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Pipelining: Its Natural! 
•  Laundry Example 
•  Ann, Brian, Cathy, Dave each have one load of clothes  to wash, dry, and fold 
•  Washer takes 30 minutes, Dryer takes 40 minutes, Folder takes 20 minutes 
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•  Pipelining doesn’t help latency of 
single task, it helps throughput of 
entire workload 

•  Pipeline rate limited by slowest 
pipeline stage 

•  Multiple tasks operating 
simultaneously 

•  Potential speedup = Number pipe 
stages 

•  Unbalanced lengths of pipe 
stages reduces speedup 

•  Time to “fill” pipeline and time to 
“drain” it reduces speedup 

(2) 

Computer Pipelines 

•  MIPS desirable features: 
–   all instructions same length, 
–   registers located in same place in instruction format,  
–  memory operands only in loads or stores 

•  We will first review a non-pipelined MIPS architecture. 

•  Review – you should know about: 
–  multiplexors, 
–  register files, 
–  ALU’s 
–  arithmetic Vs logical shifts 
–  program counter (PC), status word (PS) and instruction register (IR), 
–  Memory address registers (MAR) and memory data registers (MDR) 
–  combinational Vs sequential circuits 
 



Page 2 

(3) 

Implementing the MIPS architecture 

Arithmetic/logic instructions 
  1) fetch instruction 
  2) read registers 
  3) compute (use ALU) 
  4) write to register 

Memory instructions 
  1) fetch instruction 
  2) read registers 
  3) compute address (use ALU) 
  4) write/read to/from memory 
  5) write to register (for load) 

Branch instructions 
  1) fetch instruction 
  2) read registers 
  3) compute branch address (use ALU) 
  4) evaluate branch condition 
  5) update the PC (condition satisfied) 

Increment the 
PC 

(4) 

Instruction fetch 

Add 

PC 
Instruction 
memory 
(cache) 

4 

N 
P 
C 

IR 

Instruction 
memory 
(cache) 

Data out  address  

IR           Mem[PC] 
NPC       PC + 4 

data 
memory 
(cache) 

Data out  address  
Data in  



Page 3 

(5) 
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Use ALU and evaluate branch condition 
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(the multiplexors settings and ALU function depend on the op-code) 
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Use memory 
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Write to register 
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The control signals 
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(10) 

The control signals 
•  X1, X2, X3   = select multiplexor input (one bit each) 

•  L1                = set if the instruction is a branch (one bit) 
•  L2                = loads the PC (one bit) 
•  L3                = read the instruction memory (one bit) 
•  L4                = read/write register (two bits) 
                          00 = no-op,  01 = read, 10 = write 
•  L5                = read/write the data memory (two bits) 
                          00 = no-op,  01 = read, 10 = write 
•  OP               = ALU control (?? Bits) 
                          0..0 = no-op,  1..1 = add, 10.. = others 
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Pipelining  MIPS 
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IF/ID ID/EX EX/MEM MEM/WB 
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Visualizing pipelining 

Reg IM DM Reg 

Reg IM DM Reg 

Reg IM DM Reg 

Reg IM DM Reg 

Clock cycles 

Instruction 
order 

CC1 CC2 CC3 CC4 CC5 CC6 

Pipelining puts additional demands on memory bandwidth, 

(14) 

Visualizing pipelining 
Clock cycles CC1 CC2 CC3 CC4 CC5 CC6 
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•  Hazards prevent next instruction from executing during its designated 
clock cycle 

–  Structural hazards: HW cannot support a combination of instructions. 

– Data hazards: Instruction depends on result of prior instruction still in 
the pipeline. 

– Control hazards: Pipelining of branches & other instructions stall the 
pipeline until the hazard bubbles  in the pipeline 

Limits to pipelining: 

(16) 

Structural Hazards (assuming a single memory) 
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Structural Hazards (assuming a single memory) 

Reg IM DM Reg 

Reg IM DM Reg 

Reg IM DM Reg 

Reg IM DM Reg 

Clock cycles CC1 CC2 CC3 CC4 CC5 CC6 

Load 

add 

add 

add 
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Speed Up Equation for Pipelining 

