
Page 1

 4

Parallel Processing

•  Uniprocessors (single core) come to an end
–  Slowing ability to extract ILP, increasing cost for ILP
–  Power consumption limits

1.  Do many tasks at once: design for task parallelism
2.  Shift to cloud, data intensive which are highly parallel
3.  Improvement in parallel processing architecture
4.  Benefits from easier replication (e.g., verification)

Task level parallelism with
Multiple Instruction, Multiple Data (MIMD)

 5

Parallel Processing

•  Multithreaded programs
–  Thread is unit of parallelism – it’s a body of code
–  Multiple threads work together to do work
–  Threads share same address space
–  Lightweight communication, synchronization

•  Multiprogrammed or request parallelism
–  Independent programs or requests
–  Do not communicate or synchronize
–  Less emphasis on comm/synch
–  More emphasis on contention among multiple programs

•  Shared address vs. separate address spaces

Page 2

 6

Parallel Processing

Multicore: Multiple CPUs on same chip die
Multiprocessor: Multiple processors in same box

–  Multiprocessor uses Multicore processors

•  Symmetric (shared-memory) multiprocessors
•  Distributed shared memory multiprocessor

 7

Centralized Shared-Memory
Architectures

P

Cache

P

Cache

P

Cache

P

Cache

I/O System

Multiple processors sharing a single memory

Single memory --
consistent access
latencies
UMA: uniform
memory access
Symmetric
multiprocessor

Shared interconnect

Small number of
processors, 2-12

Main Memory

Typical multicore

Shared Cache (L3)

Page 3

 8

Distributed Memory Architectures

P +
Cache

Cache I/O

Interconnect

P +
Cache

Cache I/O

P +
Cache

Cache I/O

P +
Cache

Cache I/O

P +
Cache

Cache I/O

P +
Cache

Cache I/O

Node

Individual interconnected PEs with memory at each node - network connected MPs

 9

Distributed Memory Architectures

•  Shared memory systems don’t scale well (why?)
•  More processors, more bandwidth demands
•  Distributed memory system
 Typically high bandwidth interconnect
 Cost-effective scaling of memory bandwidth

Assuming most accesses to local memory
Limited node-to-node communication & synchronization

 Lower latency to local memory
Don’t have to go “across bus” to shared memory

 Communication among nodes is more complex
 Communication has higher latency

Page 4

 10

Communication with Distributed
Memory Architectures

•  Distributed shared-memory
–  One logical memory distributed among physical memories
–  I.e., address space is shared (same shared address on two

processors refers to the same location)
–  Implicit shared communication (via shared address space)
–  NUMA: Non-uniform memory access (why?)

•  Multicomputers
–  Separate private address spaces for each PE
–  Same address on two processors: two different locations
–  Explicit communication (message passing)
–  Libraries for standard communication primitives (e.g., MPI)

 11

Communication Performance

•  Communication bandwidth (end-to-end)
–  Typically less than what the hardware can provide
–  Occupancy: resources are occupied during communication,

preventing send/receive of other messages

•  Communication latency
–  Overhead + time of flight + transport latency
–  Hiding latency is good!

»  Ties up resources or the processor has to wait
–  Overhead can include occupancy

»  May also include other items: protection provided by OS

Page 5

 12

Communication Performance

•  Latency Hiding
–  Overlap communication with other communications or

computations
–  Can be difficult to exploit and application dependent

•  Flexible communication mechanisms
–  Perform well with

»  Smaller and larger transmissions
»  Irregular and regular communication patterns

–  I.e., not overly optimized
–  But…. May be able to improve communication performance if

optimized for specific patterns (e.g., interconnection topology)

 13

Communication Comparison

Shared Memory Message Passing
- Compatibility, well understood - Simpler hardware (coherence)
- Ease of programming for complex - Explicit communication
 communication (just do it!) Have to pay attention! And get it
- Better for smaller communications right (often not easy, though…)
 Protection implemented in the HW - Shared memory can be built on
 rather than in the OS top of message passing but the
- Hardware-controlled caching cost is very high (every access
 Automatic caching of shared and becomes a message!)
 private data
- Easy to implement message
 passing on top of shared memory
 since it’s just a memory copy

