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Generations of Cache 

1980: no cache in µproc; 
–  1989 first Intel µproc with a cache on chip. 
–  1995 2-level cache on chip 

Instructions Per Cycle Lost to Memory 
1st  Alpha  340 ns/5.0 ns =  68 clks x 2 or       136 
2nd Alpha  266 ns/3.3 ns =  80 clks x 4 or       320 
3rd Alpha  180 ns/1.7 ns =108 clks x 6 or       648 
 
Today    80 ns/0.25 ns = 320 clks x 4 or  1280 
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Bridging the Gap 

•  The “Memory Gap” 
–  Processor and memory speed are disconnected and the 

problem is continuing to grow. 

•  How do we overcome???? 

•  More ILP (by way of OOO) to overcome long 
latency cache misses 

•  Caches 
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Memory Hierarchies 

•  Principle of locality: Most programs do not access 
all data or code uniformly, access a small number 
of addresses at any one time. 

•  Smaller hardware is faster - Leads to a memory 
hierarchy with multiple levels 

CPU 
Core 

L1 Data 

L1 Instr 

L2 I&D Main 
Memory Disk 

Typically, on-chip 
$$$$, Fastest! 

$$$, 
Fast 

$$, 
Slow 

$, 
Slowest 
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Locality 

•  Temporal locality - locality in time 

  If an item is referenced, it will likely be referenced 
again soon. 

•  Spatial locality - locality in space 

  It an item is referenced, items whose addresses 
are close by will tend to be referenced soon. 
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Memory Hierarchy Terminology 

•  Block: Minimum unit of information present or not 
present in a level (also called a “cache line”) 

•  Hit: Data appears in a block in the upper level 
–  Hit rate: Fraction of memory accesses found in upper level 
–  Hit time: Time to access the upper level 

•  Miss: Data retrieved from a lower level 
–  Miss rate = 1 - (Hit rate) 
–  Miss penalty: Time to replace a block in the upper level + time 

to deliver the block 
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Upper and Lower Memory Levels 

Processor 

A block is transferred 
between levels 

L1 cache 

L2 cache 

For data cache, a typical block size is 32B to 64B 
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Fundamental Questions for 
Memory Hierarchy Design 

•  Block placement: Where can a block be placed in 
the upper level? 

•  Block identification: How is a block found if it is in 
the upper level? 

•  Block replacement: Which block should be 
replaced on a miss? 

•  Write strategy: What happens on a write? 
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Processor Caches 
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Processor Caches 

•  Modern processors: 2-3 levels, some 4 levels 
•  L1 characteristics (on-chip SRAM) 

–  Split instruction and data, 16K-32K, 1 to 8-way assoc., private 
–  Very fast access: 1-4 cycles 

•  L2 characteristics (on-chip SRAM) 
–  Unified, 256K - 2MB, 8 to 16-way assoc., private/shared 
–  Fast access: 2-20 cycles 

•  L3 characteristics (on-chip/module SRAM) 
–  Unified, 2 MB to 45 MB, shared, central/distributed 
–  Moderately fast: 10-36+ cycles (location/hit type dependent) 
–  May be banked (improving bandwidth) 

•  L4 characteristics (package/module eDRAM) 
–  May be used for multiple purposes, e.g., GPU or CPU 
–  128MB or larger size, similar to DRAM but faster access 
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Block Placement 

•  Direct mapped - a block maps to a specific 
location in the cache 

•  Set associative - a block maps to one of a set of 
specific locations in the cache 

•  Fully associative - a block maps to any location in 
the cache 
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Direct Mapped 

•  Each memory location maps to exactly one 
location in the cache. 

1 5 

1 5 9 13 17 21 

•  Cache block = block address mod # cache blocks 
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Set Associative 

•  Block can appear in a restricted set of locations 

0 5 9 13 17 21 

•  Cache block = block address mod # of sets 
•  n-way associative: n blocks per set 

Set 
0 

Set 
1 

1 

two-way set associative, 
four sets 
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Fully Associative 

•  Block can appear in any location 

1 5 9 13 17 21 

•  With m blocks, m-way set associative 
•  Direct-mapped is one-way set associative 
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Block Identification 

•  We need a way to identify a block 
–  E.g., direct-mapped: any one of several memory locations 

map to the same location; so how do we identify whether a 
particular memory address is in the cache? 