CPIpipelined = Ideal CPI + stall cycles per instruction 
 

                 CPIunpipelined           Clock Cycleunpipelined 

                 CPIpipelined             Clock Cyclepipelined 
x Speedup  = 

•  Machine A: pipelined (with some depth) and dual ported memory 
•  Machine B: pipelined (same depth as A), but single ported memory, 

and a 1.05 times faster clock rate 
•  Ideal CPI = 1 for both, and loads are 40% of instructions executed 
            SpeedUpA = Pipeline Depth 
      SpeedUpB = (Pipeline Depth/1.4) x  1.05 

            = 0.75 x Pipeline Depth 
               SpeedUpA / SpeedUpB = 1.33 

Example: 

(20) 

Reg 

Register-to-register data Hazards 

Reg IM DM Reg 

Reg IM DM Reg 

Reg IM DM Reg 

Reg IM DM Reg 

IM DM Reg 

Add  R1, R2, R3 

Sub  R4, R1, R4 

And  R5, R1, R5 

Add  R6, R1, R6 

Add  R7, R1, R7 

Dependence: add 
produces R1 consumed 
by following instructions 
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Three types of Data Dependence 
Instri is later in the pipeline than Instrj   

 j depends on i for operand R 

1.  Read After Write (RAW)  
Instrj tries to read operand before Instri writes it 

2.  Write After Read (WAR)  
Instrj tries to write operand before Instri reads it 
–  Gets wrong operand 
–  Can’t happen in MIPS 5 stage pipeline (why?)   

3.  Write After Write (WAW)  
Instrj tries to write operand before Instri writes it 
–  Leaves wrong result  
–  Can’t happen in MIPS 5 stage pipeline (why?) 

Will see WAR and WAW in later more complicated pipes 

(22) 

Reg 

Reg 

Reg 

Forwarding to Avoid Data Hazard 
 

Reg IM DM 

Reg IM DM Reg 

Reg IM DM Reg 

IM DM Reg 

IM DM Reg 

Add  R1, R2, R3 

Sub  R4, R1, R4 

And  R5, R1, R5 

Add  R6, R1, R6 

Add  R7, R1, R7 
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Src Type Detection Condition Input Action Priority 

R-R EX/MEM.rd == ID/EX.rs Mux A 1 1 

R-R EX/MEM.rd == ID/EX.rt Mux B 1 1 

R-R MEM/WB.rd == ID/EX.rs Mux A 2 2 

R-R MEM/WB.rd == ID/EX.rt Mux B 2 2 

Imm EX/MEM.rt == ID/EX.rs Mux A 1 1 

Imm EX/MEM.rt == ID/EX.rt Mux B 1 1 

Imm MEM/WB.rt == ID/EX.rs Mux A 2 2 

Imm MEM/WB.rt == ID/EX.rt Mux B 2 2 

Ld MEM/WB.rt == ID/EX.rs Mux A 3 2 

Ld MEM/WB.rt == ID/EX.rs Mux B 3 2 

Detection & Activation for Forwarding Control 

Src Type = Producer instruction opcode type 
Action = Mux setting; if no match, then Mux selection is 0 
Priority = Which detection condition takes precedence (note, multiple can match) 

(27) 

Reg 

Reg 

Reg IM DM 

Reg IM DM Reg 

Reg IM DM Reg 

IM DM Reg 

lw r1, 0(r2) 
 
 
sub r4,r1,r6 
 
 
and r6,r1,r7 
 
 
or   r8,r1,r9 

Data Hazard Even with Forwarding 
 

Cannot travel back in time. 
Need to stall (interlock) the pipe if: 

 The instruction in ID/EX is a lw 
 The instruction in IF/ID uses register Rs1 and/or Rs2 
 Rd for the instruction in ID/EX = Rs1 or Rs2 

How can we interlock (stall) the pipeline? 
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Interlock on Load-Use  

•  Detect a load followed by a dependent use 

•  Insert the bubble on detection 
–  Disable write (no updates): PC, ID/IF register 
–  Clear the ID/EX register (inserting a nop) 

Src Type Dst Type Condition 

Ld Register-Register ID/EX.rt == IF/ID.rs 

Ld Register-Register ID/EX.rt == IF/ID.rt 

Ld Immediate ID/EX.rt == IF/ID.rs 

(29) 

Try producing fast code for 
  a = b + c; 
  d = e – f; 

assuming a, b, c, d ,e, and f in memory. 
  
