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Chapter 3: Instruction Level Parallelism (ILP) 
and its exploitation 

•  ILP: overlap execution of unrelated instructions 
–  invisible to programmer (unlike process level parallelism) 

•  Pipeline CPI = Ideal pipeline CPI + stalls due to hazards 
–  invisible to programmer (unlike process level parallelism) 

•  Parallelism within a basic block is limited (a branch every 3-6 instructions) 
–  Hence, must explore ILP across basic blocks 

•  May explore loop level parallelism (fake control dependences) through 
–  Loop unrolling (static, compiler based solution) 
–  Using vector processors or SIMD architectures 
–  Dynamic loop unrolling 

•  The main challenge is overcoming data dependencies 

(2) 

Types of dependences 

•  True data dependences: may cause RAW hazards. 
–  Instruction Q uses data produced by instruction P or by an instruction 

which is data dependent on P. 
–  dependences are properties of programs, while hazards are properties 

of architectures. 
–  easy to determine for registers but hard to determine for memory 

locations since addresses are computed dynamically 
    EX:  is 100(R1) the same location as 200(R2) or even 100(R1)? 

•  Name dependences: two instructions use the same name but do 
not exchange data (no data dependency)  

–  Anti-dependence: Instruction P reads from a register (or memory) 
followed by instruction Q writing to that register (or memory). 

    May cause WAR hazards. 
–  Output dependence: Instructions P and Q write to the same location. 
    May cause WAW hazards. 
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Loop:  L.D  F0, 0(R1) 
 

 ADD.D  F4, F0, F2 
  
 S.D  0(R1), F4  
  
 L.D  F0, -8(R1) 
  
 ADD.D  F4, F0, F2 

 
 S.D  -8(R1), F4 

 
 SUBI  R1, R1, 16 
  
 BNEZ  R1, Loop       
   

Data dependence 

Anti-dependence 

Output dependence 

How can you remove name dependences? 

Rename the dependent uses of F0 and F4 

(4) 

Loop:  L.D  F0, 0(R1) 
 

 ADD.D  F4, F0, F2 
  
 S.D  0(R1), F4  
  
 L.D  F8, -8(R1) 
  
 ADD.D  F9, F8, F2 

 
 S.D  -8(R1), F9 

 
 SUBI  R1, R1, 16 
  
 BNEZ  R1, Loop       
   

Data dependence 

Anti-dependence 

Output dependence 

How can you remove name dependences? 

Rename the dependent uses of F0 and F4 

Register renaming 
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Control dependences 
•  Determine the order of instructions with respect to branches. 

if P1 then S1 ; 
if P2 then S2 ; 

S1 is control dependent on P1 and  
S2 is control dependent on P2 (and P1 ??). 

•  An instruction that is control dependent on P cannot be moved to a 
place where it is no longer control dependent on P , and visa-versa 

Example 1: 
 DADDU  R1,R2,R3 
 BEQZ     R4,L 
 DSUBU  R1,R1,R6 

L:  … 
 OR         R7,R1,R8 

 

  

Example 2: 
 DADDU  R1,R2,R3 
 BEQZ     R12,skip 
 DSUBU  R4,R5,R6 
 DADDU  R5,R4,R9 

skip: 
 OR R7,R8,R9 

  OR  instruction depends 
on the execution flow 

Possible to move DSUBU 
before the branch (if R4 is not 
used after skip)  

(6) 

Loop carried dependences 

•  The iterations of a loop can be executed in parallel if there are 
no loop carried dependences. 

For i=1,100 
   a[i+1] = a[i]  + c[i]  ; 

There is a loop carried dependence since 
the statement in an iteration depends on 
an earlier  iteration. 
 
 
 For i=1,100 

   a[i] = a[i]  + s ; There is no loop carried dependence 
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The effect of data dependencies (hazards) 

•  Assume a MIPS pipeline with the following latencies 
–  Latency = 3 cycles if an FP ALU op follows an FP ALU op.  
–  Latency = 2 cycles if an FP store  follows an FP ALU op. 
–  Latency = 1 cycle  if an FP ALU op follows an FP load. 
–  Latency = 1 cycle  if a BNE follows an Integer ALU op. 

Loop:  L.D     F0, 0(R1)  ; Load an element 
 ADD.D     F4, F0, F2  ; add a scalar, in F2, to the element 
 S.D     F4, 0(R1)  ; store result 
 DADDUI  R1, R1, #-8  ; update loop index, R1 
 BNE     R1, R2, Loop  ; branch if visited all elements 

•  Consider the following loop, which assumes that an array starts at 
location 8, with a number of elements (x 8) stored in register R1. 

IF ID 
Int. 

Mem WB 
FP FP FP FP 

BNE cond. 
Evaluated in ID  

(8) 

Pipeline stalls due to data hazards 

Loop:  L.D  F0, 0(R1)  ; Load an element 
 stall 
 ADD.D  F4, F0, F2  ; add a scalar to the array element 
 stall 
 stall 
 S.D  F4, 0(R1)  ; store result 
 DADDUI R1, R1, #-8  ; update loop index, R1 
 stall 
 BNE  R1, R2, Loop  ; branch if visited all elements 
  

9 clock cycles per iteration 
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Basic compiler techniques for exposing ILP (§3.2) 

Reorder the statements : 
 
 

Loop:  L.D  F0, 0(R1)  
 DADDUI R1, R1, #-8 
 ADD.D  F4, F0, F2 
 stall 
 stall  
 S.D  F4, 8(R1) 
 BNE  R1, R2, Loop   

7 clock cycles per iteration 

(10) 

Loop Unrolling (assume no pipelining) 