•  Each block (line) in cache has an address tag 
•  Check that the tag matches the block address 

from the CPU (to check for hit or miss) 

•  Cache blocks also need a valid bit 
–  Identify whether the line has valid data (address) 
–  Bit cleared: can’t have a match on this line 
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Forming the Tag 

•  Block offset: Desired data from the block  
•  Index: Selects the set (i.e., block for DM)  
•  Tag: Compared to check block is the right one 

Block Address Block  
Offset Tag Index 

•  How big is the offset, index, and tag for a 32B 
block, 32-bit word, a two-way set associative 
cache with 32 lines? 

•  Offset = 3 bits (+2 for 4 bytes in a word), Index = 
4 bits, Tag = 32-3-2-4=23 bits 
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Tag Comparison 

•  Only need to check the tag - why??? 

•  Index is redundant because it is used to select 
the set checked 

•  Offset is unnecessary because the entire block is 
either present or not 

•  Keeping cache size the same and increasing the 
associativity, what happens to tag size??? 

     It increases! 
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Tag Comparison 

•  Tag check can be done in parallel with reading 
the cache line 

•  Doesn’t hurt when the tag doesn’t match - just 
ignore the read data 

•  Helps when the tag matches - latency of tag 
comparison overlapped with line read 

•  Can we do this for writes???? 
 No! We can’t modify a block until we check tags 
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Read Example 
Index Tag Ofs 

V 
1 

Tag 
21 

Data 
256 

... 

= 

Address 

Data in Data out 

Write 
Buffer 

CPU 

Lower Level 

Hit or Miss 
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Read Example 
Index Tag Ofs 

V 
1 

Tag 
21 

Data 
256 

... 

= 

Address 

Data in Data out 

Write 
Buffer 

CPU 

Lower Level 

Hit or Miss 

Address 
from CPU 
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Read Example 
Index Tag Ofs 

V 
1 

Tag 
21 

Data 
256 

... 

= 

Address 

Data in Data out 

Write 
Buffer 

CPU 

Lower Level 

Hit or Miss 

Access 
cache line 
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Read Example 
Index Tag Ofs 

V 
1 

Tag 
21 

Data 
256 

... 

= 

Address 

Data in Data out 

Write 
Buffer 

CPU 

Lower Level 

Hit or Miss 

Check 
for tag  
match 
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Read Example 
Index Tag Ofs 

V 
1 

Tag 
21 

Data 
256 

... 

= 

Address 

Data in Data out 

Write 
Buffer 

CPU 

Lower Level 

Hit or Miss 

Send data 
to CPU 
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Read Example - Miss 
Index Tag Ofs 

V 
1 

Tag 
21 

Data 
256 

... 

= 

Address 

Data in Data out 

Write 
Buffer 

CPU 

Lower Level 

Hit or Miss 

Check 
for tag  
match 
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Read Example - Miss 
Index Tag Ofs 

V 
1 

Tag 
21 

Data 
256 

... 

= 

Address 

Data in Data out 

Write 
Buffer 

CPU 

Lower Level 

Hit or Miss 

Read data 
from memory 
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Read Example - Miss 
Index Tag Ofs 

V 
1 

Tag 
21 

Data 
256 

... 

= 

Address 

Data in Data out 

Write 
Buffer 

CPU 

Lower Level 

Hit or Miss 

Send the 
data 
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Read Example - Miss 
Index Tag Ofs 

V 
1 

Tag 
21 

Data 
256 

... 

= 

Address 

Data in Data out 

Write 
Buffer 

CPU 

Lower Level 

Hit or Miss 

Send data 
to CPU 
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Cache Lookup 

Tag Tag Data Data 

Set i 

Ofs Index Tag 

? ? 

Mux - Select matching line 
Miss Hit - selected line 

b n 

b bytes 

n sets 

k ways 

Comparisons on tag 
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Block Replacement 

•  On a miss, a block must be selected for eviction. 

•  Direct-mapped: The one the new block maps to. 

