
Page 1

1

Chapter 3: Instruction-Level
Parallelism

2

Instruction-Level Parallelism

• Straightforward pipelining overlaps the execution
of multiple independent instructions (processing
overlapped across pipeline stages).

• Instruction-level parallelism: Exploiting
parallelism in instructions to improve
performance.

• Generally invisible to the programmer (but not
the compiler!)

Page 2

3

Improving Performance

Pipeline CPI
Effective CPI = Ideal CPI + Structural Stalls + RAW Stalls +

WAR Stalls + Control Stalls

To improve performance, we can tackle any one of
these terms.

Control stalls Loop unrolling, dynamic branch prediction, speculation
RAW stalls Scheduling, scoreboarding, memory disambiguation
WAR stalls Scheduling with register renaming
Data stalls Dependence analysis, software pipelining, speculation
Ideal CPI Multiple issue, dependence analysis, software pipelining

4

Basic Unit of Instruction-Level
Parallelism

• Sequence at instruction level is a basic block.
• Basic block (BB)

– Straight-line code with no branches into the sequence except
at the top and no branches out except at the bottom.

• Procedure represented as a control flow graph on
nodes that are basic blocks

if (x < y)
A

else
B

C

Code Sequence

Page 3

5

Basic Unit of Instruction-Level
Parallelism

• Sequence at instruction level is a basic block.
• Basic block (BB)

– Straight-line code with no branches into the sequence except
at the top and no branches out except at the bottom.

• Procedure represented as a control flow graph on
nodes that are basic blocks

if (x < y)
A

else
B

C

Code Sequence

6

Basic Blocks

L0: ADD r1,r2,r3
SUB r4,r1,r5
BEQZ r4,L0
ADD r3,r2,r1
BNEZ r3,L1
OR r8,r10,r11

L1: AND r5,r6,r7
OR r3,r2,r1
BEQZ r5,L2

Page 4

7

Basic Blocks

L0: ADD r1,r2,r3 BB #1
SUB r4,r1,r5
BEQZ r4,L0
ADD r3,r2,r1 BB #2
BNEZ r3,L1
OR r8,r10,r11 BB #3

L1: AND r5,r6,r7 BB #4
OR r3,r2,r1
BEQZ r5,L2

8

Control Flow Graph

L0: ADD r1,r2,r3 BB #1
SUB r4,r1,r5
BEQZ r4,L0
ADD r3,r2,r1 BB #2
BNEZ r3,L1
OR r8,r10,r11 BB #3

L1: AND r5,r6,r7 BB #4
OR r3,r2,r1
BEQZ r5,L2

Page 5

9

Parallelism in Basic Blocks

• Amount of parallelism within a BB is relatively
small.

– Average BB size is 4-6 instructions
– Parallelism less b/c instructions are typically interdependent

• Consider branches 20% of instruction mix. How
big is the typical basic block??

20%= 1/5 instructions is a branch ® 5

10

Exploiting Parallelism

• BB is too small and interdependent instructions.
• Exploit parallelism across basic blocks

• ILP frequently found in loops, across iterations of
the loop. E.g.:

for (I=1; I<=1000; I+=1)

x[I] = x[I] + y[I];

• Every iteration is independent and can be fully
overlapped with every other one

Page 6

11

Loop Unrolling

• Keep pipeline full with independent instructions
that can execute simultaneously

– Operation latency
– Finding independent instructions

• Expose parallelism across loop iterations

– Compiler pipeline scheduling
– Hardware dynamic scheduling

12

Loop Unrolling Example

• DLX pipeline with latencies

FP ALU op ® FP ALU op 3 cycles
FP ALU op ® Store double 2 cycles
Load double ® FP ALU op 1 cycle
Load double ® Store double 0 cycle

• Simple loop (array X and scalar S are doubles)

for (I = 1; I < 1000; I++)

x[I] = x[I] + s;

Page 7

13

Straightforward DLX for Example

Loop: LD F0,0(R1) ; F0=array elem

ADDD F4,F0,F2 ; add scalar S

SD 0(R1),F4 ; store X[I]

SUBI R1,R1,8 ; decrement ptr

; double=8bytes

BNEZ R1,Loop ; branch R1!=0

• R1 address of array (highest element), F2
contains the scalar S, and &X[1]=8.

• How fast does this code run on DLX without
scheduling?