Loop:  L.D  F0, 0(R1) 
 L.D  F6, -8(R1)  
 ADD.D  F4, F0, F2 
 ADD.D  F8, F6, F2  
 DADDUI R1, R1, #-16 
 S.D  F4, 16(R1) 
 S.D  F8, 8(R1)  
 BNE  R1, R2, Loop    

• Need to worry about boundary cases (strip mining??) 
• Can reorder the statements if we use additional registers. 
• What limits the number of times we unroll a loop? 
• Note that loop iterations were independent 
  for i = 1, 100 
     x(i) = x(i) + c 

Loop:  L.D  F0, 0(R1) 
 ADD.D  F4, F0, F2 
 S.D  F4, 0(R1) 
 DADDUI R1, R1, #-8 
 L.D  F0, 0(R1) 
 ADD.D  F4, F0, F2  
 S.D  F4, 0(R1)  
 DADDUI R1, R1, #-8 
 BNE  R1, R2, Loop    

Save 0.5 instruction per iteration Save 1 instruction per iteration 
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Executing the unrolled loop on a pipeline 

Loop:  L.D  F0, 0(R1) 
 L.D  F6, -8(R1)  
 ADD.D  F4, F0, F2 
 ADD.D  F8, F6, F2  
 DADDUI R1, R1, #-16 
 S.D  F4, 16(R1) 
 S.D  F8, 8(R1)  
 BNE  R1, R2, Loop    

Problem if one cycle is required 
between integer op. and Store?. 

4 clock cycles per iteration 

• Can solve the problem by  
• Stalling for one cycle 
• Replacing 16(R1) in the first SD statement by 0(R1). 

 

• What do you do if the latency = 3 cycles when S.D follows ADD.D? 

(12) 

Static branch prediction (§3.3) 

•  It is reasonable to assume that  
Ø forward branches are often not taken 
Ø backward branches are often taken 

• May come up with more accurate predictors 
based on branch directions. 

• Profiling is the standard technique for predicting  
the probability of branching. 

• Static branch prediction (built into the architecture) 
Ø The default is that branches are not taken 
Ø The default is that branches are taken 
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Dynamic Branch Prediction 

•  Different than static branch predictions (predict taken or 
predict not taken). 

•  Performance depends on the accuracy of prediction and 
the cost of miss-prediction. 

•  Branch prediction buffer (Branch history table - BHT): 
–  1-bit table (cache) indexed by the lower order bits of the address of the 

branch instructions (can be accessed in decode stage) 
–  Says whether or not the branch was taken last time 
–  needs to apply hashing techniques -- may have collision. 
–  Will cause two miss-predictions in a loop (at start and end of loop). 

L1:   ……. 
L2:   ……. 
        ……. 
        BEQZ R2, L2 
        ……. 
        BEQZ R1, L1 

(14) 

Two bits branch predictors 
•  change your prediction only if you miss-predict twice 
•  helps if a branch changes directions occasionally (ex. 

Nested loops) 

Predict taken Predict taken 

Predict not taken Predict not taken 

Branch taken 

Branch not 
 taken 

• In general, n-bit predictors are called Local Predictors. 
–  Use a saturated counter (++ on correct prediction, -- on wrong prediction) 
–  n-bit prediction is not much better than 2-bit prediction (n > 2). 
–  A BHT with 4K entries is as good as an infinite size BHT 
–  Dynamic branch prediction does not help in the 5-stage pipeline (why?) 
–  Miss-predict when gets the wrong branch in BHT or a wrong prediction. 

1 1 1 0 

0 1 0 0 
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Correlating Branch predictors 
(global predictors) 

•  Hypothesis: recent branches are correlated (behavior of recently 
executed branches affects prediction of current branch). 

•  Example 1: if (a == 2)  
  a = 0 ; 
if (b == 2) 
  b = 0; 
if (a != b) ... 
 

If B1 and B2 are taken, then B3 will probably not be taken, 
If B1 and B2 are not taken, the B3 is taken 
 
 

       SUBUI R3,R1,2 
       BNEZ   R3, L1 …                 B1 
       ADD     R1, R0, R0 
L1:  SUBUI  R3, R2, 2              
       BNEZ   R3, L2                      B2 
       ADD     R2, R0, R0 
L2:  SUBU   R3, R1, R2 
       BNEZ   R3, L3                       B3 
 

•  Example 2: If (d == 0) d = 1 ; 
if (d == 1) ..... 
 

(16) 

Correlating Branch predictors 

•  Keep history of the m most recently 
executed branches in an m-bit shift register. 

•  Record the prediction for each branch 
instruction, and each of the 2m combinations. 

•  In general, (m,n) predictor means record last 
m branches to select between 2m history 
tables each with n-bit predictor. 

•  Simple access scheme (double indexing). 
•  A (0,n) predictor is a local n-bit predictor. 
•  Size of table is  N n 2m, where N is the 

number of table entries. 
•   There is a tradeoff between N (determines 

collision), n (accuracy of local predicion) and 
m (determines history). 

A (2,2) predictor 
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Tournament predictor 
 (hybrid local-global predictors) 

•  Combines a global predictor and a local predictor with a strategy 
for selecting the appropriate predictor (multilevel predictors). 

Use predictor 1 

Use predictor 1 

0/1 1/0 

Use predictor 2 

Use predictor 2 

1/0 0/1 
0/1 

1/0 

1/0, 0/0, 1/1 0/1, 0/0, 1/1 

0/0, 1/1 0/0, 1/1 

p1/p2 == predictor 1 is correct/predictor 2 is correct 

•  The Alpha 21264 selects between 
–  a (12,2) global predictor with 4K entries 
–  a local predictor which selects a prediction based on the outcome of the last 

10 executions of any given branch. 