•  Set or Fully Associative:  
–  Random: Spread allocation uniformly 

»  Nondeterminism can be a problem  
»  Pseudo-random to force determinism 

–  Least recently used (LRU): Block replaced is one that has 
been unused the longest.  

»  Usually approximated 
»  Follows corollary: recently used blocks are most likely to 

be used again 
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LRU Approximation 

•  Regular LRU 
–  Counter updated on every cycle 
–  Countered cleared when accessed 
–  Highest counter value is least recently used 
–  Typically too expensive - too many bits, constant update 
–  Random can work well 

•  Approximation  
–  An access bit per block in set 
–  Set on an access 
–  Cleared when all bits set, except most recent 
–  Replace block with cleared bit 
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Write Strategy 

•  How cache lines are updated on a write 
–  Can’t do parallel tag compare with write 
–  Have to modify specified data (e.g., byte, halfword, word, 

quadword) 

•  Write policies 
–  Write through: Information is updated in both the block in the 

cache and the lower-level memory 
–  Write back: Information is written back to the lower level only 

when a modified block is replaced. 
»  Dirty bit: Keeps track of whether a line needs to be 

written to a lower level; ensures only modified lines get 
written to memory 
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Write Through vs. Write Back 

•  Write back 
–  Writes happen at full cache speed (no stalls to lower level) 
–  Multiple writes to same block require only one write to a lower 

memory level 
–  Reduces bandwidth requirements between levels (less 

contention) 

•  Write Through 
–  Read misses never trigger writes to lower levels 
–  Next lower level has current copy of data (consistency for I/O 

and multiprocessors) 
–  Simplest design 
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Write Stalls 

•  On a read miss, we stall waiting for the line (for 
now - this will change in a few slides) 

•  For writes, we can continue as soon as the data 
is written 

•  Write buffer: Holds stored data for write to cache 

•  Effect: Concurrently execute during a write 
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Handling a Write Miss 

•  What if we write to a block not in the cache???? 

•  Write allocate: Block is loaded on a write miss, 
followed by write-hit actions 

•  Write around: Block modified in lower level and 
not loaded into memory 

•  Write back, write allocate - tries to capture future 
writes to that block in upper level 

•  Write through, write around - subsequent writes 
have to go to lower level anyway 
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Direct Mapped Organization 

Cache Index 

0 
1 
2 
3 

: 

 Cache Data 
Byte 0 

0 4 31 

: 

Cache Tag 

Stored as part 
of the cache “state” 

Valid Bit 

: 
31 

Byte 1 Byte 31 : 

Byte 32 Byte 33 Byte 63 : 

Byte 992 Byte 1023 : 

 Cache Tag 

Byte Select 
9 
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Two-Way Set Associative 
Organization 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Index 

Mux 0 1 Sel1 Sel0 

Cache Block 

Compare 
Adr Tag 

Compare 

OR 

Hit 
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Disadvantage to Associative 
Caches 

•  n-way set associative vs. direct mapped 

•  n comparators vs. 1 

•  Extra MUX delay for the data 

•  Data available AFTER hit or miss detection 

•  In direct mapped cache, cache block is available 
BEFORE hit or miss detection 

–  Assume a hit and continue. Recover on a miss 
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Cache Performance 

•  Evaluating performance  
–  Miss rate: It misses the point! 
–  It’s the miss penalty and the miss rate 

•  Average memory access time (AMAT) 
–  Time (AMAT) = Hit time + Miss rate * Miss penalty 

•  But… what matters is the actual cycles… 
–  Still evaluate with actual performance 
–  Memory effects can impact instruction execution 
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Split Caches 

•  Unified cache: Instruction and data live in the 
same memory (can map to same lines) 

•  Split cache: Separate instruction and data caches 
(instructions and data don’t map to same lines) 

•  L1 usually separate I&D caches 
–  Easy bandwidth improvement (IF & MEM on same cycle) 
–  Different cache geometries for I and D 

»  I and D streams have different characteristics 

•  Lower levels usually unified  
–  Bigger memories, single path to lower levels 
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Evaluating Split Cache 
Performance 

Comparison of split vs. unified - compare same relative size caches 
 
     Separate I&D removes conflicts between I&D blocks, but fixes the 

size of each cache.  How does this affect miss rates? 
 
