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Chapter 3: Instruction-Level 
Parallelism
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Instruction-Level Parallelism

• Straightforward pipelining overlaps the execution 
of multiple independent instructions (processing 
overlapped across pipeline stages).

• Instruction-level parallelism: Exploiting 
parallelism in instructions to improve 
performance.

• Generally invisible to the programmer (but not 
the compiler!)
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Improving Performance

Pipeline CPI
Effective CPI = Ideal CPI + Structural Stalls + RAW Stalls +                      

WAR Stalls + Control Stalls

To improve performance, we can tackle any one of 
these terms.

Control stalls Loop unrolling, dynamic branch prediction, speculation
RAW stalls Scheduling, scoreboarding, memory disambiguation
WAR stalls Scheduling with register renaming
Data stalls Dependence analysis, software pipelining, speculation
Ideal CPI Multiple issue, dependence analysis, software pipelining
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Basic Unit of Instruction-Level 
Parallelism

• Sequence at instruction level is a basic block.
• Basic block (BB)

– Straight-line code with no branches into the sequence except 
at the top and no branches out except at the bottom.

• Procedure represented as a control flow graph on 
nodes that are basic blocks

if (x < y)
A

else
B

C

Code Sequence
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Basic Unit of Instruction-Level 
Parallelism

• Sequence at instruction level is a basic block.
• Basic block (BB)

– Straight-line code with no branches into the sequence except 
at the top and no branches out except at the bottom.

• Procedure represented as a control flow graph on 
nodes that are basic blocks

if (x < y)
A

else
B

C

Code Sequence
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Basic Blocks

L0: ADD r1,r2,r3
SUB r4,r1,r5
BEQZ r4,L0
ADD r3,r2,r1
BNEZ r3,L1
OR r8,r10,r11

L1:   AND r5,r6,r7
OR r3,r2,r1
BEQZ r5,L2
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Basic Blocks

L0: ADD r1,r2,r3 BB #1
SUB r4,r1,r5
BEQZ r4,L0
ADD r3,r2,r1 BB #2
BNEZ r3,L1
OR r8,r10,r11 BB #3

L1:   AND r5,r6,r7 BB #4
OR r3,r2,r1
BEQZ r5,L2
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Control Flow Graph

L0: ADD r1,r2,r3 BB #1
SUB r4,r1,r5
BEQZ r4,L0
ADD r3,r2,r1 BB #2
BNEZ r3,L1
OR r8,r10,r11 BB #3

L1:   AND r5,r6,r7 BB #4
OR r3,r2,r1
BEQZ r5,L2
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Parallelism in Basic Blocks

• Amount of parallelism within a BB is relatively 
small.  

– Average BB size is 4-6 instructions
– Parallelism less b/c instructions are typically interdependent

• Consider branches 20% of instruction mix. How 
big is the typical basic block??

20%= 1/5 instructions is a branch ® 5

10

Exploiting Parallelism

• BB is too small and interdependent instructions. 
• Exploit parallelism across basic blocks

• ILP frequently found in loops, across iterations of 
the loop. E.g.:

for (I=1; I<=1000; I+=1)

x[I] = x[I] + y[I];

• Every iteration is independent and can be fully 
overlapped with every other one
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Loop Unrolling

• Keep pipeline full with independent instructions 
that can execute simultaneously

– Operation latency
– Finding independent instructions

• Expose parallelism across loop iterations 

– Compiler pipeline scheduling 
– Hardware dynamic scheduling

12

Loop Unrolling Example

• DLX pipeline with latencies

FP ALU op ® FP ALU op 3 cycles
FP ALU op ® Store double 2 cycles
Load double ® FP ALU op 1 cycle
Load double ® Store double 0 cycle

• Simple loop (array X and scalar S are doubles)

for (I = 1; I < 1000; I++)

x[I] = x[I] + s;
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Straightforward DLX for Example

Loop: LD F0,0(R1) ; F0=array elem

ADDD F4,F0,F2 ; add scalar S

SD 0(R1),F4 ; store X[I]

SUBI R1,R1,8 ; decrement ptr

; double=8bytes

BNEZ R1,Loop ; branch R1!=0

• R1 address of array (highest element), F2 
contains the scalar S, and &X[1]=8.

• How fast does this code run on DLX without 
scheduling?
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Latency of Straightforward 
Example

Loop: LD F0,0(R1) ; F0=array elem 1
stall 2
ADDD F4,F0,F2 ; add scalar S 3
stall 4
stall 5
SD 0(R1),F4 ; store X[I] 6
SUBI R1,R1,8 ; decrement ptr 7
stall 8
BNEZ R1,Loop ; branch R1!=0 9
stall 10

• Total of 5 stall cycles
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Latency of Scheduled Example

Loop: LD F0,0(R1) ; F0=array elem 1
stall 2
SUBI R1,R1,8 ; decrement ptr 3
ADDD F4,F0,F2 ; add scalar S 4
BNEZ R1,Loop ; branch R1!=0 5
SD 8(R1),F4 ; store X[I] 6

• Interchanged SUBI and SD - compiler has to notice 
that offset is affected by swapping SUBI and SD 

• SUBI and BNEZ in delay of ADDD, and SD in delay 
slot of branch

16

Scheduled Example

• Computation: 3 cycles (LD, ADDD, SD)
• Branch overhead: 3 cycles (SUBI, BNEZ)
• 50% of cycles for each iteration spent in 

branching

• Unroll loop to lower branch overhead - replicate 
loop body several times and remove the 
extraneous branches

• May also expose more scheduling opportunities -
chances to overlap independent instructions.
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Unrolled Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

LD F10,-16(R1)

ADDD F12,F10,F2
SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,32

BNEZ R1,Loop
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Unrolled Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

LD F10,-16(R1)

ADDD F12,F10,F2
SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,32

BNEZ R1,Loop

Unroll factor is 4
assuming that the 
trip count is a 
multiple of 32.