(18) 

Performance of Branch predictors 
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Branch target buffers(§3.9) 
•  Store the address of the branch’s target, in addition to the prediction. 

For (m,n) prediction 
need to keep target 
PC and prediction 

•  Can determine the target address while fetching the branch instruction 
–  how do you even know that the instruction is a branch? 
–  can’t afford to use wrong branch address due to collision -- why? 

(20) 

• Assume  
– branch condition determined in ID 
– branch address determined in EX stage 
– access branch target buffer in IF stage 

• what is the branch penalty if: 
– penalty for correctly predicting = 0 cycle 
– penalty for incorrectly predicting = 2 cycles 
– penalty if cannot predict and the branch is 

taken = 2 cycles 
– prediction accuracy = 90%,  
– branch taken frequency = 60%  
– buffer hit rate = 90% 

• may store the target instruction and 
not only the address - useful when 
access of table needs more than 
one cycle. 

Evaluation example: 
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Dynamically scheduled pipelines (§3.4 - 3.5) 

Key idea: allow instructions behind stall to proceed 
DIV.D   F0, F2, F4 
ADD.D   F10, F0, F8  
SUB.D   F12, F8, F14 

•  Enables out-of-order execution, 
•  Can lead to out-of-order completion. 

Stall 

Using Scoreboards (see Appendix C.7): 
•  Dates to the first supercomputer, the CDC 6600 in 1963 
•  Split the ID stage into 

•  Issue - decode and check for structural hazards, 
• Read operands - wait until no data hazards, then read operands. 

•  Instructions wait in a queue and may move to the EX stage out of 
order. 

(22) 

A scoreboard architecture 

IF D 

Write result 
to Reg 

FP mult. 

FP add 

Div. 

FP mult. 

Int unit 

Wait queue 

Register 
file 

scoreboard 

•  The scoreboard is responsible for instruction issue and execution, 
including hazard detection. It is also controlling the writing of the results. 

•  The “Wait queue” does not actually exist -- it is implemented as a table 
inside the scoreboard. 

issue 

Mem 
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Scoreboard information 
•  Instruction status: 

–  issued, read operands and started execution, completed execution or 
wrote result, 

•  Functional unit status (assuming non-pipelined units) 
–  busy/not busy 
–  operation (if unit can perform more than one operation) 
–  destination register - Fi 
–  source registers (containing source operands) - Fj and Fk 
–  the unit producing the source operands (if stall to avoid RAW 

hazards) - Qj and Qk 
–  flags to indicate that source operands are ready -- Rj and Rk  

•  Register result status: 
–  indicates the functional unit that contains an instruction which will 

write into each register (if any) 

(24) 

Four stages of scoreboard control 
•  Issue only if no structural, WAR or WAW hazards. 

–  Issue if functional unit is free and  
»  the execution units do not contain an instruction which writes to 

the destination register (to avoid WAW) 
»  No issued instruction (in the wait queue) will read from the 

destination register (to avoid WAR) 
–  otherwise, stall, and block subsequent instructions 
–  the fetch unit stalls when the queue between the fetch and the issue 

stages is full (may be only one buffer). 

•  Read operands only if no RAW hazard. 
–   If a RAW hazard is detected, wait until the operands are ready, 
–  When the operands are ready, read the registers and move to the 

execution stage, 
–  note that instructions may proceed to the EX  stage out-of-order. 

•  Execution. 
–  When execution terminates, notify the score board. 

•  Write result to register file 



Page 13 

(25) 

Instruction Issue Read op. Exec. Completed Write result 

L.D         F6, 34(R2) X X X X 
L.D         F2, 45(R3) X X X 
MUL.D   F0, F2, F4 X 
SUB.D   F8, F6, F2 X 
DIV.D    F10, F0, F6 X 
ADD.D  F6, F8, F2 

Example: 

Instruction 
status 

Unit Busy Op Fi Fj Fk Qj Qk Rj Rk 
Integer Yes Load F2 R3 Yes 
Mult1 Yes Mult F0 F2 F4 Int. No Yes 
Mult2 No 
Add Yes Sub F8 F6 F2 Int. Yes No 
divide Yes Div F10 F0 F6 Mult1 No Yes 

F0 F2 F4 F6 F8 F10 F12 … F30 
Func. U Mult1 Int. Add Div 

Func. unit 
status 

Register 
status 

(26) 

Instruction Issue Read op. Exec. Completed Write result 

L.D         F6, 34(R2) X X X X 
L.D         F2, 45(R3) X X X X 
MUL.D   F0, F2, F4 X 
SUB.D   F8, F6, F2 X 
DIV.D    F10, F0, F6 X 
ADD.D  F4, F8, F2 

Example: 

Instruction 
status 

Unit Busy Op Fi Fj Fk Qj Qk Rj Rk 
Integer Yes Load F2 R3 Yes 
Mult1 Yes Mult F0 F2 F4 Yes Yes 
Mult2 No 
Add Yes Sub F8 F6 F2 Yes Yes 
divide Yes Div F10 F0 F6 Mult1 No Yes 

F0 F2 F4 F6 F8 F10 F12 … F30 
Func. U Mult1 Add Div 

Func. unit 
status 

Register 
status 
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Instruction Issue Read op. Exec. Completed Write result 

L.D         F6, 34(R2) X X X X 
L.D         F2, 45(R3) X X X X 
MUL.D   F0, F2, F4 X X X 
SUB.D   F8, F6, F2 X X X X 
DIV.D    F10, F0, F6 X 
ADD.D  F4, F8, F2 X X X 

Example: when MUL.D is ready to write 

Instruction 
status 

Unit Busy Op Fi Fj Fk Qj Qk Rj Rk 
Integer No 
Mult1 Yes Mult F0 F2 F4 Yes Yes 
Mult2 No 
Add Yes add F4 F8 F2 Yes Yes 
divide Yes Div F10 F0 F6 Mult1 No Yes 

F0 F2 F4 F6 F8 F10 F12 … F30 
FU Mult1 Add Div 

Func. unit 
status 

Register 
status 

(28) 

Limitations of the scoreboard approach  
•  No forwarding 
•  do not issue on structural hazards 
•  Wait until WAW and WAR hazards are cleared 
•  Did not discuss control hazards 

Limitations of the scoreboard in general 
•  The number of parallel buses between registers 

and pipeline units (determine the number of issues 
per cycles). 