Page 6

 22

Cache Coherence

Multilevel caches included with each processor
Private and shared data
Cache Coherence problem

Event P1’s Cache P2’s Cache Memory
 1

P1: LD r1,[A] 1 1
P2: LD r1,[A] 1 1 1
P1: ADD r1,1,r1 1 1 1
P1: ST r1,[A] 2 1 2

 23

Cache Coherence

Coherent if:
1: Write by processor P to X
 Read by processor P of X
 No intervening write
 Returns most recent value

2: Write by processor P1
 Read by processor P2
 Returns most recent value
 if operations separated by enough time

3: Writes to same location are serialized
 I.e., writes seen by all processors in the
 same order

Preserves program
order, true even of
uniprocessors

Notion of coherency- get
the most recent value

Ensures a value is not
held indefinitely (if seen
in different order)

Page 7

 24

Coherence Mechanisms

•  Migration
–  Data moved to a local cache where it can be accessed locally
–  Reduces latency to shared data that is allocated remotely

•  Replication
–  Copies of shared data that can be read by multiple processors
–  Reduces latency and contention for shared item

•  Directory-based - Centralized directory tracks
current location of data

•  Snooping - State of blocks kept at local caches
by watching interconnect (bus) transactions

 25

Coherence Protocols

•  Write invalidate
–  Only one processor has exclusive write access
–  No other readable/writable copies of to-be-written data exist
–  On write, invalidate all copies
–  Modify data, when other processors use it, they miss and get

the new data

•  Write broadcast
–  On a write, broadcast the updated value to all caches holding

a copy of the data
–  Bandwidth requirements - keep track of whether a word is

shared or not so unnecessary broadcasts are avoided

Page 8

 26

Example: Invalidate

0

Memory
Contents for

location X

Cache
Contents for

CPU B

Cache
Contents for

CPU A Bus Activity
Processor

Activity

 27

Example: Invalidate

0 0 Cache Miss
for X

CPU A Reads
X

0

Memory
Contents for

location X

Cache
Contents for

CPU B

Cache
Contents for

CPU A Bus Activity
Processor

Activity

Page 9

 28

Example: Invalidate

0 0 Cache Miss
for X

CPU A Reads
X

0 0 0 Cache Miss
for X

CPU B Reads
X

0

Memory
Contents for

location X

Cache
Contents for

CPU B

Cache
Contents for

CPU A Bus Activity
Processor

Activity

 29

Example: Invalidate

0 0 Cache Miss
for X

CPU A Reads
X

0 1 Invalidation for
X

CPU A writes 1
to X

0 0 0 Cache Miss
for X

CPU B Reads
X

0

Memory
Contents for

location X

Cache
Contents for

CPU B

Cache
Contents for

CPU A Bus Activity
Processor

Activity

Page 10

 30

Example: Invalidate

0 0 Cache Miss
for X

CPU A Reads
X

1 1 1 Cache Miss
for X

CPU B Reads
X

0 1 Invalidation for
X

CPU A writes 1
to X

0 0 0 Cache Miss
for X

CPU B Reads
X

0

Memory
Contents for

location X

Cache
Contents for

CPU B

Cache
Contents for

CPU A Bus Activity
Processor

Activity

 31

Example: Write Update

0 0 Cache Miss
for X

CPU A Reads
X

0 0 0 Cache Miss
for X

CPU B Reads
X

0

Memory
Contents for

location X

Cache
Contents for

CPU B

Cache
Contents for

CPU A Bus Activity
Processor

Activity

Page 11

 32

Example: Write Update

0 0 Cache Miss
for X

CPU A Reads
X

1 1 1
Write update

for X
CPU A writes 1

to X

0 0 0 Cache Miss
for X

CPU B Reads
X

0

Memory
Contents for

location X

Cache
Contents for

CPU B

Cache
Contents for

CPU A Bus Activity
Processor

Activity

 33

Example: Write Update

0 0 Cache Miss
for X

CPU A Reads
X

1 1 1 CPU B Reads
X

1 1 1
Write update

for X
CPU A writes 1

to X

0 0 0 Cache Miss
for X

CPU B Reads
X

0

Memory
Contents for

location X

Cache
Contents for

CPU B

Cache
Contents for

CPU A Bus Activity
Processor

Activity

Page 12

 34

Invalidate vs. Broadcast

•  Multiple writes to same word (with no intervening
write): multiple write broadcasts but a single write
invalidate

•  Cache line blocks: multiple writes to block require
multiple broadcasts but only one invalidate when
block first written. Broadcast works only on
individual words as opposed to blocks.

