
Page 1

 2

Generations of Cache

1980: no cache in µproc;
–  1989 first Intel µproc with a cache on chip.
–  1995 2-level cache on chip

Instructions Per Cycle Lost to Memory
1st Alpha 340 ns/5.0 ns = 68 clks x 2 or 136
2nd Alpha 266 ns/3.3 ns = 80 clks x 4 or 320
3rd Alpha 180 ns/1.7 ns =108 clks x 6 or 648

Today 80 ns/0.25 ns = 320 clks x 4 or 1280

 3

Bridging the Gap

•  The “Memory Gap”
–  Processor and memory speed are disconnected and the

problem is continuing to grow.

•  How do we overcome????

•  More ILP (by way of OOO) to overcome long
latency cache misses

•  Caches

Page 2

 4

Memory Hierarchies

•  Principle of locality: Most programs do not access
all data or code uniformly, access a small number
of addresses at any one time.

•  Smaller hardware is faster - Leads to a memory
hierarchy with multiple levels

CPU
Core

L1 Data

L1 Instr

L2 I&D Main
Memory Disk

Typically, on-chip
$$$$, Fastest!

$$$,
Fast

$$,
Slow

$,
Slowest

 5

Locality

•  Temporal locality - locality in time

 If an item is referenced, it will likely be referenced
again soon.

•  Spatial locality - locality in space

 It an item is referenced, items whose addresses
are close by will tend to be referenced soon.

Page 3

 6

Memory Hierarchy Terminology

•  Block: Minimum unit of information present or not
present in a level (also called a “cache line”)

•  Hit: Data appears in a block in the upper level
–  Hit rate: Fraction of memory accesses found in upper level
–  Hit time: Time to access the upper level

•  Miss: Data retrieved from a lower level
–  Miss rate = 1 - (Hit rate)
–  Miss penalty: Time to replace a block in the upper level + time

to deliver the block

 7

Upper and Lower Memory Levels

Processor

A block is transferred
between levels

L1 cache

L2 cache

For data cache, a typical block size is 32B to 64B

Page 4

 8

Fundamental Questions for
Memory Hierarchy Design

•  Block placement: Where can a block be placed in
the upper level?

•  Block identification: How is a block found if it is in
the upper level?

•  Block replacement: Which block should be
replaced on a miss?

•  Write strategy: What happens on a write?

 9

Processor Caches

Page 5

 10

Processor Caches

•  Modern processors: 2-3 levels, some 4 levels
•  L1 characteristics (on-chip SRAM)

–  Split instruction and data, 16K-32K, 1 to 8-way assoc., private
–  Very fast access: 1-4 cycles

•  L2 characteristics (on-chip SRAM)
–  Unified, 256K - 2MB, 8 to 16-way assoc., private/shared
–  Fast access: 2-20 cycles

•  L3 characteristics (on-chip/module SRAM)
–  Unified, 2 MB to 45 MB, shared, central/distributed
–  Moderately fast: 10-36+ cycles (location/hit type dependent)
–  May be banked (improving bandwidth)

•  L4 characteristics (package/module eDRAM)
–  May be used for multiple purposes, e.g., GPU or CPU
–  128MB or larger size, similar to DRAM but faster access

 11

Block Placement

•  Direct mapped - a block maps to a specific
location in the cache

•  Set associative - a block maps to one of a set of
specific locations in the cache

•  Fully associative - a block maps to any location in
the cache

Page 6

 12

Direct Mapped

•  Each memory location maps to exactly one
location in the cache.

1 5

1 5 9 13 17 21

•  Cache block = block address mod # cache blocks

 13

Set Associative

•  Block can appear in a restricted set of locations

0 5 9 13 17 21

•  Cache block = block address mod # of sets
•  n-way associative: n blocks per set

Set
0

Set
1

1

two-way set associative,
four sets

Page 7

 14

Fully Associative

•  Block can appear in any location

1 5 9 13 17 21

•  With m blocks, m-way set associative
•  Direct-mapped is one-way set associative

 15

Block Identification

•  We need a way to identify a block
–  E.g., direct-mapped: any one of several memory locations

map to the same location; so how do we identify whether a
particular memory address is in the cache?