•  The number of scoreboard entries. 

Need to extend the scoreboard to the case where 
the execution units are pipelined? 
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The Tomasulo approach 

•  Introduced for IBM 360/91 in 1966 
•  Main improvements over the scoreboard approach:  

– Uses forwarding on a Common Data Bus (CDB) -- more 
efficient dealing with RAW hazards, 

–  avoids WAR hazards by reading the operands in the 
instruction-issue order, instead of stalling at issue. To 
accomplish this an instruction reads an available operand 
before waiting for the other.  

–  Avoids WAW hazards by renaming the registers (using the id 
of a reservation station rather than the register id) 

–  The control information and logic are distributed to the 
functional unit and not centralized. 

(30) 

The architecture for the Tomasulo scheme 

IF Issue 

Write result 
to Reg 

FP mult. 
FP add 

Div. 

int unit 

lw/sw unit 

Register 
file 

Reservation  
Stations and  
load/store buffers 

•  Each reservation station has an id and is used by one instruction 
during the lifetime of this instruction.  

•  Each unit has one or more reservation stations 
• Reservation stations play the role of temporary registers (renaming) 

CDB 

Mem 
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Book keeping in Tomasulo’s algorithm 
•  Instruction status: 

–  issue, execute or write result, 

•  Reservation stations (functional units) status: 
–  busy/not busy 
–  operation (if unit can perform more than one operation) 
–  source operands (data values) - Vj and Vk 
–  the reservation stations producing the source operands (if stall to 

avoid RAW hazards) - Qj and Qk 

–  Address field, A, for load/store buffers (store effective address) 

•  Register result status: 
–  indicates the reservation station that contains an instruction which will 

write into each register (if any) 

(32) 

Three stages of control 
•  Issue  

–  If a reservation station is available for the needed functional unit 
»  read ready operands 
»  for operands that are not ready, rename the register to the reservation 

station that will produce it, 
–  Store/load operands are issued if a buffer (reservation station) is available. 

• Execution. 
–  Monitor the CDB for the operand that is not ready, 
–  When both operands are available, execute. 
–  If more than one station per unit, only one unit can start execution. 
–  Do not start execution before previous branches have completed. 

• Write result. 
–  Write to CDB (and to registers) -- may be a structural hazards if only one 

CDB bus. 
–  Make the reservation station (the functional unit) available. 
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•  Uses load/store buffers, and each buffer is like a reservation station. 
•  Address calculation (put result in buffer) + memory operation 
•  The result of a load is put on the CDB 
•  Stores are executed in program order (loads in any order)  
•  Performs memory disambiguation between store and load buffers, 

Load and store instructions: 

Remarks: 
•  May have more reservation stations than registers (a large virtual 

register space) 
•  The original Tomasulo algorithm was introduced before caches 

were incorporated into commercial processors 
•  If more than one issued instruction writes into a register, only the 

last one does the actual write (no WAW hazards). 

(34) 

Instruction Issue Execute Write result 
L.D        F6, 34(R2) X X X 
L.D        F2, 45(R3) X X 
MUL.D  F0, F2, F4 X 
SUB.D  F8, F2, F6 X 
DIV.D   F10, F0, F6 X 
ADD.D  F6, F8, F2 X 

Name Busy Op Vj Vk Qj Qk A 
Load1 no 
Load2 Y Load 45+Reg[R3] 
Add1 Y Sub Mem[34+Reg[R2]] Load2 
Add2 Y Add Add1 Load2 
Add3 no 
Mult1 Y Mul Reg[F4] Load2 
Mult2 Y Div Mem[34+Reg[R2]] Mult1 

  F0 F2 F4 F6 F8 F10 F12 … F30 

Qi Mult1 load2    Add2 Add1 Mult2       
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Instruction Issue Execute Write result 
L.D        F6, 34(R2) X X X 
L.D        F2, 45(R3) X X X 
MUL.D  F0, F2, F4 X X 
SUB.D  F8, F2, F6 X X X 
DIV.D   F10, F0, F6 X 
ADD.D  F6, F8, F2 X X X 

Name Busy Op Vj Vk Qj Qk A 
Load1 no 
Load2 no 
Add1 no 
Add2 no 
Add3 no 
Mult1 Y Mul Mem[45+Reg[R3]] Reg[F4] 
Mult2 Y Div Mem[34+Reg[R2]] Mult1 

  F0 F2 F4 F6 F8 F10 F12 … F30 

Qi Mult1 Mult2       

(36) 

Figure 3.6 
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Instruction Issue Execute Write result 
L.D        F0, 0(R1) X X 
MUL.D   F4, F0, F2 X 
S.D        F4, 0(R1) X 
L.D        F0, 8(R1) X X 
MUL.D   F4, F0, F2 X 
S.D        F4, 8(R1) X 

Name Busy Op Vj Vk Qj Qk A 
Load1 y ld Reg[R1]+0 
Load2 y ld Reg[R1]+8 
store1 y sd Reg[R1]+0 Mult1 
store2 y sd Reg[R1]+8 Mult2 
Add no 
Mult1 Y Mul Reg[F2] Load1 
Mult2 Y Mul Reg[F2] Load2 

  F0 F2 F4 F6 F8 F10 F12 … F30 

Qi Load2 store 2       

(38) 

•  The goal is to allow instructions after a branch to start 
execution before the outcome of the branch is confirmed. 