Size   I Cache   D Cache  Unified 
1 KB   3.06%   24.61%   13.34% 
2 KB   2.26%   20.57%     9.78% 
4 KB   1.78%   15.94%     7.24% 
8 KB   1.10%   10.19%     4.57% 
16 KB   0.64%     6.47%     2.87% 
32 KB   0.39%     4.82%     1.99% 
64 KB   0.15%     3.77%     1.35% 
128 KB   0.02%     2.88%     0.95% 

 41 

Evaluating Split Cache 
Performance 

•  Suppose….. 

•  16 KB I&D caches vs. 32 KB unified cache 
•  Hit - 1 cycle, Miss - 50 cycles 
•  Unified cache: Load/Store hit takes 2 cycles 

(single port to the cache - structural hazard) 
•  Write through with a write buffer 

•  What is the average memory access time for 
each cache organization???? 
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Example Access Times 

Overall miss rate for split cache 
–  75% references are instructions 
–  Overall miss rate = (75% * 0.64%) + (25% * 6.47%) = 2.10% 

Miss rate for 32 KB unified is 1.99% (experiment) 

Access time = % I * (Hit time + Miss rate * Miss penalty) +  
              % D * (Hit time + Miss rate * Miss penalty) 

 

TimeSplit = 
 75% * (1 + 0.64% * 50) + 25% * (1 + 6.47% * 50) = 2.05 

TimeUnified =  
 75% * (1 + 1.99% * 50) + 25% * (1 + 1 + 1.99% * 50) = 2.24 
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Factoring in Memory Performance 

CPU time =  
 (CPU cycles + Memory stall cycles) * Clock Cycle time 

 

Hit cycles included in CPU cycles. 
Memory stalls can be defined in terms of memory accesses. 

 

Stall cycles = 
 Reads * Read miss rate * Read miss penalty + 
 Writes * Write miss rate * Write miss penalty 

 

Stall cycles = Memory accesses * Miss rate * Miss penalty 
Simplified version, combing writes and reads in a single term 
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Factoring in Memory Performance 

CPU time = 
 IC * (CPI + Mem. accesses/instr. * Miss rate * Miss 
Penalty) * Clock cycle time 
 Basic CPU equation factoring in memory performance 

 

Misses per instructions =  
 (Memory accesses * Miss rate) / Instructions 
 Architecture dependent metric - e.g., x86 vs. SPARC 
 Often reported as misses per kilo (1000) instructions: MPKI 

 

CPU time = 
 IC * (CPI + Memory stall cycles / instr) * Clock cycle time 
 Factors in misses per instruction (stalls) 

 45 

Example of Memory Evaluation 

•  Miss penalty is 50 clock cycles 
•  Instructions normally take 2 cycles (ignoring memory stalls) 
•  Miss rate is 2% and 1.33 memory references per 

instruction 
•  What is the performance with the cache? 

CPU time = IC * (CPI + Stalls/Instr) * Clock cycle time 
 = IC * (2 + (1.33 * 2% * 50)) * Clock cycle time 
 = IC * 3.33 * Clock cycle time 

 
CPI increases from 2 to 3.33 with the cache 
What happens without the caches but 50 cycle memory? 
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Impact of Cache Performance 

•  For a CPU with low CPI and fast clock, cache 
performance is particularly important: 

–  Lower CPI implies the higher the relative impact of a fixed 
number of cache miss cycles 

–  For identical memory hierarchies, a machine with a fast clock 
cycle has a higher number of cache miss cycles. Hence, 
memory portion of CPI is higher. 
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Improving Cache Performance 

•  What should be tackled to improve cache 
performance???? 