•  Each block (line) in cache has an address tag
•  Check that the tag matches the block address

from the CPU (to check for hit or miss)

•  Cache blocks also need a valid bit
–  Identify whether the line has valid data (address)
–  Bit cleared: can’t have a match on this line

Page 8

 16

Forming the Tag

•  Block offset: Desired data from the block
•  Index: Selects the set (i.e., block for DM)
•  Tag: Compared to check block is the right one

Block Address Block
Offset Tag Index

•  How big is the offset, index, and tag for a 32B
block, 32-bit word, a two-way set associative
cache with 32 lines?

•  Offset = 3 bits (+2 for 4 bytes in a word), Index =
4 bits, Tag = 32-3-2-4=23 bits

 17

Tag Comparison

•  Only need to check the tag - why???

•  Index is redundant because it is used to select
the set checked

•  Offset is unnecessary because the entire block is
either present or not

•  Keeping cache size the same and increasing the
associativity, what happens to tag size???

 It increases!

Page 9

 18

Tag Comparison

•  Tag check can be done in parallel with reading
the cache line

•  Doesn’t hurt when the tag doesn’t match - just
ignore the read data

•  Helps when the tag matches - latency of tag
comparison overlapped with line read

•  Can we do this for writes????
 No! We can’t modify a block until we check tags

 19

Read Example
Index Tag Ofs

V
1

Tag
21

Data
256

...

=

Address

Data in Data out

Write
Buffer

CPU

Lower Level

Hit or Miss

Page 10

 20

Read Example
Index Tag Ofs

V
1

Tag
21

Data
256

...

=

Address

Data in Data out

Write
Buffer

CPU

Lower Level

Hit or Miss

Address
from CPU

 21

Read Example
Index Tag Ofs

V
1

Tag
21

Data
256

...

=

Address

Data in Data out

Write
Buffer

CPU

Lower Level

Hit or Miss

Access
cache line

Page 11

 22

Read Example
Index Tag Ofs

V
1

Tag
21

Data
256

...

=

Address

Data in Data out

Write
Buffer

CPU

Lower Level

Hit or Miss

Check
for tag
match

 23

Read Example
Index Tag Ofs

V
1

Tag
21

Data
256

...

=

Address

Data in Data out

Write
Buffer

CPU

Lower Level

Hit or Miss

Send data
to CPU

Page 12

 24

Read Example - Miss
Index Tag Ofs

V
1

Tag
21

Data
256

...

=

Address

Data in Data out

Write
Buffer

CPU

Lower Level

Hit or Miss

Check
for tag
match

 25

Read Example - Miss
Index Tag Ofs

V
1

Tag
21

Data
256

...

=

Address

Data in Data out

Write
Buffer

CPU

Lower Level

Hit or Miss

Read data
from memory

Page 13

 26

Read Example - Miss
Index Tag Ofs

V
1

Tag
21

Data
256

...

=

Address

Data in Data out

Write
Buffer

CPU

Lower Level

Hit or Miss

Send the
data

 27

Read Example - Miss
Index Tag Ofs

V
1

Tag
21

Data
256

...

=

Address

Data in Data out

Write
Buffer

CPU

Lower Level

Hit or Miss

Send data
to CPU

Page 14

 28

Cache Lookup

Tag Tag Data Data

Set i

Ofs Index Tag

? ?

Mux - Select matching line
Miss Hit - selected line

b n

b bytes

n sets

k ways

Comparisons on tag

 29

Block Replacement

•  On a miss, a block must be selected for eviction.

•  Direct-mapped: The one the new block maps to.