•  There should be no consequences (including exceptions) 
if it is determined that the instruction should not execute. 

–  Use dynamic branch prediction and use OOO execution 
–  Use a Reorder Buffer (ROB) to reorder instructions after execution 
–  Commit results to registers and memory in-order 
–  All un-committed results can be flushed if a branch is miss-predicted 
–  Service interrupts only when an instruction is ready to commit 

•  Should free the reservation station when an instruction is 
in the reorder buffer. 

•  For each register, R, the status table keeps the ROB 
number reserved by the instruction which will write into R 
(instead of the RES station number). 

Hardware-based Speculation (§3.6) 
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Reorder buffers (ROB) 
–  3 fields: instruction, destination, value 
–  When issuing a new instruction, read a 

register value from the ROB if the status 
table indicates that the source instruction is 
in a ROB. 

–  Hence, ROBs supply operands between 
execution complete & commit => more 
virtual registers. 

–  ROBs form a circular queue ordered in the 
“issue order”. 

–  Once an instruction reaches the head of the 
ROB queue, it commits the results into 
register or memory. 

–  Hence, it’s easy to undo speculated 
instructions  on miss-predicted branches  
or on exceptions 

–  Should flush the pipe as soon as you 
discover a miss-predictions – all earlier 
instructions should commit (problems??) 

IF 
Issue 

W
 

B
 

FP m
ult. 

FP add 

D
iv. 

int unit 

lw
/sw

 unit 

R
egister 
file 

R
eservation  

S
tations and  

load/store buffers 

C
D

B
 

M
em

 

R
eorder 
buffer 

(40) 

Steps of Speculative Tomasulo Algorithm 

•  Issue (sometimes called Dispatch) 
–  If a RES station and a ROB are free, issue the instruction to the RES 

station after reading ready registers and renaming non-ready registers 

•  Execution (sometimes called issue) 
–  When both operands ready then execute; if not ready, watch CDB for 

result; when both in reservation station, execute (checks RAW)  

•  Write result  (WB) 
–  Write on CDB to all awaiting RES stations & send the instruction to the 

ROB; mark reservation station available. 

•  Commit (sometimes called graduation) 
–  When instruction is at head of ROB, update registers (or memory) with 

result and free ROB. A miss-predicted branch flushes all non-committed 
instructions. 

Combining branch prediction with dynamic scheduling 
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Example:   
 - Assume that MUL.D just entered the ROB  
 - MUL.D is at the head of the ROB ready to commit 
 - SUB.D and ADD.D have been in the ROB before MUL.D 
 - DIV.D is in RES station waiting for the result of MUL.D 

Instruction Issued Execute In ROB committed 
L.D        F6, 34(R2) X X X x 
L.D        F2, 45(R3) X X X x 
MUL.D  F0, F2, F4 X X X 

SUB.D  F8, F2, F6 X X X 

DIV.D   F10, F0, F6 X X 

ADD.D  F6, F8, F2 X X X 

(42) 

Name Busy Op Vj Vk Qj Qk Dest.     A 
Load1 no 
Load2 no 
Add1 Y sub  Mem[45+Reg[R3]] Mem[34+Reg[R2]] ROB4 
Add2 Y add Mem[45+Reg[R3]] ROB4 ROB6 
Add3 no 
Mult1 Y Mul Mem[45+Reg[R3]] Reg[F4] ROB3 
Mult2 Y Div Mem[34+Reg[R2]] ROB3 ROB5 

  F0 F2 F4 F6 F8 F10 F12 … F30 

Qi ROB3 ROB6 ROB4 ROB5       

Reservation stations status 

Name Busy Instruction State Dest. value 
ROB1 no L.D        F6, 34(R2) Commit F6 xxx 
ROB2 no L.D        F2, 45(R3) Commit F2 xxx 
ROB3 yes MUL.D  F0, F2, F4 Write result F0 xxx 
ROB4 yes SUB.D  F8, F2, F6 Write result F8 xxx 
ROB5 yes DIV.D   F10, F0, F6 Issued/executing F10 
ROB6 yes ADD.D  F6, F8, F2 Write result F6 xxx 

ROB 
status 

Register 
status 
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Renaming Registers 
•  Common variation of speculative design 
•  Reorder buffer keeps instruction information but not the result 
•  Extend register file with extra  renaming registers to hold speculative results 
•  Rename register allocated at issue;  result is written into renaming register 

when execution completes; renaming register is copied to real register on 
commit. 

•  Operands read either from register file (real or speculative) or via Common 
Data Bus 

•  Advantage: operands are always from single source (extended register file) 

Name Busy Instruction State Dest. R Reg. 
ROB1 no L.D        F6, 34(R2) Commit F6 1 

ROB2 no L.D        F2, 45(R3) Commit F2 13 

ROB3 yes MUL.D  F0, F2, F4 Write result F0 15 

ROB4 yes SUB.D  F8, F2, F6 Write result F8 2 

ROB5 yes DIV.D   F10, F0, F6 Issued/executing F10 

ROB6 yes ADD.D  F6, F8, F2 Write result F6 14 

RR0 

RR1 

RR2 

RR3 

RR13 

RR14 

RR15 

. 

. 

. 

