
Page 1

(1)

Evolution of Instruction Sets

Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

High-level Language Based

(B5000 1963)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

Stack architectures

(B6500 1963, HP3000/70)

(2)

Basic CPU storage options

1. Accumulator
 load A
 add B
 Store C

2. Stack
 push A
 push B
 add
 pop C

4. Register-Memory
 load R1, A
 add R2, R1, B
 store R2, C

5. Register-Register
 load R1, A
 load R2, B
 add R3, R2, R1
 store R3, C

3. Memory-Memory
 add C, A, B

C = A + B in different storage schemes:

What is the effect on: speed, memory traffic, encoding, program length?
What determines the number of registers?

Page 2

(3)

•  Design decisions must take into account:
–  technology
–  machine organization
–  programming languages
–  compiler technology
–  operating systems

•  Issues in instruction set design:
–  operand storage in CPU (stack, registers, accumulator)
–  number of operands in an instruction (fixed or variable number)
–  type and size of operands (how is operand type determined)
–  addressing modes,
–  allowed operations and the size of op-codes,
–  size of each instruction.

Op-code operand operand operand Other fields

(4)

Memory addressing

•  Most modern machines are byte-addressable -- yet most memory
and cache traffic is in terms of words.

•  A natural alignment problem (the start of a word or a double word).
–  Compiler is responsible
–  hardware does the checking

•  How are bytes addressed within a word?
–  Big Endian -- byte 0 is the MSB (IBM, MIPS, SPARC)
–  Little Endian -- bye 0 is the LSB (vax, intel 80x86)
Problem when we deal with serial communication and I/O devices.

1	

2	4	5	6	7	

0	 2	

1	 0	3	

3	 4	 5	 6	 7	

(MSB)	 (LSB)	

(addr)	

(addr)	

Page 3

(5)

Addressing Modes

1) Register
 operand = content of register = (R) Add R1, R2

2) Immediate
 operand = in instruction = C Add R1, #54
3) Register indirect

 operand = in memory = Mem[(R)]
 address = content of register Add R1, (R2)

4) Displacement (or base)
 operand in memory = Mem[(R) + Base]
 address = content of register + base Add R1, 54(R2)

5) Indexed
 operand in memory = Mem[(R) + (IR)]
 address = content of R+ content of IR Add R1, (R2+R3)

Note: (R) means content of R and Mem[A] means content of memory address A.

(6)

6) Direct (absolute)
 operand in memory = Mem[C]
 address = a constant in the instruction Add R1, (1000)

7) Memory indirect
 operand in memory = Mem[Mem[(R)]]
 address = the content of Mem[(R)] Add R1, @(R2)

8) Auto-increment (or decrement)
 operand in memory = Mem[(R)]
 The content of R is incremented Add R1, (R2)+

9) Scaled
 operand in memory = Mem[C+(R)+(IR)*d] Add R1, 100(R2)(R3)

Which addressing mode is most suitable for:
 local variables, stack operations, array operations, pointers,
 branch addresses, branch condition evaluation.

Page 4

(7)

Popularity of the addressing mechanisms

•  Can we use only a few (the most popular) addressing modes?
•  Why would we want to use only a few addressing modes?
•  The Immediate mode is mostly used for loads, compares and ALU operations.
•  How many bits should we use in the Immediate and Displacements modes?
•  DSP’s have modulo addressing (for circular buffer management) and bit-

reverse addressing (for FFTs)

(8)

Displacement size

Page 5

(9)

Immediate size
On Average, around 20% of instructions contain immediate operands

(10)

Operations
•  Arithmetic/logical: add, sub, mult, div, shift (arith,logical), and, or,

not, xor …
•  Data movement: copy, move, load, store, ..
•  Control: branch, jump, call, return, trap, …
•  System: OS and memory management (ignore for now)
•  Floating point:
•  Decimal: legacy from COBOL
•  String: move, copy, compare, search
•  Graphics: pixel operations, compression, ...

•  In Media and Signal processing, partitioned (or paired) operations
are common (example: add the two half-words of a word).

•  Saturating arithmetic avoids interruption for overflow or underflow
conditions – useful for DSP’s under real-time constrains.

•  Multiply-accumulate operations are very useful for dot products in
DSPs.

Page 6

(11)

Frequent Operations

(12)

Branch instructions

Branch address specification
1) PC relative: -- makes the code position independent,
 -- reduces the number of bits for target specification
 -- target should be known at compile-time
2) put the target address in a register:

 -- less restrictions on the range of branch address
 -- useful for “switch” statements and function pointers
 -- loaded at run-time (shared libraries and virtual functions)

Page 7

(13)

Branch instructions

•  Branch distance is usually not very large.
•  Branch conditions are usually simple equality/inequality comparisons
•  More than 80% of comparisons use immediate constants,
•  A majority of comparisons is with “zero”,

(14)

Specification of branch conditions

•  Use condition codes (flags usually set by hardware)
•  Use condition registers
•  compare and branch instructions
•  Predicated instructions (operations guarded by a predicate)

C Source:

if (a < b) c++ else c+=1+b

Assume a -> r1

 b -> r2
 c -> r3

Predicated
cmplt r1,r2,p1
add r3,1,r3
add_p p1,r3,r2,r3

Unpredicated
 cmp r1,r2
 bge L0
 bra L1
L0: add r3,r2,r3
L1: add r3,1,r3

Page 8

(15)

Procedure call and Return

•  At a minimum the return address should be saved
–  Use branch and link instructions
–  Need to use a stack for nested calls

•  Registers may have to be saved (by hardware or software)
•  Registers can be saved by the caller or the callee,
•  May mark some registers as “temporary”,
•  Pass arguments in registers or on stack

•  May use multiple register files
–  24 of the 32 registers in the SPARC are in a register window and 8 are globals
–  The number of register windows depends on implementation
–  SAVE, RESTORE move windows forward or backward
–  On window overflow, save register on a stack
–  On window underflow, reload registers from stack

Register
window 0

Register
window 1

Register
window 7

(16)

Encoding the instruction set

•  Need to include op-code, operands, and maybe other fields
•  Variable # of operands may call for variable instruction length
•  Variable instruction length may reduce the code size,
•  Fixed instruction length is easier to decode and faster to execute
•  May use variable length op-code (why ?)
•  How do you specify the addressing mode?