•  Set or Fully Associative:
–  Random: Spread allocation uniformly

»  Nondeterminism can be a problem
»  Pseudo-random to force determinism

–  Least recently used (LRU): Block replaced is one that has
been unused the longest.

»  Usually approximated
»  Follows corollary: recently used blocks are most likely to

be used again

Page 15

 30

LRU Approximation

•  Regular LRU
–  Counter updated on every cycle
–  Countered cleared when accessed
–  Highest counter value is least recently used
–  Typically too expensive - too many bits, constant update
–  Random can work well

•  Approximation
–  An access bit per block in set
–  Set on an access
–  Cleared when all bits set, except most recent
–  Replace block with cleared bit

 31

Write Strategy

•  How cache lines are updated on a write
–  Can’t do parallel tag compare with write
–  Have to modify specified data (e.g., byte, halfword, word,

quadword)

•  Write policies
–  Write through: Information is updated in both the block in the

cache and the lower-level memory
–  Write back: Information is written back to the lower level only

when a modified block is replaced.
»  Dirty bit: Keeps track of whether a line needs to be

written to a lower level; ensures only modified lines get
written to memory

Page 16

 32

Write Through vs. Write Back

•  Write back
–  Writes happen at full cache speed (no stalls to lower level)
–  Multiple writes to same block require only one write to a lower

memory level
–  Reduces bandwidth requirements between levels (less

contention)

•  Write Through
–  Read misses never trigger writes to lower levels
–  Next lower level has current copy of data (consistency for I/O

and multiprocessors)
–  Simplest design

 33

Write Stalls

•  On a read miss, we stall waiting for the line (for
now - this will change in a few slides)

•  For writes, we can continue as soon as the data
is written

•  Write buffer: Holds stored data for write to cache

•  Effect: Concurrently execute during a write

Page 17

 34

Handling a Write Miss

•  What if we write to a block not in the cache????

•  Write allocate: Block is loaded on a write miss,
followed by write-hit actions

•  Write around: Block modified in lower level and
not loaded into memory

•  Write back, write allocate - tries to capture future
writes to that block in upper level

•  Write through, write around - subsequent writes
have to go to lower level anyway

 35

Direct Mapped Organization

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0 4 31

:

Cache Tag

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Byte 992 Byte 1023 :

 Cache Tag

Byte Select
9

Page 18

 36

Two-Way Set Associative
Organization

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Mux 0 1 Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

 37

Disadvantage to Associative
Caches

•  n-way set associative vs. direct mapped

•  n comparators vs. 1

•  Extra MUX delay for the data

•  Data available AFTER hit or miss detection

•  In direct mapped cache, cache block is available
BEFORE hit or miss detection

–  Assume a hit and continue. Recover on a miss

Page 19

 38

Cache Performance

•  Evaluating performance
–  Miss rate: It misses the point!
–  It’s the miss penalty and the miss rate

•  Average memory access time (AMAT)
–  Time (AMAT) = Hit time + Miss rate * Miss penalty

•  But… what matters is the actual cycles…
–  Still evaluate with actual performance
–  Memory effects can impact instruction execution

 39

Split Caches

•  Unified cache: Instruction and data live in the
same memory (can map to same lines)

•  Split cache: Separate instruction and data caches
(instructions and data don’t map to same lines)

•  L1 usually separate I&D caches
–  Easy bandwidth improvement (IF & MEM on same cycle)
–  Different cache geometries for I and D

»  I and D streams have different characteristics

•  Lower levels usually unified
–  Bigger memories, single path to lower levels

Page 20

 40

Evaluating Split Cache
Performance

Comparison of split vs. unified - compare same relative size caches

 Separate I&D removes conflicts between I&D blocks, but fixes the

size of each cache. How does this affect miss rates?