①  Reducing cache misses 
②  Reducing cache miss penalty 
③  Reducing cache hit time 
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Reducing Cache Misses 

•  Types of misses - the three C’s 
–  Compulsory 

»  First access to a block when it’s not in the cache, it must 
be loaded 

–  Capacity 
»  If cache can’t contain all blocks in the working set, 

capacity misses occur because blocks are discarded later 
–  Conflict 

»  For set associative or direct-mapped caches when 
multiple blocks map to same location causing some block 
to be discarded that is loaded later 
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Dealing with Cache Miss Types 

•  Conflicts  
 Increase associativity  
 Fully associative has no conflict misses 

•  Capacity  
 Enlarge the cache  
 Thrashing possible when capacity is too small 

•  Compulsory  
 Increase block size (effectively prefetching data) 
 Independent of cache size (why?) 
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Absolute Miss Rate 

2KB DM same 
as 1KB 2-way 
2:1 rule 

Decreasing Compulsory 
stays the 
same 

 51 

Three C Model 

•  Simple model about average miss behavior 
•  Doesn’t tell you about individual misses 
•  Changing cache size spreads references out to 

more blocks 
–  Conflict and capacity misses are affected 
–  E.g., A capacity miss may become a conflict miss 

•  Says nothing about 
–  Replacement policy 
–  Miss penalty 
–  Hit time 
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Larger Block Size 

•  Increase block size - what happens??? 
 Reduces compulsory misses 

•  Effectively, needed data is brought into the cache 
on some other miss, thereby reducing the misses 

•  Larger blocks exploit what??? 
 Spatial locality 
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Downside: Larger Blocks 

•  Increased miss penalty (more time to fill) 

•  Reduced number of blocks  
–  For a given cache size 
–  More conflict misses and maybe even capacity misses 

•  At a point, may actually increase the miss rate 

•  May not be willing to pay increased miss penalty 
for decreased miss rate 
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Block Size Selection 

•  Block size depends on lower level’s 
–  Latency 
–  Bandwidth 

•  High latency, high bandwidth - what size??? 
 Increased line size - get more data for small 
increase in miss penalty 

•  Low latency, low bandwidth 
 Smaller block size b/c little benefit from increased 
miss penalty (may fetch unneeded data) 
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Effect of Block Size 

Increase in conflict misses overwhelms 
benefit of decreasing compulsory misses 
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Higher Associativity 

•  Increasing associativity of cache 
–  Decreases conflict misses 

•  Eight-way set associative does nearly as well as 
a fully associative cache (from book) 

•  2:1 rule - A direct-mapped cache of size N does 
nearly as well as a two-way set associative cache 
of size N/2 
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Downside: Higher Associativity 

•  Increased hit latency 
–  More levels in MUXes to select data 

•  Increased power consumption 
–  More banks are accessed 
–  Can get around by accessing tag arrays first before reading 

the data (when tag matches, select the matching data array) 

•  Usual trade-off 
–  Lower miss rate, higher hit latency and more power 
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Victim Cache 

•  A small, fully associative cache between a cache 
and its fill path 

•  Victim cache contains blocks discarded from a 
miss (so called “victims”) 

•  Victim cache checked on a miss for data before 
going to lower level 

•  On a miss and hit in VC, swap victim block with 
block in cache 

•  No clock rate effect! 
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Victim Cache Architecture 

Tag 

Data Victim Cache 

Address 

Data in Data out 

Write 
Buffer 

CPU 

Lower Level 

= 

= 
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Victim Cache 

•  Improves miss rate by keeping blocks that might 
have been mistakenly evicted 

•  Effectively increases associativity - reduces the 
conflict misses 

•  A four-entry victim cache works well 
–  20 - 95% of conflict misses in a 4KB direct-mapped cache are 

removed 

•  Typically used with direct-mapped cache to 
achieve effect of a set associative cache 
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Way Prediction 

•  Speed of direct-mapped with miss rate of n-way 
set associative cache 

•  Works like a direct mapped cache initially 
–  Predict likely Way to hit 
–  Check appropriate entry for a hit 
–  If a hit, return data 

•  On a miss 
–  Check other cache ways in same level for a hit 
–  2-way: The second entry’s index can be formed by inverting 

most significant bit of index field 
–  No clock rate effect - speed of DM for first access 
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Way Prediction 

•  Fast hit: Hit in the first way (speed of DM) 
•  Slow hit (“pseudo hit”): Hit in the other ways 

•  Concept can be applied to Direct Mapped 
–  So called pseudo-associative cache 
–  Fast hits in direct mapped cache can become slow hits in the 

pseudo-associative cache 

•  What happens when we have lots of slow hits for 
the same data? 