ROB status 

Renaming 
Registers 

(44) 

•  Issue more than one instruction per clock cycle 
–  VLIW processors (static scheduling by the compiler) 
–  Superscalar processors  

»  Statically scheduled (in-order execution) 
»  Dynamically scheduled (out-of-order execution) 

•  results in CPI < 1 (Instructions per clock, IPC > 1) 
•  The fetch unit gets an issue packet which contains 

multiple instructions  
•  The issue unit issues 1-8 instructions every cycle 

(usually, the issue unit is itself pipelined) 
–  independent instructions 
–  multiple resources should be available 
–  branch prediction should be accurate 

•  Leads to multiple instruction completion per cycle  

Multiple issue processors (§3.7) 
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Five primary approaches 

(46) 

•  Assume two execution pipes 
–  one for load, store, branch and integer operations 
–  one for floating point operations  
–  IF fetches 2 instructions 
–  ID process 2 instructions 
–  increase load on register file 

A statically scheduled MIPS superscalar 

IF ID 
EX/fp 

EX/int 
Mem WB 

 Type       Pipe   Stages       
 Int. instruction   IF  ID  EX  MEM  WB     
 FP instruction   IF  ID  EX  MEM  WB     
 Int. instruction    IF  ID  EX  MEM  WB    
 FP instruction    IF  ID  EX  MEM  WB    
 Int. instruction     IF  ID  EX  MEM  WB   
 FP instruction     IF  ID  EX  MEM  WB 
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Loop Unrolling in Superscalar 

  Integer instruction      FP instruction  Clock cycle 
Loop:  L.D      F0,0(R1)   1 

  L.D      F6,-8(R1)   2 
  L.D      F10,-16(R1)      ADD.D F4,F0,F2  3 
  L.D      F14,-24(R1)      ADD.D F8,F6,F2  4 
  L.D      F18,-32(R1)      ADD.D F12,F10,F2  5 
  S.D      F4, 0(R1)      ADD.D F16,F14,F2  6 
  S.D      F8, -8(R1)      ADD.D F20,F18,F2  7 
  S.D      F12, -16(R1)   8 
  S.D      F16, -24(R1)   9 
  DADDI  R1,R1,-40   10 
  BNEZ    R1,Loop   11 
  S.D      F20, -32(R1)   12 

•  Unrolled 5 times to avoid delays. 
•  12 clocks, or  2.4 clocks per iteration. 

F0 

F4 

Assume: LD to ADDD: 1 Cycle and ADDD to SD: 2 Cycles 

(48) 

MIPS superscalar 

IF ID 
EX/fp 

EX/int 
Mem WB 

•  While Integer/FP split is simple for the HW, we can get 
CPI of 0.5 only for programs with: 

–  Exactly 50% FP operations 
–  No hazards 

•  If two instructions issued every cycle, greater difficulty of 
decode and issue 

–  Even 2 units => examine 2 opcodes, 6 register specifiers, & decide if 1 
or 2 instructions can issue 

•  1 cycle load delay expands to 3 instructions in SS 
–  instruction in right half can’t use it, nor instructions in next slot 

•  Control hazards is twice as expensive 
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Register 
file 

int 

FP 

FP 

Load/ 
store 
BR 
unit 

instruction 

To/from 
memory To PC 

VLIW architectures 
• Compiler packs multiple, 

independent, operations into 
one single instruction. 

•  E.g.,  
•  1 integer operations, 
•  2 FP ops,  
•  1 Memory refs,  
•  1 branch.  
•  instruction = 5*24 = 120 bits. 

•  Lock-step issue of instructions 
(one per cycle) 

•  In a pure VLIW approach, the 
compiler resolves all hazards 
(resolved by hardware in MIPS 
superscalars) 

 

(50) 

Loop Unrolling in VLIW 
Memory  Memory  FP  FP  Int. op/  Clock 
reference 1  reference 2  operation 1   op. 2  branch 
 
L.D F0,0(R1)  L.D F6,-8(R1)     1 
L.D F10,-16(R1)  L.D F14,-24(R1)     2 
L.D F18,-32(R1)  L.D F22,-40(R1)  ADD.D F4,F0,F2  ADD.D F8,F6,F2  3 
L.D F26,-48(R1)   ADD.D F12,F10,F2  ADD.D F16,F14,F2  4 

                              ADD.D F20,F18,F2  ADD.D F24,F22,F2  5 
S.D F4,0(R1)  S.D F8,-8(R1)  ADD.D F28,F26,F2    6 
S.D F12,-16(R1)  S.D F16,-24(R1)     7 
S.D F20,-32(R1)  S.D F24,-40(R1)    DADDI  R1,R1,-48  8 
S.D F28,-0(R1)     BNEZ R1,Loop  9 
 

•  Unrolled 7 times  
•  7 results in 9 clocks, or 1.3 clocks per iteration. 
•  Average: 2.5 ops per clock, 50% efficiency 
•  Note: Need more registers in VLIW (15 vs. 11 in SS) 
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Dynamic scheduling (§3.8) 

•  Extends Tomasulo’s algorithm to issue two (or more) 
instructions simultaneously to reservation stations. 

•  Either issue an instruction every half clock cycle, or double 
the logic to handle two instructions at once. 

•  Use the same logic. Some restrictions may be used to 
simplify hardware.  

–  Example: issue only one FP and one int. operation every clock cycle. This 
reduces the load on the register files. 

–  Do not issue dependent instructions in the same cycle 

•  To deal with control hazards without speculation (no 
ROBs): instructions following a branch can be issued but 
cannot start execution before the branch is resolved. 