Size I Cache D Cache Unified
1 KB 3.06% 24.61% 13.34%
2 KB 2.26% 20.57% 9.78%
4 KB 1.78% 15.94% 7.24%
8 KB 1.10% 10.19% 4.57%
16 KB 0.64% 6.47% 2.87%
32 KB 0.39% 4.82% 1.99%
64 KB 0.15% 3.77% 1.35%
128 KB 0.02% 2.88% 0.95%

 41

Evaluating Split Cache
Performance

•  Suppose…..

•  16 KB I&D caches vs. 32 KB unified cache
•  Hit - 1 cycle, Miss - 50 cycles
•  Unified cache: Load/Store hit takes 2 cycles

(single port to the cache - structural hazard)
•  Write through with a write buffer

•  What is the average memory access time for
each cache organization????

Page 21

 42

Example Access Times

Overall miss rate for split cache
–  75% references are instructions
–  Overall miss rate = (75% * 0.64%) + (25% * 6.47%) = 2.10%

Miss rate for 32 KB unified is 1.99% (experiment)

Access time = % I * (Hit time + Miss rate * Miss penalty) +
 % D * (Hit time + Miss rate * Miss penalty)

TimeSplit =
 75% * (1 + 0.64% * 50) + 25% * (1 + 6.47% * 50) = 2.05

TimeUnified =
 75% * (1 + 1.99% * 50) + 25% * (1 + 1 + 1.99% * 50) = 2.24

 43

Factoring in Memory Performance

CPU time =
 (CPU cycles + Memory stall cycles) * Clock Cycle time

Hit cycles included in CPU cycles.
Memory stalls can be defined in terms of memory accesses.

Stall cycles =
 Reads * Read miss rate * Read miss penalty +
 Writes * Write miss rate * Write miss penalty

Stall cycles = Memory accesses * Miss rate * Miss penalty
Simplified version, combing writes and reads in a single term

Page 22

 44

Factoring in Memory Performance

CPU time =
 IC * (CPI + Mem. accesses/instr. * Miss rate * Miss
Penalty) * Clock cycle time
 Basic CPU equation factoring in memory performance

Misses per instructions =
 (Memory accesses * Miss rate) / Instructions
 Architecture dependent metric - e.g., x86 vs. SPARC
 Often reported as misses per kilo (1000) instructions: MPKI

CPU time =
 IC * (CPI + Memory stall cycles / instr) * Clock cycle time
 Factors in misses per instruction (stalls)

 45

Example of Memory Evaluation

•  Miss penalty is 50 clock cycles
•  Instructions normally take 2 cycles (ignoring memory stalls)
•  Miss rate is 2% and 1.33 memory references per

instruction
•  What is the performance with the cache?

CPU time = IC * (CPI + Stalls/Instr) * Clock cycle time
 = IC * (2 + (1.33 * 2% * 50)) * Clock cycle time
 = IC * 3.33 * Clock cycle time

CPI increases from 2 to 3.33 with the cache
What happens without the caches but 50 cycle memory?

Page 23

 46

Impact of Cache Performance

•  For a CPU with low CPI and fast clock, cache
performance is particularly important:

–  Lower CPI implies the higher the relative impact of a fixed
number of cache miss cycles

–  For identical memory hierarchies, a machine with a fast clock
cycle has a higher number of cache miss cycles. Hence,
memory portion of CPI is higher.

 47

Improving Cache Performance

•  What should be tackled to improve cache
performance????

①  Reducing cache misses
②  Reducing cache miss penalty
③  Reducing cache hit time

Page 24

 48

Reducing Cache Misses

•  Types of misses - the three C’s
–  Compulsory

»  First access to a block when it’s not in the cache, it must
be loaded

–  Capacity
»  If cache can’t contain all blocks in the working set,

capacity misses occur because blocks are discarded later
–  Conflict

»  For set associative or direct-mapped caches when
multiple blocks map to same location causing some block
to be discarded that is loaded later

 49

Dealing with Cache Miss Types

•  Conflicts
 Increase associativity
 Fully associative has no conflict misses

•  Capacity
 Enlarge the cache
 Thrashing possible when capacity is too small

•  Compulsory
 Increase block size (effectively prefetching data)
 Independent of cache size (why?)