–  Update way prediction (similar to branch prediction) 
–  Swap fast hit entry and pseudo hit entry on a pseudo hit (may 

cause thrashing) 
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Hardware Prefetching 

•  Prefetching: Load items before they are needed 
–  Instructions and data 
–  Loaded into cache or buffer between upper and lower levels 

•  Instruction prefetching (one possible scheme) 
–  On a miss, get missed block and next subsequent block 
–  Hold subsequent block in buffer until needed (avoids evicting 

a possibly needed block) 
–  On a miss to a prefetched block, it is copied from the 
“instruction stream buffer” to the cache 

–  4 blocks in instruction stream buffer: instruction hit rate 
increases by 50% 
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Data Prefetching 

•  Apply the same idea 
•  On a miss, prefetch the next block 

–  A twist: Detect data access pattern  
–  E.g., stride of array accesses 
–  Prefetch the next predicted block based on the past data 

access pattern 

•  Multiple stream buffers for data  
–  Each prefetch at a different address 
–  4 buffers increase data hit rate by 43% 
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Software Prefetching 

•  Compiler inserts prefetch instructions 
–  Register prefetch: Prefetched data loaded into a register 
–  Cache prefetch: Prefetched data loaded into the cache 

•  Requires some support 
–  Non-faulting prefetch instructions (“nonbinding prefetch”) 
–  Nonblocking caches: processor can continue while 

prefetching the data 

•  Overlap execution with prefetching of data 
–  Loops - schedule prefetches on earlier iterations so data 

available on later ones 
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Reducing Cache Miss Penalty 

•  Much research has focused on cache miss rates 

•  But the latency of a miss also matters 
•  You can’t really separate the two to get a 

meaningful understanding of what is happening 

•  A number of optimizations on how to handle 
misses to improve their latency 

•  Also, increase the latency of the lower level! 
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Read Priority over Write 

•  Write-through cache - write buffer avoids stalling 
•  Write buffer may hold a value that is being loaded 
•  Read miss can wait for buffer to empty 

–  for WT cache, WB (few words) almost always has data in it 
–  Don’t wait: Check contents of write buffer before sending the 

read miss to a lower level 

•  Write back costs - whole cache line written 
–  On replacement, write old line, copy new line, CPU executes 
–  Better: move old line to a write buffer, copy new line, CPU 

executes, write old line to memory when bus available 
–  On a miss, CPU must check the write buffer 
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Early Restart - Critical Word First 

•  CPU just needs one word 
•  Why wait for entire cache line? 

•  Early restart - send data to CPU directly from 
memory on a read miss (no second access) 

•  Critical word first - request missed word first and 
fill cache line while CPU executing 

•  Benefits designs with long cache lines (or, rather, 
cache fill time is high relative to CPU speed) 
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Lockup-Free Caches 

•  Out-of-order completion 
–  Don’t stall CPU waiting for cache miss to be serviced 
–  Continue executing instructions 

•  Lockup-free cache: Allows data cache to 
continue supplying cache hits during cache 
misses - “hit under miss” 

•  Multiple misses: Cache overlaps miss handling of 
separate misses (buffers loads) 

•  Multiple outstanding accesses: Complexity! 
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Blocking vs. Lock-up Free Cache 

ratio of 
memory 
stall time 
for blocking 
vs. lock-up 
free 

integer 

floating point 
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Second-Level Caches 

•  Trade off 
–  Make L1 cache faster to keep up with CPU 
–  Make L1 cache larger to reduce miss rate 

•  What’s the expense of doing this? 