14

Latency of Straightforward
Example

Loop: LD F0,0(R1) ; F0=array elem 1
stall 2
ADDD F4,F0,F2 ; add scalar S 3
stall 4
stall 5
SD 0(R1),F4 ; store X[I] 6
SUBI R1,R1,8 ; decrement ptr 7
stall 8
BNEZ R1,Loop ; branch R1!=0 9
stall 10

• Total of 5 stall cycles

Page 8

15

Latency of Scheduled Example

Loop: LD F0,0(R1) ; F0=array elem 1
stall 2
SUBI R1,R1,8 ; decrement ptr 3
ADDD F4,F0,F2 ; add scalar S 4
BNEZ R1,Loop ; branch R1!=0 5
SD 8(R1),F4 ; store X[I] 6

• Interchanged SUBI and SD - compiler has to notice
that offset is affected by swapping SUBI and SD

• SUBI and BNEZ in delay of ADDD, and SD in delay
slot of branch

16

Scheduled Example

• Computation: 3 cycles (LD, ADDD, SD)
• Branch overhead: 3 cycles (SUBI, BNEZ)
• 50% of cycles for each iteration spent in

branching

• Unroll loop to lower branch overhead - replicate
loop body several times and remove the
extraneous branches

• May also expose more scheduling opportunities -
chances to overlap independent instructions.

Page 9

17

Unrolled Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

LD F10,-16(R1)

ADDD F12,F10,F2
SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,32

BNEZ R1,Loop

18

Unrolled Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

LD F10,-16(R1)

ADDD F12,F10,F2
SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,32

BNEZ R1,Loop

Unroll factor is 4
assuming that the
trip count is a
multiple of 32.

Register names
changed to avoid
dependences.

Offsets adjusted for
the change in the
iteration count.

Page 10

19

Unrolled Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

LD F10,-16(R1)

ADDD F12,F10,F2
SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,32

BNEZ R1,Loop

Loop evaluation
eliminated for 3
iterations (removes
6 instructions)

20

Unrolled Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

LD F10,-16(R1)

ADDD F12,F10,F2
SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,32

BNEZ R1,Loop

The loop takes 28
cycles per iteration,
or 7 cycles (28/4=7)
per original loop body.

Branches removed, so
multiple bodies can
be scheduled together

2
4

2
4

2
4

2
4

2
2

Page 11

21

Scheduled Unrolled Example

Loop: LD F0,0(R1)

LD F6,-8(R1)
LD F10,-16(R1)

LD F14,-24(R1)

ADDD F4,F0,F2

ADDD F8,F6,F2

ADDD F12,F10,F2

ADDD F16,F14,F2

SD 0(R1),F4

SD -8(R1),F8
SUBI R1,R1,32

SD 16(R1),F12
BNEZ R1,Loop
SD 8(R1),F16

Independent iterations
used to mask latency.

The loop takes 14
cycles per iteration,
or 3.5 cycles per
original loop body
(14/4=3.5).

SUBI moved above the
last two SDs, so the
offset is adjusted

Offset adjustments
-32+16 = -16
-32+8 = -24

22

Loop Unrolling

• When upper bound isn’t known, we can
precondition the loop iteration count.

– Preconditioning loop: Replicate original loop with a trip count
of (n mod F), where n is iteration variable and F is unroll
factor.

– Unrolled loop: Unroll original loop by F with a trip count of n/F.

• Code size growth can be significant with
unrolling. What about the I-cache????

Page 12

23

Summary of Unrolling Example

1) Determine we could move SD
2) Determine loop bodies are independent and

there is a benefit to unrolling
3) Change register names to avoid name conflicts
4) Eliminate extra branches, adjust trip count
5) Determine loads and stores can be

interchanged in the unrolled loop
6) Schedule the code, preserving dependences

24

Dependences

• The key to the unrolling example was finding
independent instructions that can execute in
parallel.

• Dependences constrain ILP

• Dependence types
– Data (dependence on values)
– Name (conflicts on names)
– Control (dynamic data flow dependent on branches)

Page 13

25

Data Dependences

• Instruction j dependent on i if:
i ® j or i ® k, k ® j
(“®” is the producer-consumer relation)

• This is a “true dependence”

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

...
SUBI R1,R1,8

…

BNEZ R1,Loop

26

Data Dependences

• Instruction j dependent on i if:
i ® j or i ® k, k ® j
(“®” is the producer-consumer relation)

• This is a “true dependence”

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

...
SUBI R1,R1,8

…

BNEZ R1,Loop

Page 14

27

Data Dependent Instructions

• Can’t fully overlap data dependent instrs. due to
producer-consumer relationship (RAW hazards).