Examples:
•  The VAX:

–  can have any number of operands, each may use any addressing modes,
–  Each operand uses a 4-bit specifier + 4-bit register address + one possible
byte or word for displacement/immediate.

•  RISC instructions use a fixed # of operands and specific addressing modes,

•  Intel and IBM 360/370 use a hybrid approach (a few instruction lengths)
•  IBM Code_pack keeps compressed programs in memory (good/bad??)

Page 9

(17)

Encoding the instruction set

(18)

Role of compilers

•  Compilers are multi-phase: Front-end, high-level optimization,
global optimization and code generation.

•  The goals of a compiler are: correctness, speed of compiled
code, speed of compilation, debugging support, …

•  Compiler can do better optimization when instructions are simple

•  Allocation of variables:
–  registers are used for temporaries, and possibly parameter passing
–  stacks are used for activation records and local variables
–  a global data area (may be bottom of stack) is used for globals
–  a heap is used for dynamically declared data

Page 10

(19)

A "Typical" RISC
•  Fixed format instruction
•  General purpose registers -- some have overlapping register

windows.
•  3-address, reg-reg arithmetic instruction
•  Single address mode for load/store:

base + displacement (no indirection)
•  Simple branch conditions -- use PC relative mode for branching.
•  Hardwired control (as opposed to micro-programmed control)
•  Pipelined execution (one instruction issue every clock tick),
•  Delayed Branches and pipeline stalls.

RISC II (Berkeley) had 39 instructions, 2 addressing modes and 3 data types,
Vax had 304 instructions, 16 addressing modes, 14 data types,

RISC II programs were 30% larger than Vax programs but 5 times as fast.
The RISC compiler were 9 times faster than the Vax compiler.

(20)

The MIPS architecture

•  32, 64-bit general purpose registers (register 0 is hardwired to “0”)
–  called R0, … , R31.

•  32, 64-bit floating point registers (each can hold a 32-bit single
precision or a 64-bit double precision value)

–  called F0, F1, … , F31 (or F0, F2, … , F30).

•  A special register for floating point status,
•  Only immediate and displacement addressing modes (16-bit field)
•  Byte addressable memories with 64-bit addresses.
•  32-bit instructions

� Data transfer operations: LB, LBU, SB, SH, SW, SD, S.S, S.D, …
� Arithmetic/logical operations: DADD, DADDI, DADDU, DADDIU,

DSLL, DSLT, DSUB, …
� Control operations: BEQZ, BNE, J, JR, JAL, JALR, …
� Floating point operations: ADD.S, ADD.D, ADD.PS, MULT.S,

MADD.S, ...

Page 11

(21)

MIPS instruction format

Op
31 26 0 15 16 20 21 25

Rs Rt immediate

Op
31 26 0 25

Op
31 26 0 15 16 20 21 25

Rs Rt

target

Rd Opx

Register-Register (R-type) – used mainly for ALU operations
5 6 10 11

Register-Immediate (I-type) – used mainly for load/store and branch operations

Jump / Call (J-type)

(22)

The Intel 80x86 architecture
•  1971 - Intel 4004 (4-bit architecture)
•  1972 - Intel 8008 (8-bit architecture)
•  1974 - Intel 8080 (larger ISA, 16-bit address space, single

 accumulator, only 6 VLSI chips)
•  1974 - Intel 8086 (16-bit architecture, 16-bits dedicated registers)
•  1980 - Intel 8087 (floating point co-processor)
•  1982 - Intel 80286 (24-bit address space but has a compatible mode)
•  1985 - Intel 80386 (32-bit architecture and address space, 32 GPRs,
 paging and segmentation hardware),
•  1989 - Intel 80486
•  1992 - Intel Pentium
•  1996 - Pentium 2 (233-366 MHz, 512 KB L2 cache)
•  1999 - Pentium 3 (100-133 MHz, 512KB L2 cache)
•  2000 - Pentium 4 (1.3-3.6 GHz, 256KB – 2MB L2 cache)
•  2005 - Pentium D (2.66-3.73 GHz, 2–4 MB L2 cache)
•  2007 - Pentium dual core (1.6-2.7 GHz, 1-2MB L2 cache)
•  2010 - Nahalem (up to 3GHz, up to 8 cores, up to 30MB L3)

Page 12

(23)

•  Internal registers but mostly for dedicated uses.
•  16-bit architecture, but can get 20-bit address using segmentation
•  addressing modes:

–  absolute
–  register indirect (BX, SI, DI in 16-bit modes, extended registers in 32-bit mode)
–  base mode (BX, SI, DI, SI + displacement which is 8, 16 bits , or 8, 16, 32 bits)
–  indexed BX+SI, BX+DI, BP+SI, BP+DI
–  based indexed (indexed+ 8 or 16 bit displacement)
–  based plus scaled indexed (on 386, scale = 0,1,2,3 , restrictions on register use

is removed)
–  based with scaled index and displacement.

The Intel original 80x86 architecture

•  Op-code byte usually indicates the operand type and the addressing
mode. Some instructions use a postbyte which contains addressing
mode information.

