaded programs
— Thread is unit of parallelism — it's a body of code
— Multiple threads work together to do work
— Threads share same address space
— Lightweight communication, synchronization

* Multiprogrammed or request parallelism
— Independent programs or requests
— Do not communicate or synchronize
— Less emphasis on comm/synch
— More emphasis on contention among multiple programs

Page 1

Parallel Processing

Multicore: Multiple CPUs on same chip die

Multiprocessor: Multiple processors in same box

— Multiprocessor uses Multicore processors

« Symmetric (shared-memory) multiprocessors

« Distributed shared memory multiprocessor

Centralized Shared-Memory
Architectures

Multiple processors sharing a single memory

Single memory --

consistent access Small number of
latencies processors, 2-12
UMA: uniform

memory access Cache

Cache

Cache Cache

Symmetric

multiprocessor

Shared Cache (L3)

Shared interconnect

Main Memory

I/O System

Typical multicore

Page 2

Distributed Memory Architectures

Node P+ : P+ P+
Cache Cache Cache
Cache 110 Cache /0 Cache 110
[Interconnect]
Cache 110 Cache /10 Cache /10
P+ P+ P+
Cache Cache Cache

8
Individual interconnected PEs with memory at each node - network connected MPs

Distributed Memory Architectures

+ Shared memory systems don’ t scale well (why?)
* More processors, more bandwidth demands

* Distributed memory system

Typically high bandwidth interconnect
Cost-effective scaling of memory bandwidth

Assuming most accesses to local memory

Limited node-to-node communication & synchronization
Lower latency to local memory

Don’ t have to go “across bus” to shared memory
Communication among nodes is more complex
Communication has higher latency

Page 3

Communication with Distributed
Memory Architectures

* Distributed shared-memory
— One logical memory distributed among physical memories

— l.e., address space is shared (same shared address on two
processors refers to the same location)

— Implicit shared communication (via shared address space)
— NUMA: Non-uniform memory access (why?)

» Multicomputers
— Separate private address spaces for each PE
— Same address on two processors: two different locations
— Explicit communication (message passing)
— Libraries for standard communication primitives (e.g., MPI)

Communication Performance

« Communication bandwidth (end-to-end)
— Typically less than what the hardware can provide

— Occupancy: resources are occupied during communication,
preventing send/receive of other messages

+ Communication latency
— Overhead + time of flight + transport latency
— Hiding latency is good!
» Ties up resources or the processor has to wait
— Overhead can include occupancy
» May also include other items: protection provided by OS

1"

Page 4

Communication Performance

» Latency Hiding

— Overlap communication with other communications or

computations

— Can be difficult to exploit and application dependent

* Flexible communication mechanisms

— Perform well with

» Smaller and larger transmissions
» lrregular and regular communication patterns
— l.e., not overly optimized

— But.... May be able to improve communication performance if
optimized for specific patterns (e.g., interconnection topology)

Communication Comparison

Shared Memory
- Compatibility, well understood

- Ease of programming for complex
communication (just do it!)

- Better for smaller communications
Protection implemented in the HW
rather than in the OS

- Hardware-controlled caching
Automatic caching of shared and
private data

- Easy to implement message
passing on top of shared memory
since it’ s just a memory copy

Message Passing
- Simpler hardware (coherence)

- Explicit communication
Have to pay attention! And get it
right (often not easy, though...)
- Shared memory can be built on
top of message passing but the
cost is very high (every access
becomes a message!)

Page 5

Cache Coherence

Multilevel caches included with each processor
Private and shared data
Cache Coherence problem

Event P1 s Cache P2 s Cache Memory
1

P1: LD r1,[A] 1 1

P2: LD r1,[A] 1 1 1

P1: ADDr1,1,r1 1 1 1

P1: ST r1,[A] 2 1 2

22

Cache Coherence

Coherent if:

1: Write by processor P to X
Read by processor P of X
No intervening write s O O
Returns most recent value

Preserves program
order, true even of
uniprocessors

2: Write by processor P1
Read by processor P2
Returns most recent value ., O O
if operations separated by enough time

Notion of coherency- ge
the most recent value

Ensures a value is not
held indefinitely (if seen
in different order)

3: Writes to same location are serialized
l.e., writes seen by all processors in the

same order , ©O

Page 6

Coherence Mechanisms

* Migration
— Data moved to a local cache where it can be accessed locally
— Reduces latency to shared data that is allocated remotely

* Replication
— Copies of shared data that can be read by multiple processors
— Reduces latency and contention for shared item

 Directory-based - Centralized directory tracks
current location of data

» Snooping - State of blocks kept at local caches
by watching interconnect (bus) transactions

24

Coherence Protocols

» Write invalidate
— Only one processor has exclusive write access
— No other readable/writable copies of to-be-written data exist
— On write, invalidate all copies

— Modify data, when other processors use it, they miss and get
the new data

* Write broadcast

— On a write, broadcast the updated value to all caches holding
a copy of the data