Page 25

 50

Absolute Miss Rate

2KB DM same
as 1KB 2-way
2:1 rule

Decreasing Compulsory
stays the
same

 51

Three C Model

•  Simple model about average miss behavior
•  Doesn’t tell you about individual misses
•  Changing cache size spreads references out to

more blocks
–  Conflict and capacity misses are affected
–  E.g., A capacity miss may become a conflict miss

•  Says nothing about
–  Replacement policy
–  Miss penalty
–  Hit time

Page 26

 52

Larger Block Size

•  Increase block size - what happens???
 Reduces compulsory misses

•  Effectively, needed data is brought into the cache
on some other miss, thereby reducing the misses

•  Larger blocks exploit what???
 Spatial locality

 53

Downside: Larger Blocks

•  Increased miss penalty (more time to fill)

•  Reduced number of blocks
–  For a given cache size
–  More conflict misses and maybe even capacity misses

•  At a point, may actually increase the miss rate

•  May not be willing to pay increased miss penalty
for decreased miss rate

Page 27

 54

Block Size Selection

•  Block size depends on lower level’s
–  Latency
–  Bandwidth

•  High latency, high bandwidth - what size???
 Increased line size - get more data for small
increase in miss penalty

•  Low latency, low bandwidth
 Smaller block size b/c little benefit from increased
miss penalty (may fetch unneeded data)

 55

Effect of Block Size

Increase in conflict misses overwhelms
benefit of decreasing compulsory misses

Page 28

 56

Higher Associativity

•  Increasing associativity of cache
–  Decreases conflict misses

•  Eight-way set associative does nearly as well as
a fully associative cache (from book)

•  2:1 rule - A direct-mapped cache of size N does
nearly as well as a two-way set associative cache
of size N/2

 57

Downside: Higher Associativity

•  Increased hit latency
–  More levels in MUXes to select data

•  Increased power consumption
–  More banks are accessed
–  Can get around by accessing tag arrays first before reading

the data (when tag matches, select the matching data array)

•  Usual trade-off
–  Lower miss rate, higher hit latency and more power

Page 29

 58

Victim Cache

•  A small, fully associative cache between a cache
and its fill path

•  Victim cache contains blocks discarded from a
miss (so called “victims”)

•  Victim cache checked on a miss for data before
going to lower level

•  On a miss and hit in VC, swap victim block with
block in cache

•  No clock rate effect!

 59

Victim Cache Architecture

Tag

Data Victim Cache

Address

Data in Data out

Write
Buffer

CPU

Lower Level

=

=

Page 30

 60

Victim Cache

•  Improves miss rate by keeping blocks that might
have been mistakenly evicted

•  Effectively increases associativity - reduces the
conflict misses

•  A four-entry victim cache works well
–  20 - 95% of conflict misses in a 4KB direct-mapped cache are

removed

•  Typically used with direct-mapped cache to
achieve effect of a set associative cache

 61

Way Prediction

•  Speed of direct-mapped with miss rate of n-way
set associative cache

•  Works like a direct mapped cache initially
–  Predict likely Way to hit
–  Check appropriate entry for a hit
–  If a hit, return data

•  On a miss
–  Check other cache ways in same level for a hit
–  2-way: The second entry’s index can be formed by inverting

most significant bit of index field
–  No clock rate effect - speed of DM for first access

Page 31

 62

Way Prediction

•  Fast hit: Hit in the first way (speed of DM)
•  Slow hit (“pseudo hit”): Hit in the other ways

•  Concept can be applied to Direct Mapped
–  So called pseudo-associative cache
–  Fast hits in direct mapped cache can become slow hits in the

pseudo-associative cache

•  What happens when we have lots of slow hits for
the same data?