Slow code: 

  LW  Rb,b 
  LW  Rc,c 
  ADD  Ra,Rb,Rc 
  SW   a,Ra  
  LW  Re,e  
  LW  Rf,f 
  SUB  Rd,Re,Rf 
  SW  d,Rd 

Software Scheduling to Avoid Load Hazards 

Fast code: 
  LW  Rb,b 
  LW  Rc,c 
  LW  Re,e  
  ADD  Ra,Rb,Rc 
  LW  Rf,f 
  SW   a,Ra  
  SUB  Rd,Re,Rf 
  SW  d,Rd 
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IF/ID ID/EX EX/MEM MEM/WB 

Control Hazard on Branches 

(31) 

Control Hazard on Branches 
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Branch Stall Impact 

•  If CPI = 1, 10% branch, Stall 3 cycles => new CPI = 1.3 

•  Two part solution: 
1.  Determine branch taken or not sooner, AND 
2.  Compute taken branch address earlier 

•  MIPS branch tests if two registers are equal 

•  MIPS solution 
– Move Zero test to ID/EX stage 
–  Adder to calculate branch target address in ID/EX stage 
–  1 clock cycle penalty for branch versus 3 

(33) 

Early determination of Branch condition and target 
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Four Branch Hazard Alternatives 

#1: Stall until branch direction is clear 
 

#2: Predict Branch Not Taken 
–  Execute successor instructions in sequence 
–  “Squash” instructions in pipeline if branch actually taken (how?) 
–  Advantage of late pipeline state update 
–  47% MIPS branches not taken on average 
–  PC+4 already calculated, so use it to get next instruction 

#3: Predict Branch Taken 
–  53% MIPS branches taken on average 
–  But haven’t calculated branch target address in MIPS 

»  MIPS still incurs 1 cycle branch penalty 
»  Other machines: branch target known before outcome 

(35) 

Four Branch Hazard Alternatives 

#4: Delayed Branch 
–  Define branch to take place AFTER a following instruction 

 
 branch instruction 
 sequential successor1 
 sequential successor2 
 ........ 
 sequential successorn 

 branch target if taken 
 

–  1 slot delay allows proper decision and branch target address in 5 
stage pipeline 

–  Delay Slot Instruction (DSI) 
–  MIPS uses this 

Branch delay of length n 
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Example of DSI 

top:!lw !R1,0(R2)!
!lw !R3,4(R2)!
!add !R1,R1,R3!
!sw !R1,0(R2)!
!addi!R2,R2,4!
!addi!R5,R5,-1!
!bne !R5,R0,top!
!delay slot instruction!
!add!
!...!

!

(37) 

Example of DSI 

top:!lw !R1,0(R2)!
!lw !R3,4(R2)!
!add !R1,R1,R3!
!sw !R1,0(R2)!
!addi!R2,R2,4!
!addi!R5,R5,-1!
!bne !R5,R0,top!
!nop!
!add!
!...!

Dependence chain 
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Example of DSI 

top:!lw !R1,0(R2)!
!lw !R3,4(R2)!
!add !R1,R1,R3!
!sw !R1,0(R2)!
!addi!R2,R2,4!
!addi!R5,R5,-1!
!bne !R5,R0,top!
!nop!
!add!
!...!

!

Dependence chain 

(39) 

Example of DSI 

top:!lw !R1,0(R2)!
!lw !R3,4(R2)!
!add !R1,R1,R3!
!sw !R1,0(R2)!
!addi!R2,R2,4!
!addi!R5,R5,-1!
!bne !R5,R0,top!
!nop!
!add!
!...!

!

Dependence chain 
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Example of DSI 

top:!lw !R1,0(R2)!
!lw !R3,4(R2)!
!add !R1,R1,R3!
!sw !R1,0(R2)!
!addi!R5,R5,-1!
!bne !R5,R0,top!
!addi!R2,R2,4!
!add!
!...!

!
!

Dependence chain 

(41) 

Example of DSI 

top:!lw !R1,0(R2)!
!lw !R3,4(R2)!
!add !R1,R1,R3!
!sw !R1,0(R2)!
!addi!R2,R2,-4!
!bne !R2,R0,top!
!nop!
!add!
!...!

!

Can we move the addi? 
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•  Where do we get instructions to fill branch delay slot? 
–  Before branch instruction 
–  From the target address: should repeat instruction for correctness 
–  From fall through: correct if R7 is dead after the branch 

 

(44) 

Multi-cycle pipelines 

•  Assume 
•   4-stage, pipelined, FP add 
•   7-stage, pipelined, FP multiply 
•   25 stage, non-pipelined divide unit 

IF ID 

Ex 
Int. 

