
28

Directory-based Coherence (§ 5.4)
•  Idea: Implement a “directory” that keeps track of where each copy of a

block is cached and its state in each cache (note that with snooping, the
state of a block was kept only in the cache).

•  Processors must consult the directory before caching blocks from
memory. If block is “exclusive”, then its “owner” should provide the most
up-to-date copy.

•  When a block in memory is updated (written), the directory is consulted
to either update or invalidate other cached copies.

•  Eliminates the overhead of broadcasting/snooping (bus bandwidth) –
Hence, scales up with the numbers of processors that would saturate a
single bus.

•  Slower in terms of latency?? P1

network/bus
$

Shared space (memory, L2)

P2
$

Pn
$

29

Directory-based Coherence
•  The memory and the directory can be centralized

•  Or distributed

P0

Network

$

Mem Dir

P1 $

Mem Dir

Pn $

Mem Dir

Shared
memory

P0

Network

$

Mem Dir

P1 $

Mem Dir

Pn $

Mem Dir
Shared
memory

•  Alternatively, the memory may be distributed but the directory can be centralized.

•  Or the memory may be centralized but the directory can be distributed (as we will
discuss in the case of CMP with private L2 caches)

30

Distributed directory-based coherence

•  As in snooping caches, the state of every block in every cache is tracked in that

cache (exclusive/dirty, shared/clean, invalid) – to avoid the need for write
through and unnecessary write back.

•  In addition, with each block in memory, a directory entry keeps track of where
the block is cached. Accordingly, a block can be in one of the following states:
•  Uncached: no processor has it (not valid in any cache)
•  Shared/clean: cached in one or more processors and memory is up-to-date
•  Exclusive/modified/dirty: one processor (owner) has data; memory out-of-date

•  The location (home) of each
memory block is determined by
its address.

•  A controller decides if access
is Local or Remote

31

Enforcing coherence

•  Coherence is enforced by exchanging messages between nodes

•  Three types of nodes may be involved

•  Local requestor node (L): the node that reads or write the cache block

•  Home node (H): the node that stores the block (and its directory entry)
in its memory -- may be the same as L

•  Remote nodes (R): other nodes that have a cached copy of the
requested block.

•  When L encounters a Read Hit, it just reads the data

•  When L encounters a Read Miss, it sends a message to the home node, H,
of the requested block – three cases may arise:

•  The directory indicates that the block is “not cached”

•  The directory indicates that the block is “shared/clean” and may supply
the list of sharers

•  The directory indicates that the block is “exclusive/modified”

32

What happens on a read miss?
(when block is invalid in local cache)

L
Request to
Home node H

Return data

1

2

Revise
entry

L
Request to
Home node H

Return owner

R

Request
to owner

Return
data

1

2
3 4

4

(a) Read miss (if block is shared or uncached)
-- L sends request to H
-- H sends the block to L
-- state of block is “shared” in directory
-- state of block is “shared” in L

(b) Read miss (if block is exclusive in
another cache)

-- L sends request to H
-- H informs L about the block owner, R
-- L requests the block from R
-- R send the block to L
-- L and R set the state of block to “shared”
-- R informs H that it should change the state

of the block to “shared”

33

What happens on a write miss?
(when block is invalid in local cache)

L
Request to
Home node H

Return sharers
and data

R

Invalidate

ack

R

Invalidate ack
2

1

3

3

4 4

5

Revise entry (c) Write miss to a shared block
-- L sends request to H
-- H sets the state to “exclusive”
-- H sends the block to L
-- H sends to L the list of other sharers
-- L sets the block’s state to “exclusive”
-- L sends invalidating messages to each

sharers (R)
-- Each R sets block’s state to “invalid”

(a)  Write miss to an uncached block
-- similar to a read miss to an uncached block except that the state of the block

is set to “exclusive”

(b)  Write miss to an block that is exclusive in another cache
-- similar to a read miss to an exclusive block except that the state of the block

is set to “exclusive” in H and L and to “Invalid” in R.

34

L
Request to
Home node

H
Return sharers

and data

R

Invalidate

ack

R

Invalidate ack
2

1

3

3

4 4

5

(b) If the block is “shared” in L
-- L sends a request to H to have the

block as “exclusive”
-- H sets the state to “exclusive”
-- H informs L of the block’s other sharers
-- L sets the block’s state to “exclusive”
-- L sends invalidating messages to each

sharers (R)
-- R sets block’s state to “invalid”

(a)  If the block is “exclusive” in L, just write the data

What happens on a write hit?
(when block is shared or exclusive in local cache)

A degree of complexity that we will ignore:
We need a “busy” state to handle simultaneous requests to the same block. For
example, if there are two writes to the same block – it has to be serialized.

Revise entry

35

The coherence protocol at a node’s cache controller

36

The coherence protocol
(Directory response to a coherence message)