— Bandwidth requirements - keep track of whether a word is
shared or not so unnecessary broadcasts are avoided

25

Page 7

Example: Invalidate

Cache Cache Memor
Y
Processor Contents for Contents for Contents for
Activity Bus Activity CPUA CPUB location X
0
26
Example: Invalidate
Cache Cache Memor
Y
Processor Contents for Contents for Contents for
Activity Bus Activity CPUA CPUB location X
0
CPU A Reads Cache Miss 0 0
X for X

27

Page 8

Example: Invalidate

Cache Cache Memory
Processor Contents for Contents for Contents for
Activity Bus Activity CPUA CPUB location X
0
CPU A Reads Cache Miss 0 0
X for X
CPU B Reads Cache Miss
X for X 0 0 0
28
Example: Invalidate
Cache Cache Memory
Processor Contents for Contents for Contents for
Activity Bus Activity CPUA CPUB location X
0
CPU A Reads Cache Miss 0 0
X for X
CPU B Reads Cache Miss
X for X 0 0 0
CPU A writes 1 | Invalidation for 0

to X

X

29

Page 9

Example: Invalidate

Cache Cache Memory
Processor Contents for Contents for Contents for
Activity Bus Activity CPUA CPUB location X
0
CPU A Reads Cache Miss 0 0
X for X
CPU B Reads Cache Miss
X for X 0 0 0
CPU A writes 1 | Invalidation for 1 0
to X X
CPU B Reads Cache Miss 1 1 1
X for X
30
Example: Write Update
Cache Cache Memory
Processor Contents for Contents for Contents for
Activity Bus Activity CPUA CPUB location X
0
CPU A Reads Cache Miss 0 0
X for X
CPU B Reads Cache Miss
X for X 0 0 0

31

Page 10

Example: Write Update

Cache Cache Memory
Processor Contents for Contents for Contents for
Activity Bus Activity CPUA CPUB location X
0
CPU A Reads Cache Miss 0 0
X for X
CPU B Reads Cache Miss
X for X 0 0 0

CPU A writes 1

Write update

to X for X
32
Example: Write Update
Cache Cache
Processor Contents for Contents for Cé\:lfg?sryfor
Activity Bus Activity CPUA CPUB location X
0
CPU A Reads Cache Miss 0 0
X for X
CPU B Reads Cache Miss
X for X 0 0 0

CPU A writes 1
to X

Write update
for X

CPU B Reads
X

33

Page 11

Invalidate vs. Broadcast

» Multiple writes to same word (with no intervening
write): multiple write broadcasts but a single write

invalidate

» Cache line blocks: multiple writes to block require
multiple broadcasts but only one invalidate when
block first written. Broadcast works only on

individual words as opposed to blocks.

» Delay between seeing a write: usually less in

write broadcast since data is immediately

updated in a reader s cache

34

CPU

Snooping Protocols

Processor Processor

Processor

Snoop PN Cache tag Snoop Cache tag Snoop Cache tag
/» tag and data tag and data tag and data
Keeps tags to avoid | Single bus
interference with the 7 i
Memory l{e]

Each processor monitors the activity on the bus
Dealing with write through is simpler than dealing with write back
In WB, on a read miss, all caches check to see if they have a copy of the

requested block. If yes, they supply the data (will see how).

In WB, on a write miss, all caches check to see if they have a copy of the
requested data. Yes: invalidate the local copy or update it with the new value.3®

Page 12

Snoopy MSI Protocol

Invalidation protocol

Each block of memory is in one state:
— Clean in all caches and up-to-date in memory (Read-Only),
— Dirty in exactly one cache (Read/Write), OR
— Not in any caches

Each cache block is in one state:
— Shared : block can be read (clean, read-only)
— Modified: cache has only copy, its writeable, and dirty
— Invalid : block contains no data

Read misses: cause all caches to snoop bus

Writes to clean blocks are treated as misses --
invalidates all other caches

36

Snoopy MSI Protocol

Interconnection (bus) based systems

— Acquire bus to do invalidation - write not complete until
invalidated (and have the bus)

— Causes serialization of writes

Finite state machine to maintain coherence
— Status bits for each cache line (protocol state)
— 2 parts to FSM
» CPU activity on one processor (CPU events)
» other processors see activity (bus events)

Only one processor has write access at a time
All processors can have read access together

37

Page 13

Snoopy State Machine (CPU Events)

CPU read miss
Place read miss on bus

Invalid > Shared

CPU read miss

CPU write miss Place read miss
Place write miss on bus O on bus

May distinguish between
ownership updates so we
do invalidate on write hit

Modified
(read/write)

CPU write hit or miss
Place write miss on bus
and write back block

Note: Aread hitdoes 38
not change the state.