•  Delay between seeing a write: usually less in
write broadcast since data is immediately
updated in a reader’s cache

 35

Snooping Protocols

Cache tag
and data

Processor

Single bus

Memory I/O

Snoop
tag

Cache tag
and data

Processor

Snoop
tag

Cache tag
and data

Processor

Snoop
tag

•  Each processor monitors the activity on the bus
•  Dealing with write through is simpler than dealing with write back
•  In WB, on a read miss, all caches check to see if they have a copy of the

requested block. If yes, they supply the data (will see how).
•  In WB, on a write miss, all caches check to see if they have a copy of the

requested data. Yes: invalidate the local copy or update it with the new value.

Keeps tags to avoid
interference with the
CPU

Page 13

 36

Snoopy MSI Protocol

•  Invalidation protocol
•  Each block of memory is in one state:

–  Clean in all caches and up-to-date in memory (Read-Only),
–  Dirty in exactly one cache (Read/Write), OR
–  Not in any caches

•  Each cache block is in one state:
–  Shared : block can be read (clean, read-only)
–  Modified: cache has only copy, its writeable, and dirty
–  Invalid : block contains no data

•  Read misses: cause all caches to snoop bus
•  Writes to clean blocks are treated as misses --

invalidates all other caches

 37

Snoopy MSI Protocol

•  Interconnection (bus) based systems
–  Acquire bus to do invalidation - write not complete until

invalidated (and have the bus)
–  Causes serialization of writes

•  Finite state machine to maintain coherence
–  Status bits for each cache line (protocol state)
–  2 parts to FSM

»  CPU activity on one processor (CPU events)
»  other processors see activity (bus events)

•  Only one processor has write access at a time
•  All processors can have read access together

Page 14

 38

Snoopy State Machine (CPU Events)

Invalid Shared
(read only)

Modified
(read/write)

CPU read miss
Place read miss

on bus

CPU read miss
Place read miss on bus

CPU read miss

Write
 back block

CPU write
 (hit o

r m
iss)

Place write
 miss on bus

and write
 back block

CPU write hit or miss
Place write miss on bus

and write back block

CPU write miss
Place write miss on bus

Note: A read hit does
not change the state.

May distinguish between
ownership updates so we
do invalidate on write hit

 39

Snoopy State Machine (Bus Events)

Invalid Shared
(read only)

Modified
(read/write)

Write miss (or invalidate)
for this block

Read miss for th
is block

Write
-back block;

Write miss for
this block

Write-back block

on a RM, we can intercept
the read miss, write the block,
then let the read proceed

Page 15

 40

What Happens When...

•  Read miss - always go to SHARED
–  on a RM, other processors may be in INVALID, SHARED, or

MODIFIED
»  INVLAID: No action, stay in INVALID
»  SHARED: No action, stay in SHARED
»  MODIFIED: Exclusive processor does writeback and

goes to SHARED
–  this processor goes to shared

 41

What Happens When...

•  Write miss - get exclusive access, invalidate
other copies

•  on a WM, we will always put address on the bus
so other processors can go to INVALID with a
possible write back

•  if this processor:
–  INVALID -> MODIFIED, put address on bus
–  MODIFIED-> MODIFIED, writeback replaced line
–  SHARED -> MODIFIED, put address on bus

Page 16

 42

What Happens When...