•  Will look at the execution of L1:   L.D          F0, 0(R1) 
        ADD.D     F4, F0, F2 
        S.D          F4, 0(R1) 
        DADDIU   R1, R1, -8 
        BNE         R1, R2, L1 

(52) 

Dual issue with one int. and one FP add unit (not pipelined). 
Latency = 1, 2 and 3 for int. operations, loads and FP adds. 
Iteration Instruction Issued at Executes Mem access Write CDB comments 
1 L.D          F0, 0(R1) 1 2 3 4 First issue 
1 ADD.D    F4, F0, F2 1 5 8 Wait for L.D 
1 S.D         F4, 0(R1) 2 3 9 Wait for ADD.D 
1 DADDIU R1, R1, -8 2 4 5 Wait for ALU 
1 BNE       R1, R2, L1 3 6 wait for DADDIU 
2 L.D          F0, 0(R1) 4 7 8 9 Wait for BNE 
2 ADD.D    F4, F0, F2 4 10 13 Wait for L.D 
2 S.D         F4, 0(R1) 5 8 14 Wait for ADD.D 
2 DADDIU R1, R1, -8 5 9 10 Wait for ALU 
2 BNE       R1, R2, L1 6 11 wait for DADDIU 
3 L.D          F0, 0(R1) 7 12 13 14 Wait for BNE 
3 ADD.D    F4, F0, F2 7 15 18 Wait for L.D 
3 S.D         F4, 0(R1) 8 13 19 Wait for ADD.D 
3 DADDIU R1, R1, -8 8 14 15 Wait for ALU 
3 BNE       R1, R2, L1 9 16 wait for DADDIU 

-  No speculation: L.D cannot start before BNE completes execution (cycle 6) 
-  Instruction after BNE cannot be issued in same cycle: branch not yet predicted 
-  L.D, S.D, DADDIU and BNE use the same integer unit. 
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If we have a separate int. unit for memory address 
calculation and we have a second CDB. 
Iteration Instruction Issued at Executes Mem access Write CDB comments 
1 L.D          F0, 0(R1) 1 2 3 4 First issue 
1 ADD.D    F4, F0, F2 1 5 8 Wait for L.D 
1 S.D         F4, 0(R1) 2 3 9 Wait for ADD.D 
1 DADDIU R1, R1, -8 2 3 4 Exec. earlier 
1 BNE       R1, R2, L1 3 5 wait for DADDIU 
2 L.D          F0, 0(R1) 4 6 7 8 Wait for BNE 
2 ADD.D    F4, F0, F2 4 9 12 Wait for L.D 
2 S.D         F4, 0(R1) 5 7 13 Wait for ADD.D 
2 DADDIU R1, R1, -8 5 6 7 Exec. earlier 
2 BNE       R1, R2, L1 6 8 wait for DADDIU 
3 L.D          F0, 0(R1) 7 9 10 11 Wait for BNE 
3 ADD.D    F4, F0, F2 7 12 15 Wait for L.D 
3 S.D         F4, 0(R1) 8 10 16 Wait for ADD.D 
3 DADDIU R1, R1, -8 8 9 10 Exec. earlier 
3 BNE       R1, R2, L1 9 11 wait for DADDIU 

No speculation: no instruction after BNE can start before BNE completes 
execution (cycle 5) 

(54) 

Multiple issue with speculation 

Iteration Instruction Issued at Executes Mem access Write CDB comments 
1 L.D          F0, 0(R1) 1 2 3 4 First issue 
1 ADD.D    F4, F0, F2 1 5 8 Wait for L.D 
1 S.D         F4, 0(R1) 2 3 9 Wait for ADD.D 
1 DADDIU R1, R1, -8 2 3 4 
1 BNE       R1, R2, L1 3  5 wait for DADDIU 
2 L.D          F0, 0(R1) 4 6 7 8 No wait for BNE 
2 ADD.D    F4, F0, F2 4 9 12 Wait for L.D 
2 S.D         F4, 0(R1) 5 7 13 Wait for ADD.D 
2 DADDIU R1, R1, -8 5 6 7 
2 BNE       R1, R2, L1 6 8 wait for DADDIU 
3 L.D          F0, 0(R1) 7 9 10 11 No wait for BNE 
3 ADD.D    F4, F0, F2 7 12 15 Wait for L.D 
3 S.D         F4, 0(R1) 8 10 16 Wait for ADD.D 
3 DADDIU R1, R1, -8 8 9 10 
3 BNE       R1, R2, L1 9 11 wait for DADDIU 

Consider same example (as last slide) 
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Allow speculation, and may issue a branch with another instruction 
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Dynamic Scheduling in the P6 microarchitecture 
•  Doesn’t pipeline the IA-32 instructions (complex instructions) 
•  Decode unit translates the Intel instructions into MIPS-like  micro-

operations, called µops (most instructions translate to 1 – 4 µ ops). 
•  Complex IA-32 instructions are executed by a conventional microprogram 

that issues long sequences of µ ops 
•  Sends µ ops to reorder buffer & reservation stations 

•  A 14-stage pipeline: 
– 8 stages for in-order fetch of IA-32 instructions, generating µ ops, 

decoding, dynamic branch prediction and dispatch of µ ops 
– 3 stages for execution into 5 pipelined units (from 1 to 32 pipelined 

stages) 
– 3 stages for instruction commit. 