–  Update way prediction (similar to branch prediction)
–  Swap fast hit entry and pseudo hit entry on a pseudo hit (may

cause thrashing)

 63

Hardware Prefetching

•  Prefetching: Load items before they are needed
–  Instructions and data
–  Loaded into cache or buffer between upper and lower levels

•  Instruction prefetching (one possible scheme)
–  On a miss, get missed block and next subsequent block
–  Hold subsequent block in buffer until needed (avoids evicting

a possibly needed block)
–  On a miss to a prefetched block, it is copied from the
“instruction stream buffer” to the cache

–  4 blocks in instruction stream buffer: instruction hit rate
increases by 50%

Page 32

 64

Data Prefetching

•  Apply the same idea
•  On a miss, prefetch the next block

–  A twist: Detect data access pattern
–  E.g., stride of array accesses
–  Prefetch the next predicted block based on the past data

access pattern

•  Multiple stream buffers for data
–  Each prefetch at a different address
–  4 buffers increase data hit rate by 43%

 65

Software Prefetching

•  Compiler inserts prefetch instructions
–  Register prefetch: Prefetched data loaded into a register
–  Cache prefetch: Prefetched data loaded into the cache

•  Requires some support
–  Non-faulting prefetch instructions (“nonbinding prefetch”)
–  Nonblocking caches: processor can continue while

prefetching the data

•  Overlap execution with prefetching of data
–  Loops - schedule prefetches on earlier iterations so data

available on later ones

Page 33

 66

Reducing Cache Miss Penalty

•  Much research has focused on cache miss rates

•  But the latency of a miss also matters
•  You can’t really separate the two to get a

meaningful understanding of what is happening

•  A number of optimizations on how to handle
misses to improve their latency

•  Also, increase the latency of the lower level!

 67

Read Priority over Write

•  Write-through cache - write buffer avoids stalling
•  Write buffer may hold a value that is being loaded
•  Read miss can wait for buffer to empty

–  for WT cache, WB (few words) almost always has data in it
–  Don’t wait: Check contents of write buffer before sending the

read miss to a lower level

•  Write back costs - whole cache line written
–  On replacement, write old line, copy new line, CPU executes
–  Better: move old line to a write buffer, copy new line, CPU

executes, write old line to memory when bus available
–  On a miss, CPU must check the write buffer

Page 34

 69

Early Restart - Critical Word First

•  CPU just needs one word
•  Why wait for entire cache line?

•  Early restart - send data to CPU directly from
memory on a read miss (no second access)

•  Critical word first - request missed word first and
fill cache line while CPU executing

•  Benefits designs with long cache lines (or, rather,
cache fill time is high relative to CPU speed)

 70

Lockup-Free Caches

•  Out-of-order completion
–  Don’t stall CPU waiting for cache miss to be serviced
–  Continue executing instructions

•  Lockup-free cache: Allows data cache to
continue supplying cache hits during cache
misses - “hit under miss”

•  Multiple misses: Cache overlaps miss handling of
separate misses (buffers loads)

•  Multiple outstanding accesses: Complexity!

Page 35

 71

Blocking vs. Lock-up Free Cache

ratio of
memory
stall time
for blocking
vs. lock-up
free

integer

floating point

 72

Page 36

 73

Second-Level Caches

•  Trade off
–  Make L1 cache faster to keep up with CPU
–  Make L1 cache larger to reduce miss rate

•  What’s the expense of doing this?

•  Instead, do both by adding a L2 cache
–  First level: Fast and small: keeps up with CPU
–  Second level: Captures many misses that would go to main

memory
–  Reduces miss penalty of L1
–  Hardware is relatively straightforward

»  Add additional cache unit between first level and main
memory.

 74

Performance Analysis

•  Second-level miss rate measured on misses from
the first level cache

•  Local miss rate - Number of misses to the cache
divided by total number of memory accesses

•  Global miss rate - Number of misses in cache
divided by total number of memory accesses
generated by the CPU (2nd level’s global miss
rate is: Miss rateL1 * Miss rateL2)

Page 37

 75

Performance Analysis

Extend the memory access time for one level cache
to handle two levels

How can we compute the overall access time for
both levels of cache?