•  Write hit - get exclusive access
–  if processor:

»  in SHARED -> MODIFIED, invalidate
»  in EXCLUSIVE -> MODIFIED, no action

–  this processor has exclusive access, so no other processor
will do anything

•  Read hit - stay in state; no action required
(common case)

 43

Example

B = invalid

B = invalid

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

Page 17

 44

Example

B = invalid

B = invalid

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

 45

Example

B = invalid

A1 = 10 (modified)

B = invalid

B = invalid

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

Page 18

 46

Example

B = invalid

A1 = 10 (modified)

B = invalid

B = invalid

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

P1 reads A1

 47

Example

B = invalid

A1 = 10 (modified)

A1 = 10 (modified)

B = invalid

B = invalid

B = invalid

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

P1 reads A1 (RH)

Page 19

 48

Example

B = invalid

A1 = 10 (modified)

A1 = 10 (modified)

B = invalid

B = invalid

B = invalid

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

P1 reads A1 (RH)

P2 reads A1

 49

Example

B = invalid

A1 = 10 (modified)

A1 = 10 (modified)

A1 = 10 (shared)

B = invalid

B = invalid

B = invalid

A1 = 10 (shared)

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

P1 reads A1 (RH)

P2 reads A1 (RM)

Page 20

 50

Example

B = invalid

A1 = 10 (modified)

A1 = 10 (modified)

A1 = 10 (shared)

B = invalid

B = invalid

B = invalid

A1 = 10 (shared)

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

P1 reads A1 (RH)

P2 reads A1 (RM)

P2 write 20 to A1

 51

Example

B = invalid

A1 = 10 (modified)

A1 = 10 (modified)

A1 = 10 (shared)

B = invalid

B = invalid

B = invalid

B = invalid

A1 = 10 (shared)

A1 = 20 (modified)

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

P1 reads A1 (RH)

P2 reads A1 (RM)

P2 write 20 to A1 (WH)

Page 21

 52

Example

B = invalid

A1 = 10 (modified)

A1 = 10 (modified)

A1 = 10 (shared)

B = invalid

B = invalid

B = invalid

B = invalid

A1 = 10 (shared)

A1 = 20 (modified)

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

P1 reads A1 (RH)

P2 reads A1 (RM)

P2 write 20 to A1 (WH)

P2 writes 40 to A2

 53

Example

B = invalid

A1 = 10 (modified)

A1 = 10 (modified)

A1 = 10 (shared)

B = invalid

B = invalid

B = invalid

B = invalid

B = invalid

A1 = 10 (shared)

A1 = 20 (modified)

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

P1 reads A1 (RH)

P2 reads A1 (RM)

P2 write 20 to A1 (WH)

P2 writes 40 to A2 (WM)

Page 22

 54

Example

B = invalid

A1 = 10 (modified)

A1 = 10 (modified)

A1 = 10 (shared)

B = invalid

B = invalid

B = invalid

B = invalid

B = invalid

A1 = 10 (shared)

A1 = 20 (modified)

A2 = 40 (modified)

In P1’s cache In P2’s cache Event

Assume: A1 and A2 map to same cache block B, initial cache state is invalid

P1 writes 10 to A1

P1 reads A1 (RH)

P2 reads A1 (RM)

P2 write 20 to A1 (WH)

P2 writes 40 to A2 (WM)

 55

MESI Protocol

•  Extend 3 state protocol to have a “modified”
state

–  Modified: Line has been modified (different from main
memory; no other copy)

–  Exclusive: line is same as in main memory but we have
exclusive access (not shared)

–  Shared: same as in memory and present in other caches
–  Invalid: line is not valid

•  Shared in 3 state protocol is shared & exclusive
–  Avoids invalidate when no other processor has a copy of data

and we want to do a write of it

•  Extra signaling to indicate whether other caches
have a copy or not (I.e., shared or exclusive?)

Page 23

 56

MESI State Diagram

Exclusive Modified

Shared Invalid
RMS, fill

WM, inv

RH, WH
WH

WH, inv RME, fill

RH

RH

Processor-View

RMS - RM shared
RME - RM exclusive
inv - invalidate
fill - cache line fill
NOTE: not all events
are shown (e.g., RM or
WM in exclusive)

Exclusive Modified

Shared Invalid
SHW

SHW, wb SHR SHR, wb SHW

SHR
Bus-View

SHR - shared read
SHW - shared write
wb - write back

