

LRU Approximation

Regular LRU

- Counter updated on every cycle
- Countered cleared when accessed
- Highest counter value is least recently used
- Typically too expensive too many bits, constant update
- Random can work well

Approximation

- An access bit per block in set
- Set on an access
- Cleared when all bits set, except most recent
- Replace block with cleared bit

30

	Perfo	ormance		
Comparison	of split vs. unified	- compare same re	elative size caches	5
size of ea	ch cache. How do	pes this affect miss	rates?	
Cine	I Casha	Decebe		
S 17/1			Linitiad	
<u>5120</u> 1 KB	3 06%	<u>D Cacne</u> 24 61%	<u>Unified</u> 13 34%	
<u>512e</u> 1 KB 2 KB	3.06% 2.26%	<u>D Cacne</u> 24.61% 20.57%	<u>Unified</u> 13.34% 9.78%	
<u>5126</u> 1 KB 2 KB 4 KB	3.06% 2.26% 1.78%	<u>D Cacne</u> 24.61% 20.57% 15.94%	<u>Unified</u> 13.34% 9.78% 7.24%	
<u>5126</u> 1 KB 2 KB 4 KB 8 KB	3.06% 2.26% 1.78% 1.10%	<u>D Cacne</u> 24.61% 20.57% 15.94% 10.19%	<u>Unified</u> 13.34% 9.78% 7.24% 4.57%	
<u>Size</u> 1 KB 2 KB 4 KB 8 KB 16 KB	3.06% 2.26% 1.78% 1.10% 0.64%	<u>D Cacne</u> 24.61% 20.57% 15.94% 10.19% 6.47%	Unified 13.34% 9.78% 7.24% 4.57% 2.87%	
<u>512e</u> 1 KB 2 KB 4 KB 8 KB 16 KB 32 KB	3.06% 2.26% 1.78% 1.10% 0.64% 0.39%	<u>D Cacne</u> 24.61% 20.57% 15.94% 10.19% 6.47% 4.82%	Unified 13.34% 9.78% 7.24% 4.57% 2.87% 1.99%	
<u>512e</u> 1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB	3.06% 2.26% 1.78% 1.10% 0.64% 0.39% 0.15%	D Cacne 24.61% 20.57% 15.94% 10.19% 6.47% 4.82% 3.77%	Unified 13.34% 9.78% 7.24% 4.57% 2.87% 1.99% 1.35%	

Cache Optimization Summary								
	Miss	Miss	Hit					
<u>What</u>	Rate	Penalty	<u>Time</u>	Comp?	<u>Notes</u>			
Larger block size	+	-		0				
Higher associativity	+		-	1	MIPS R10K 4wa			
Victim caches	+			2	HP7200			
Pseudo-assoc.	+			2	L2 MIPS R10K			
HW prefetch	+			2	Instr common			
SW prefetch	+			3	Lock-up free			
Read priority		+		1	Most			
Critical word		+		1	Most			
Nonblocking		+		3	Most			
2nd level cache		+		2	Most			
Small, simple	-		+	0	Pentium			
Addr. Translation			+	2				
Pipelining writes			+	1				