• Between registers or between memory locations
LD A
C=A+B

ST C

...

LD C

D=C*F

ST D

...

Data dependence through
memory location C

28

Data Dependent Instructions

• Data dependences: Property of programs!

• Detecting and handling hazards: Property of a
pipeline!

– E.g., Data dependence means hazard possible, actual
behavior (length, detection) of hazard is pipeline related.

Page 15

29

Overcoming Data Dependences

• Maintain the dependence but remove (or reduce
the impact) of the hazard

• Eliminate dependences by compiler scheduling

Loop: ...

SUBI R1,R1,8

LD F6,0(R1)

ADDD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,8

...

30

Overcoming Data Dependences

• Maintain the dependence but remove (or reduce
the impact) of the hazard

• Eliminate dependences by compiler scheduling

Loop: ...

SUBI R1,R1,8

LD F6,0(R1)

ADDD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,8

...

In this case, the data
dependences cause
execution to be serialized

Page 16

31

Overcoming Data Dependences

• Maintain the dependence but remove (or reduce
the impact) of the hazard

• Eliminate dependences by compiler scheduling

Loop: ...

SUBI R1,R1,8

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

SUBI R1,R1,8

...

Compiler folds computation
of offsets in LD and SD
and the iteration count
decrement into one SUBI.

Offsets adjustment by 8

32

Overcoming Data Dependences

• Eliminating data dependences - requires
knowledge of program structure (data flow
analysis)

• Hence, the compiler applies code
transformations to eliminate the dependences

• Hardware (and the compiler) can reduce the
impact of data dependences by mitigating effect
of the hazard

Page 17

33

Name Dependences

• Antidependence - j writes same location as i and
j finishes before i (WAR hazard)

• Output dependence - i and j write the same
location (WAW hazard)

• Not “true dependences” because they represent
conflicts and not actual data flow.

34

Overcoming Name Dependences

• Name dependences - represent conflicts for the
same name

• Eliminate by changing names!

• For registers - “register renaming” - done by
compiler or hardware

Page 18

35

Renaming in the Unroll Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F0,-8(R1)

ADDD F4,F0,F2

SD -8(R1),F4

LD F0,-16(R1)

ADDD F4,F0,F2
SD -16(R1),F4

LD F0,-24(R1)

ADDD F4,F0,F2

SD -24(R1),F4

SUBI R1,R1,32

BNEZ R1,Loop

Where are the name
dependences in this
loop?

36

Renaming in the Unroll Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F0,-8(R1)

ADDD F4,F0,F2

SD -8(R1),F4

LD F0,-16(R1)

ADDD F4,F0,F2
SD -16(R1),F4

LD F0,-24(R1)

ADDD F4,F0,F2

SD -24(R1),F4

SUBI R1,R1,32

BNEZ R1,Loop

The name dependences
force the loop to be
mostly scheduled in a
serial fashion.

Eliminate the name
dependences by
register renaming

Output dependence
Antidependence

Page 19

37

Renaming in the Unroll Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

LD F10,-16(R1)

ADDD F12,F10,F2
SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,32

BNEZ R1,Loop

With registers renamed,
the true dependences
now constrain the
scheduling of the loop.

Each loop body can
be overlapped with the
others.

38

Control Dependences

• Determines ordering of instructions with respect
to branches

• All instructions are dependent on some branch

if (cond)

A;

if (cond2)

B;

C;

return;

C1

A

C2

B

C

return

A,B,C are completely
independent - C could
depend on A or B and
would need an edge
(A,C) or (B,C)

Page 20

39

Control Constraints

• If i dependent on branch B, then i can’t be
moved above B (so its exception isn’t controlled
by B)

• If i not dependent on branch B, then i can’t be
moved after B (so its execution dependent on B)
Loop: …

BEQZ R1,exit

LD F6,0(R1)

ADD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,8

BEQZ R1,exit

…

40

Control Constraints

• If i dependent on branch B, then i can’t be
moved above B

• If i not dependent on branch B, then i can’t be
moved after B.
Loop: …

BEQZ R1,exit

LD F6,0(R1)

ADD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,8

BEQZ R1,exit

…

Presence of BEQZ
prevents moving
instructions because
of the control
dependences

Page 21

41

Control Constraints

• If i dependent on branch B, then i can’t be
moved above B.