(56) 

Limits to Multi-Issue Machines 

•  1 branch in 5: How to keep a  5-issue processor busy? 
•  Latencies of units: many operations must be scheduled 
•  Need about (Pipeline Depth x No. Functional Units) of independent 

instructions.  
•  Need More instruction fetch bandwidth (easy) 
•  Need Duplicate FUs to get parallel execution (easy) 
•  Need more ports in Register File (hard) and more memory 

bandwidth (harder) 
•  Impact of decoding multiple instructions on clock rate and pipeline 

depth. 
•  Decode issue in Superscalar: how wide is practical? 
•  More logic lead to larger power consumption è lower performance 

per watt. 
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Return address prediction 
•  Most unconditional branches come from function returns 
•  The same procedure can be called from multiple sites 

– Causes the buffer to potentially forget about the return 
address from previous calls 

•  Branch prediction 
•  Instruction prefetch 

Integrated instruction Fetch unit that performs 

Energy Efficiency 
•  Speculation is only energy efficient when it significantly improves 

performance 

Value Prediction  
•  Loads that load from a constant pool 
•  Instruction that produces a value from a small set of values 
•  Not incorporated into modern processors 

(58) 

•  Key idea  
       Issue multiple instructions from multiple threads each 

cycle      
•  Features 

•  Fully exploit thread-level parallelism and instruction-
level parallelism. 

•  Better Performance for 
•  Mix of independent programs 
•  Programs that are parallelizable 

Simultaneous Multithreading (§3.10) 



Page 30 

(59) 

 
T
i
m
e
 
(
P
r
o
c
e
s
s
o
r
 
c
y
c
l
e
)

        Unutilized
      Thread 1
      Thread 2
      Thread 3
      Thread 4
      Thread 5

  Superscalar(SS) Multithreading(FGMT)   SMT 

Issue slots 

(60) 

•  Base Processor: like out-of-order superscalar processor.
[MIPS R10000] 

•  With N simultaneous running threads, need N PC and 
more than N*32 physical registers for register renaming 
in total.  

•  Need large register files, longer register access time à 
pipeline stages are added 

•  Share the cache hierarchy and branch prediction 
hardware. 

•  Cache  and branch prediction interference,  and increased 
memory pressure. 

 SMT ARCHITECTURE 
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IF Issue 

W 
B 

FP mult. 

FP add 

Div. 

int unit 

lw/sw unit 

Register 
file 

Reservation  
Stations and  
load/store buffers 

CDB 

Mem 

ROB 

PC 

ROB 

PC 

Register 
file 

 SMT Architecture 

(62) 

Left over slides 
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Trace Scheduling 

•  Parallelism across IF branches vs. LOOP branches 
•  Two steps: 

–  Trace Selection 
»  Find likely sequence of basic blocks (trace)  

of (statically predicted or profile predicted)  
long sequence of straight-line code 

–  Trace Compaction 
»  Squeeze trace into few VLIW instructions 
»  Need bookkeeping code in case prediction is wrong  

•  In essence, we are predicting the trace path 
•  Compiler undoes bad guess (discards values in registers) 
•  Subtle compiler bugs mean wrong answer  

vs. poor performance; 

(64) 

Software Pipelining 
•  Observation: if iterations from loops are independent, then can get 

more ILP by taking instructions from different iterations 
•  Software pipelining: reorganizes loops so that each iteration is made 

from instructions chosen from different iterations of the original loop 
(Tomasulo in SW) 

Iteration 
0 Iteration 

1 Iteration 
2 Iteration 

3 Iteration 
4

Software- 
pipelined 
iteration
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Software Pipelining Example 

Unrolled loop 
L:  L.D  F0,0(R1) 

 ADD.D F4,F0,F2 
 S.D  F4,0(R1)   
 L.D  F0,-8(R1) 
 ADD.D F4,F0,F2 
 S.D  F4,-8(R1)   
 L.D  F0,-16(R1) 
 ADD.D F4,F0,F2 
 S.D  F4,-16(R1) 
 DADDI R1,R1,-24 
 BNEQ  R1,R2,L 

L:  S.D  F4,0(R1) 
 ADD.D F4,F0,F2  
 L.D  F0,-16(R1) 
 DADDI R1,R1,-8 
 BNEQ  R1,R2,L 

•  Symbolic Loop Unrolling 
–   Maximize result-use distance  
–   Less code space than unrolling 
–   Fill & drain pipe only once per loop 

  L.D  F0,0(R1) 
 ADD.D F4,F0,F2   
 L.D  F0,-8(R1) 
 DADDI R2,R2,16 
  

 S.D  F4,-8(R1) 
 ADD.D F4,F0,F2 
 S.D  F4,-16(R1) 

(66) 

•  Conditionally executed (predicated) instructions: 
  if (x) then A = B op C else NOP 

–  If false, then neither store result nor cause exception 
–  Alpha, MIPS, PowerPC and SPARC have conditional move. 
–  Drawbacks:  Still takes a clock even if “annulled” and Stall if condition is 

evaluated late 

•  Boosting: hardware is available to “undo”  a wrong speculation.  
–  Instructions may be marked “speculative” and boosted above branches 
–  When instruction no longer speculative,  write boosted results (instruction 

commit) or discard boosted results 
–  execute out-of-order but commit in-order  to prevent irrevocable action 

(update state or exception)  until instruction commits  

HW support for exposing more  
ILP to compilers 
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Intel/HP “Explicitly Parallel Instruction 
Computer (EPIC)” 

•  3 Instructions in 128 bit “groups”; field determines if 
instructions dependent or independent 

–  Smaller code size than old VLIW, larger than x86/RISC 
–  Groups can be linked to show independence > 3 instr 

•  64 integer registers + 64 floating point registers 
–  Not separate files per functional unit as in old VLIW 

•  Hardware checks dependencies  
(interlocks => binary compatibility over time) 

•  Predicated execution (select 1 out of 64 1-bit flags)  
=> 40% fewer mispredictions? 

•  IA-64 : name of instruction set architecture; EPIC is a 
machine type 