Snoopy State Machine (Bus Events)

Write miss (or invalidate)
for this block

Shared
(read only)

Invalid

Write miss for
this block
Write-back block

on a RM, we can intercept
the read miss, write the block,
then let the read proceed

Modified
(read/write)

39

Page 14

What Happens When...

* Read miss - always go to SHARED

— on a RM, other processors may be in INVALID, SHARED, or
MODIFIED

» INVLAID: No action, stay in INVALID
» SHARED: No action, stay in SHARED

» MODIFIED: Exclusive processor does writeback and
goes to SHARED

— this processor goes to shared

40

What Happens When...

» Write miss - get exclusive access, invalidate
other copies

+ on a WM, we will always put address on the bus
so other processors can go to INVALID with a
possible write back

« if this processor:
— INVALID -> MODIFIED, put address on bus
— MODIFIED-> MODIFIED, writeback replaced line
— SHARED -> MODIFIED, put address on bus

41

Page 15

What Happens When...

» Write hit - get exclusive access
— if processor:
» in SHARED -> MODIFIED, invalidate
» in EXCLUSIVE -> MODIFIED, no action

— this processor has exclusive access, so no other processor
will do anything

* Read hit - stay in state; no action required
(common case)

42

Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B =invalid B =invalid

43

Page 16

Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B =invalid B =invalid

P1 writes 10 to A1

44

Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B =invalid B =invalid

P1 writes 10 to A1
A1 =10 (modified) B =invalid

45

Page 17

Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B =invalid B =invalid
P1 writes 10 to A1
A1 =10 (modified) B =invalid
P1 reads A1
46
Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B = invalid B =invalid
P1 writes 10 to A1

A1 =10 (modified) B =invalid
P1 reads A1 (RH)

A1 =10 (modified) B =invalid

47

Page 18

Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B = invalid B =invalid
P1 writes 10 to A1

A1 =10 (modified) B =invalid
P1 reads A1 (RH)

A1 =10 (modified) B =invalid
P2 reads A1

48
Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B =invalid B =invalid
P1 writes 10 to A1
A1 =10 (modified) B =invalid
P1 reads A1 (RH)
A1 =10 (modified) B =invalid
P2 reads A1 (RM)
A1 =10 (shared) A1 =10 (shared)

49

Page 19

Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B =invalid B =invalid
P1 writes 10 to A1
A1 =10 (modified) B =invalid
P1 reads A1 (RH)
A1 =10 (modified) B =invalid
P2 reads A1 (RM)
A1 =10 (shared) A1 =10 (shared)
P2 write 20 to A1
50
Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B =invalid B =invalid
P1 writes 10 to A1
A1 =10 (modified) B =invalid
P1 reads A1 (RH)
A1 =10 (modified) B =invalid
P2 reads A1 (RM)
A1 =10 (shared) A1 =10 (shared)
P2 write 20 to A1 (WH)
B =invalid A1 = 20 (modified)

51

Page 20

Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B =invalid B =invalid
P1 writes 10 to A1

A1 =10 (modified) B =invalid
P1 reads A1 (RH)

A1 =10 (modified) B =invalid
P2 reads A1 (RM)

A1 =10 (shared) A1 =10 (shared)
P2 write 20 to A1 (WH)

B =invalid A1 = 20 (modified)
P2 writes 40 to A2

Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B =invalid B =invalid
P1 writes 10 to A1

A1 =10 (modified) B =invalid
P1 reads A1 (RH)

A1 =10 (modified) B =invalid
P2 reads A1 (RM)

A1 =10 (shared) A1 =10 (shared)
P2 write 20 to A1 (WH)

B =invalid A1 = 20 (modified)
P2 writes 40 to A2 (WM)

B =invalid

Page 21

Example

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

B = invalid B =invalid
P1 writes 10 to A1

A1 =10 (modified) B =invalid
P1 reads A1 (RH)

A1 =10 (modified) B =invalid

P2 reads A1 (RM)
A1 =10 (shared)

A1 =10 (shared)

P2 write 20 to A1 (WH)
B =invalid

A1 = 20 (modified)

P2 writes 40 to A2 (WM)
B =invalid

A2 = 40 (modified) 5

MESI Protocol

» Extend 3 state protocol to have a modified
state

— Moadified: Line has been modified (different from main
memory; no other copy)

— Exclusive: line is same as in main memory but we have
exclusive access (not shared)

— Shared: same as in memory and present in other caches
— Invalid: line is not valid

» Shared in 3 state protocol is shared & exclusive
— Avoids invalidate when no other processor has a copy of data
and we want to do a write of it
 Extra signaling to indicate whether other caches
have a copy or not (l.e., shared or exclusive?)

55

Page 22

MESI State Diagram

Processor-View

RMS - RM shared
RME - RM exclusive
inv - invalidate

fill - cache line fill
NOTE: not all events
are shown (e.g., RM or
WM in exclusive)

Bus-View

SHR - shared read
SHW - shared write
wb - write back

RH, WH

Modified

RMS, fill

56

Page 23