• If i not dependent on branch B, then i can’t be
moved after B.
Loop: …

BEQZ R1,exit

LD F6,0(R1)

ADD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,8

BEQZ R1,exit

…

Because trip count is a
multiple of 32, the compiler
can determine that the
intervening branches won’t
be taken. The control
dependences are reduced.

42

Overcoming Control Constraints

• DLX pipeline - control dependences preserved by
– Executing in order
– Not executing before branch outcome known

• To improve performance - may violate control
dependences

– As long as program correctness maintained!
– Preserve exception and data flow behavior
– Exceptions: “No new exceptions” caused by code motion

above a branch.

Page 22

43

Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

44

Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

Hoist LW above the branch

Page 23

45

Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

Hoist LW above the branch -
a new exception may result
since BEQZ guards R2

46

Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

• Data flow
ADD R1,R2,R3

BEQZ R4,L0

SUB R1,R5,R6

L0: OR R7,R1,R8

Page 24

47

Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

• Data flow
ADD R1,R2,R3

BEQZ R4,L0

SUB R1,R5,R6

L0: OR R7,R1,R8

If branch taken, R1
comes from the ADD

48

Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

• Data flow
ADD R1,R2,R3

BEQZ R4,L0

SUB R1,R5,R6

L0: OR R7,R1,R8

If branch not taken, R1
comes from the SUB

Page 25

49

Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

• Data flow
ADD R1,R2,R3

BEQZ R4,L0

SUB R1,R5,R6

L0: OR R7,R1,R8

• OR data dependent on ADD, SUB but control
dependent on BEQZ

Have to preserve the
data flow although the
dependences on OR are
preserved.

50

Overcoming Control Constraints

• Sometimes it’s OK
ADD R1,R2,R3

BEQZ R12,L0

SUB R4,R5,R6

ADD R5,R4,R9

L0: OR R7,R8,R9

Suppose R4 is dead
at L0

R4 is dead here

Page 26

51

Overcoming Control Constraints

• Sometimes it’s OK
ADD R1,R2,R3

BEQZ R12,L0

SUB R4,R5,R6

ADD R5,R4,R9

L0: OR R7,R8,R9

Suppose R4 is dead
after L0 - then we
can move the SUB
above the branch

52

Overcoming Control Constraints

• Sometimes it’s OK
ADD R1,R2,R3

BEQZ R12,L0

SUB R4,R5,R6

ADD R5,R4,R9

L0: OR R7,R8,R9

• R4 dead, so data flow not affected and SUB
won’t cause an exception.

• It may also be OK if we can “fix up” the data flow
if we went the “wrong way” - path sensitive
optimizations (speculation) try to do this.

Suppose R4 is dead
after L0 - then we
can move the SUB
above the branch

Page 27

53

Loop Carried Dependences

• A parallelizable loop - no cyclic dependences
across successive iterations of the loop

• Loop carried dependence - exists across more
than one iteration of the loop

for (i = 0; i < 100; i++)

A[i+1] = A[i] + C[i] + S;

• A[i+1] depends on the value of A[i] from the
previous loop iteration.

54

Loop Carried Dependences

for (I=1; I<=100; I=I+1) {

A[I] = A[I] + B[I];

B[I+1] = C[I] + D[I];

}

• Can we parallelize this loop?

Page 28

55

Loop Carried Dependences

for (I=1; I<=100; I=I+1) {

A[I] = A[I] + B[I];

B[I+1] = C[I] + D[I];

}

• Loop carried dependence involving B[].
– S1 dependent on S2 from previous iteration.
– S2 not dependent on S1

• Hence, we can parallelize this loop (no cycles)

56

Parallelized Loop

A[I] = A[1] + B[1];

for (I = 1; I <= 99; I+=1) {

B[I+1] = C[I] + D[I];

A[I+1] = A[I+1] + B[I+1];

}

B[101] = C[100] + D[100];

• Loop carried dependence removed - moved to
within an iteration rather than between iterations.

• Statements within the iteration must obey the true
dependence on B[I+1].