 76

Performance Analysis

L1 average access time is???
 Time = Hit timeL1 + Miss rateL1 * Miss penaltyL1

For L2, we know that
 Miss rateL1 is rate of accesses to L2
 Miss penaltyL1 is average access time for L2

We can rewrite miss penaltyL1 in terms of L2
 Miss penaltyL1 = Hit timeL2 + Miss rateL2 * Miss penaltyL2

Then, overall access time is
 Time = Hit timeL1+ Miss rateL1*(Hit timeL2+Miss rateL2*Miss penaltyL2)

Page 38

 77

Reducing Hit Time

•  Tag comparison is expensive part of hit time
–  Read tag memory, compare tag to address

•  Small and simple caches
•  Small: Keep cache small enough so it fits entirely

on chip - avoid the off-chip access expense
•  Simple: Direct mapped caches

–  Overlap tag comparison with delivery of data

•  High clock rates: Encourages small caches that
can be accessed in a single cycle

 78

Avoid Address Translation

•  Virtual address
–  Maps “logical address” to physical address in memory
–  Virtual address on disk mapped to physical address in main

memory

•  Hits more common than misses
–  Avoid address translation since most are hits
–  Argues for caching on virtual address (“virtual cache”)

•  Virtual vs. physical cache
–  Addressed using virtual address (tag comparison on vaddr.)
–  No address translation before cache access

Page 39

 79

Virtual Address Translation

Virtual page number Page offset

Page
table

Main
memory

Map logical address into a physical
address located in memory

 80

Virtual Address Translation

Virtual page number Page offset

Page
table

Main
memory

Physical cache - after mapping address

Cache

Page 40

 81

Virtual Address Translation

Virtual page number Page offset

Page
table

Main
memory

Cache

Virtual cache - addresses based virtual address

 82

Disadvantages: Virtual Caches

•  What happens with a context switch????

•  On process switch, cache must be flushed since
virtual addresses from one process map to
another

•  How can we avoid the ambiguity????

•  Avoiding flushes
–  Attach PID to cache address tag
–  Only flush when a PID is reassigned

Page 41

 83

Disadvantages: Virtual Caches

•  Another problem - aliasing
–  OS and user programs may use different virtual addresses for

the same physical address
–  Two copies of data in cache at once
–  Must update both; or ensure that every block has an unique

physical address (no duplicates)

•  Yet another problem - I/O lives in physical
address space

–  I/O physical addresses would have to be mapped to virtual
addresses for a virtual cache

–  Mapping needed to tell that an address is in I/O space

 84

Solutions: Virtual Caches

•  Fast hits: Separate translation and cache access
–  Separate pipeline stages

»  Address translation stage
»  Cache access stage (with physical address)

–  Fast cycle time with slow cache access (2 cycles)
»  I.e., increased access time with a fast clock rate

–  Increases misprediction branch penalty

•  A final solution: Use page offset to index cache
–  So called “virtually indexed, physically tagged”
–  Used in Alpha 21064 and others

Page 42

 85

Virtually Indexed, Physically
Tagged

Virtual page number Page offset

Page
table

Main
memory

Page offset indexes cache, tags checked after
address translation finishes

Cache

= Hit/miss

 86

Virtually Indexed, Physically
Tagged

•  Features
–  Tag comparison on physical address
–  Tag read can be overlapped with address translation

•  Operation
–  Page offset is not translated during virtual address translation
–  Reading tags done concurrently with address translation
–  Tag comparison occurs on physical address after translation

•  Limitation
–  DM cache can be no larger than a page size
–  Increase associativity to keep index within one page size

Page 43

 87

Pipelining Writes

•  Write hits take longer than reads - why????
•  Tag comparison before writing the data