Mem WB 

FP 
mult. 

FP 
add 

Div. 

FP 
mult. 

FP 
mult. 

FP 
add 

•  Latency of an instruction, I, in a pipeline, P, is the number of bubbles 
that has to exist in P if the instruction following I wants to use the result 
of I. 
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•  Two divide instructions will stall the pipe (structural hazards). 
•  May have more than one register write in one cycle (why?) 

•  increase number of ports, or stall the pipeline (interlock) 
•  May have WAW hazard (why?) 
•  Out-of-order completion causes problems with exceptions,  
•  The long pipes causes more  RAW  hazards (why?)  

Hazards: 

To deal with structural Hazards: 
•  Stall a conflicting instruction at the ID stage 

• Use a shift register to keep track of the utilization of a stage 
that may suffer from structural hazard (ex. Input ports of 
registers) 

•   Stall a conflicting instruction when entering the Mem stage  
• may give priority to longer instructions to reduce RAW hazards. 

(46) 

MEM - - - EX ID - - - - - - IF S.D     F2, 0(R2) 

MEM A4 A3 A2 A1 - - - - - - ID - IF Add.D F2, F0, F8 

WB MEM M7 M6 M5 M4 M3 M2 M1 - ID IF Mul.D  F0, F4, F6 

WB MEM EX ID IF L.D     F4, 0(R2) 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Instruction 

Stall due to RAW hazards 

Examples 

instruction 1 2 3 4 5 6 7 8 9 10 11 
MUL.D F0,F4,F6 IF ID M1 M2 M3 M4 M5 M6 M7 Mem WB 
… IF ID EX Mem WB 
… IF ID EX Mem WB 
Add.D F2,F4,F6 IF ID A1 A2 A3 A4 Mem WB 
… IF ID EX Mem WB 
… IF ID EX Mem WB 
L.D  F2, 0(R2) IF ID Ex Mem WB 

Structural hazards 

WB 
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To deal with WAW: 
•  WAW occurs only if a useless instruction is executed 

•  If there is a use in between the writes, then a RAW will stall the 
pipe (if no forwarding is used -- in this case forwarding is not 
possible) 

•   May detect hazard and hold the second instruction, 
•   May detect hazard and prevent the first instruction from writing 
•   May detect hazard and replace the first instruction with a no-op 

Can all hazards be detected at the ID stage? 

To maintain precise exceptions: 
•  May ignore the problem, or 
•  buffer the results and enforce the order of writes, or 
•  let the trap handling routine enforce the preciseness (software 

approach), or 
•  delay the issue (stall the pipe) to enforce in-order completion. 

(48) 

Instruction set design and pipelining 

•  Variable instruction length and execution time leads to 
•  imbalance among stages, 
•  complicate hazard detection and precise exceptions 

•  Caches have similar effects (imbalance pipes) 
•  may freeze the entire pipeline on a cache miss 

•  Complex addressing modes 
•  may change register values 
•  may require multiple memory access 

•  self modifying instructions causes pipeline problems 

•  Implicitly set condition codes complicates pipeline control hazards 
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The MIPS R4000 
•  64-bit instruction set (MIPS-3 ISA) 
•  Decomposes memory access into stages (super-pipelining) 

•  Uses a deeper pipeline 
–  IF -- first half of instruction fetch 
–  IS -- second half of instruction fetch 
– RF - instruction decode and register fetch (and check cache tag) 
–  EX - execution: effective address calculation, ALU operation, 

branch target computation, branch condition evaluation 
– DF - first half of data fetch 
– DS - second half of data fetch 
–  TC - check cache tag (to determine if it is a hit) 
– WB write back 

(50) 

Forwarding from memory output is required to instructions 
that are 3 or 4 cycles later (sooner instructions have to stall) 
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The MIPS R4000 pipeline 

•  Branch delay is 3 cycles 
•  The architecture supports a single-cycle delayed branch 

The floating-point pipeline: 
•  Three units: adder (5 stages), divider(36 non-pipelined stages) and 

multiplier (9 stages) 

•  Eight hardware units are shared among stages 
–  A (add mantissa), 
–  D (divide),  
–  E(exception test),  
–  M and N (first and second stages of multiplier),  
–  R (rounding),  
–  S (shift),  
–  U (unpack) 