•  Instead, do both by adding a L2 cache 
–  First level: Fast and small: keeps up with CPU 
–  Second level: Captures many misses that would go to main 

memory 
–  Reduces miss penalty of L1 
–  Hardware is relatively straightforward 

»  Add additional cache unit between first level and main 
memory. 
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Performance Analysis 

•  Second-level miss rate measured on misses from 
the first level cache 

•  Local miss rate - Number of misses to the cache 
divided by total number of memory accesses 

•  Global miss rate - Number of misses in cache 
divided by total number of memory accesses 
generated by the CPU (2nd level’s global miss 
rate is: Miss rateL1 * Miss rateL2 ) 
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Performance Analysis 

Extend the memory access time for one level cache 
to handle two levels 

How can we compute the overall access time for 
both levels of cache? 
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Performance Analysis 

L1 average access time is??? 
  Time = Hit timeL1 + Miss rateL1 * Miss penaltyL1 

 

For L2, we know that 
  Miss rateL1 is rate of accesses to L2 
  Miss penaltyL1 is average access time for L2 

 

We can rewrite miss penaltyL1 in terms of L2 
  Miss penaltyL1 = Hit timeL2 + Miss rateL2 * Miss penaltyL2 

 

Then, overall access time is 
  Time = Hit timeL1+ Miss rateL1*(Hit timeL2+Miss rateL2*Miss penaltyL2) 
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Reducing Hit Time 

•  Tag comparison is expensive part of hit time 
–  Read tag memory, compare tag to address 

•  Small and simple caches 
•  Small: Keep cache small enough so it fits entirely 

on chip - avoid the off-chip access expense 
•  Simple: Direct mapped caches 

–  Overlap tag comparison with delivery of data 

•  High clock rates: Encourages small caches that 
can be accessed in a single cycle 
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Avoid Address Translation 

•  Virtual address 
–  Maps “logical address” to physical address in memory 
–  Virtual address on disk mapped to physical address in main 

memory 

•  Hits more common than misses 
–  Avoid address translation since most are hits 
–  Argues for caching on virtual address (“virtual cache”) 

•  Virtual vs. physical cache 
–  Addressed using virtual address (tag comparison on vaddr.) 
–  No address translation before cache access  
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Virtual Address Translation 

Virtual page number Page offset 

Page 
table 

Main  
memory 

Map logical address into a physical 
address located in memory 
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Virtual Address Translation 

Virtual page number Page offset 

Page 
table 

Main  
memory 

Physical cache - after mapping address 

Cache 
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Virtual Address Translation 

Virtual page number Page offset 

Page 
table 

Main  
memory 

Cache 

Virtual cache - addresses based virtual address 
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Disadvantages: Virtual Caches 

•  What happens with a context switch???? 

•  On process switch, cache must be flushed since 
virtual addresses from one process map to 
another 

•  How can we avoid the ambiguity???? 

•  Avoiding flushes 
–  Attach PID to cache address tag 
–  Only flush when a PID is reassigned 
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Disadvantages: Virtual Caches 

•  Another problem - aliasing 
–  OS and user programs may use different virtual addresses for 

the same physical address 
–  Two copies of data in cache at once 
–  Must update both; or ensure that every block has an unique 

physical address (no duplicates) 

•  Yet another problem - I/O lives in physical 
address space 

–  I/O physical addresses would have to be mapped to virtual 
addresses for a virtual cache 

–  Mapping needed to tell that an address is in I/O space 
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Solutions: Virtual Caches 

•  Fast hits: Separate translation and cache access 
–  Separate pipeline stages 

»  Address translation stage 
»  Cache access stage (with physical address) 

–  Fast cycle time with slow cache access (2 cycles) 
»  I.e., increased access time with a fast clock rate 

–  Increases misprediction branch penalty 

•  A final solution: Use page offset to index cache 
–  So called “virtually indexed, physically tagged” 
–  Used in Alpha 21064 and others 
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Virtually Indexed, Physically 
Tagged 

Virtual page number Page offset 

Page 
table 

Main  
memory 

Page offset indexes cache, tags checked after 
address translation finishes 

Cache 

= Hit/miss 
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Virtually Indexed, Physically 
Tagged 

•  Features 
–  Tag comparison on physical address 
–  Tag read can be overlapped with address translation 

•  Operation 
–  Page offset is not translated during virtual address translation 
–  Reading tags done concurrently with address translation 
–  Tag comparison occurs on physical address after translation 

•  Limitation  
–  DM cache can be no larger than a page size 
–  Increase associativity to keep index within one page size 
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Pipelining Writes 