•  Pipelining writes
–  Separate tag and data memories
–  On a write, compare with tag
–  With a different address, a write can proceed on a line with

the tag comparison
–  I.e., tag comparison for write I and write for write I-1

 88

Cache Optimization Summary
 Miss Miss Hit

What Rate Penalty Time Comp? Notes
Larger block size + - 0
Higher associativity + - 1 MIPS R10K 4way
Victim caches + 2 HP7200
Pseudo-assoc. + 2 L2 MIPS R10K
HW prefetch + 2 Instr common
SW prefetch + 3 Lock-up free
Read priority + 1 Most
Critical word + 1 Most
Nonblocking + 3 Most
2nd level cache + 2 Most
Small, simple - + 0 Pentium
Addr. Translation + 2
Pipelining writes + 1

Page 44

 89

Block Size Example

•  40 cycle memory overhead, 16 bytes delivered
every 2 cycles.

•  E.g., 16 bytes in 42 cycles, 32 bytes in 44 cycles

•  Baseline caches miss rates
–  1K, 32B line: 13.34% 64K, 32B line: 1.35%
–  1K, 64B line: 13.76% 64K, 64B line: 1.06%

•  What block size has the minimum access time for
these four caches?

 90

Block Size Example

•  Miss penalty based on line size - what is it???

–  32B: 40 cycle overhead + (32/16)*2 cycles = 44 cycles
–  64B: 40 cycle overhead + (64/16)*2 cycles = 48 cycles

•  Average memory access time
–  Time = Hit time + Miss rate * Miss penalty

 1K, 32B: 1 cycle + (13.34%*44 cycles) = 6.870 cycles
 1K, 64B: 1 cycle + (13.76%*48 cycles) = 7.605 cycles
64K, 32B: 1 cycle + (1.35%*44 cycles) = 1.594 cycles
64K, 64B: 1 cycle + (1.06%*48 cycles) = 1.509 cycles

Page 45

 91

Associativity Example

•  Suppose increasing associativity effects the clock
rate:

–  2-way 10% penalty (1.1 * base clock time)
–  4-way 12% penalty (1.12 * base clock time)
–  8-way 14% penalty (1.14 * base clock time)

•  Hit time is 1 clock cycle, miss penalty for direct
mapped cache is 50 cycles

•  Miss rates for a 16K cache
–  DM: 2.9% 2-way: 2.2%
–  4-way: 2.0% 8-way: 1.8%

•  What is the access time for each cache?

 92

Associativity Example

Time = Hit time + Miss rate * Miss penalty

DM: 1.0 + 2.9%*50 = 2.45
2-way: 1.1 + 2.2%*50 = 2.2
4-way: 1.12 + 2.0%*50 = 2.12
8-way: 1.14 + 1.8%*50 = 2.04

Page 46

 93

Second Level Cache Example

•  2-way set associative increases CPU clock cycle
time by 10% (thus, hit time goes up by 10%)

•  Hit time for L2 direct mapped is 10 cycles
•  Local miss rate for L2 DM is 25%
•  Local miss rate for 2-way associative is 20%
•  Miss penalty for L2 is 50 cycles

•  What’s the impact of the second-level cache’s
associativity on the L1 cache’s miss penalty?

 94

Second Level Cache Example

For direct mapped L2 cache, L1’s miss penalty is:
Miss penalty L1 = L2 hit time + L2 miss rate * L2 miss penalty
Miss penalty L1 = 10 + 25% * 50 = 22.5 clock cycles

Let’s add associativity - 10% clock cycle penalty, 20% L2 miss rate:
Miss penalty L1 = 10.1 + 20% * 50 = 20.1 clock cycles

Clock cycle has to be an integral number of cycles, so 10 or 11 :
Miss penalty L1 = 10 + 20% * 50 = 20.0 clock cycles
Miss penalty L2 = 11 + 20% * 50 = 21.0 clock cycles