•  Write hits take longer than reads - why???? 
•  Tag comparison before writing the data 

•  Pipelining writes 
–  Separate tag and data memories 
–  On a write, compare with tag 
–  With a different address, a write can proceed on a line with 

the tag comparison 
–  I.e., tag comparison for write I and write for write I-1 
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Cache Optimization Summary 
    Miss  Miss  Hit     

What    Rate  Penalty  Time  Comp?  Notes 
Larger block size   +  -   0   
Higher associativity  +   -  1  MIPS R10K 4way 
Victim caches   +    2  HP7200 
Pseudo-assoc.   +    2  L2 MIPS R10K 
HW prefetch   +    2  Instr common 
SW prefetch   +    3  Lock-up free  
Read priority    +   1  Most 
Critical word    +   1  Most 
Nonblocking    +   3  Most 
2nd level cache    +   2  Most 
Small, simple   -   +  0  Pentium 
Addr. Translation    +  2   
Pipelining writes     +  1 
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Block Size Example 

•  40 cycle memory overhead, 16 bytes delivered 
every 2 cycles.  

•  E.g., 16 bytes in 42 cycles, 32 bytes in 44 cycles 

•  Baseline caches miss rates 
–  1K, 32B line: 13.34%  64K, 32B line: 1.35% 
–  1K, 64B line: 13.76%  64K, 64B line: 1.06% 

•  What block size has the minimum access time for 
these four caches? 
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Block Size Example 

•  Miss penalty based on line size - what is it??? 

–  32B: 40 cycle overhead + (32/16)*2 cycles = 44 cycles 
–  64B: 40 cycle overhead + (64/16)*2 cycles = 48 cycles 

•  Average memory access time 
–  Time = Hit time + Miss rate * Miss penalty 

  1K, 32B:  1 cycle + (13.34%*44 cycles) =  6.870 cycles 
  1K, 64B:  1 cycle + (13.76%*48 cycles) =  7.605 cycles 
64K, 32B:  1 cycle + (1.35%*44 cycles) =  1.594 cycles 
64K, 64B:  1 cycle + (1.06%*48 cycles) =  1.509 cycles 
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Associativity Example 

•  Suppose increasing associativity effects the clock 
rate: 

–  2-way  10% penalty  (1.1 * base clock time) 
–  4-way  12% penalty  (1.12 * base clock time) 
–  8-way  14% penalty  (1.14 * base clock time) 

•  Hit time is 1 clock cycle, miss penalty for direct 
mapped cache is 50 cycles  

•  Miss rates for a 16K cache 
–  DM:  2.9%   2-way:  2.2% 
–  4-way:  2.0%   8-way:  1.8% 

•  What is the access time for each cache? 

 92 

Associativity Example 

Time = Hit time + Miss rate * Miss penalty 

DM:   1.0 + 2.9%*50 =   2.45 
2-way:   1.1 + 2.2%*50 =   2.2 
4-way:   1.12 + 2.0%*50 =  2.12 
8-way:   1.14 + 1.8%*50 =  2.04 
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Second Level Cache Example 

•  2-way set associative increases CPU clock cycle 
time by 10% (thus, hit time goes up by 10%) 

•  Hit time for L2 direct mapped is 10 cycles 
•  Local miss rate for L2 DM is 25% 
•  Local miss rate for 2-way associative is 20% 
•  Miss penalty for L2 is 50 cycles 

•  What’s the impact of the second-level cache’s 
associativity on the L1 cache’s miss penalty? 
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Second Level Cache Example 

For direct mapped L2 cache, L1’s miss penalty is: 
Miss penalty L1 = L2 hit time + L2 miss rate * L2 miss penalty 
Miss penalty L1 = 10 + 25% * 50 = 22.5 clock cycles 

 
Let’s add associativity - 10% clock cycle penalty, 20% L2 miss rate: 
Miss penalty L1 = 10.1 + 20% * 50 = 20.1 clock cycles 

Clock cycle has to be an integral number of cycles, so 10 or 11 : 
Miss penalty L1 = 10 + 20% * 50 = 20.0 clock cycles 
Miss penalty L2 = 11 + 20% * 50 = 21.0 clock cycles 