Register names 
changed to avoid 
dependences.

Offsets adjusted for
the change in the
iteration count.
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Unrolled Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

LD F10,-16(R1)

ADDD F12,F10,F2
SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,32

BNEZ R1,Loop

Loop evaluation 
eliminated for 3
iterations (removes
6 instructions)
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Unrolled Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

LD F10,-16(R1)

ADDD F12,F10,F2
SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,32

BNEZ R1,Loop

The loop takes 28 
cycles per iteration,
or 7 cycles (28/4=7)
per original loop body.

Branches removed, so
multiple bodies can
be scheduled together

2
4

2
4

2
4

2
4

2
2
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Scheduled Unrolled Example

Loop: LD F0,0(R1)

LD F6,-8(R1)
LD F10,-16(R1)

LD F14,-24(R1)

ADDD F4,F0,F2

ADDD F8,F6,F2

ADDD F12,F10,F2

ADDD F16,F14,F2

SD 0(R1),F4

SD -8(R1),F8
SUBI R1,R1,32

SD 16(R1),F12
BNEZ R1,Loop
SD 8(R1),F16

Independent iterations
used to mask latency.

The loop takes 14 
cycles per iteration,
or 3.5 cycles per
original loop body
(14/4=3.5).

SUBI moved above the
last two SDs, so the
offset is adjusted

Offset adjustments
-32+16 = -16
-32+8   = -24

22

Loop Unrolling

• When upper bound isn’t known, we can 
precondition the loop iteration count.

– Preconditioning loop: Replicate original loop with a trip count 
of (n mod F), where n is iteration variable and F is unroll 
factor.

– Unrolled loop: Unroll original loop by F with a trip count of n/F.

• Code size growth can be significant with 
unrolling. What about the I-cache????
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Summary of Unrolling Example

1) Determine we could move SD
2) Determine loop bodies are independent and 

there is a benefit to unrolling
3) Change register names to avoid name conflicts
4) Eliminate extra branches, adjust trip count
5) Determine loads and stores can be 

interchanged in the unrolled loop
6) Schedule the code, preserving dependences

24

Dependences

• The key to the unrolling example was finding 
independent instructions that can execute in 
parallel.

• Dependences constrain ILP

• Dependence types
– Data (dependence on values)
– Name (conflicts on names)
– Control (dynamic data flow dependent on branches)
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Data Dependences

• Instruction j dependent on i if:
i ® j or i ® k, k ® j
(“®” is the producer-consumer relation)

• This is a “true dependence”

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

...
SUBI R1,R1,8

…

BNEZ R1,Loop
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Data Dependences

• Instruction j dependent on i if:
i ® j or i ® k, k ® j
(“®” is the producer-consumer relation)

• This is a “true dependence”

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

...
SUBI R1,R1,8

…

BNEZ R1,Loop
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Data Dependent Instructions

• Can’t fully overlap data dependent instrs. due to 
producer-consumer relationship (RAW hazards).

• Between registers or between memory locations
LD A
C=A+B

ST C

...

LD C

D=C*F

ST D

...

Data dependence through 
memory location C

28

Data Dependent Instructions

• Data dependences: Property of programs!

• Detecting and handling hazards: Property of a 
pipeline!

– E.g., Data dependence means hazard possible, actual 
behavior (length, detection) of hazard is pipeline related.
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Overcoming Data Dependences

• Maintain the dependence but remove (or reduce 
the impact) of the hazard

• Eliminate dependences by compiler scheduling

Loop: ...

SUBI R1,R1,8

LD F6,0(R1)

ADDD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,8

...
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Overcoming Data Dependences

• Maintain the dependence but remove (or reduce 
the impact) of the hazard

• Eliminate dependences by compiler scheduling

Loop: ...

SUBI R1,R1,8

LD F6,0(R1)

ADDD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,8

...

In this case, the data
dependences cause 
execution to be serialized
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Overcoming Data Dependences

• Maintain the dependence but remove (or reduce 
the impact) of the hazard

• Eliminate dependences by compiler scheduling

Loop: ...

SUBI R1,R1,8

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

SUBI R1,R1,8

...

Compiler folds computation
of offsets in LD and SD 
and the iteration count
decrement into one SUBI.

Offsets adjustment by 8
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Overcoming Data Dependences

• Eliminating data dependences - requires 
knowledge of program structure (data flow 
analysis)

• Hence, the compiler applies code 
transformations to eliminate the dependences

• Hardware (and the compiler) can reduce the 
impact of data dependences by mitigating effect 
of the hazard
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Name Dependences

• Antidependence - j writes same location as i and 
j finishes before i (WAR hazard)

• Output dependence - i and j write the same 
location (WAW hazard)

• Not “true dependences” because they represent 
conflicts and not actual data flow.

34

Overcoming Name Dependences

• Name dependences - represent conflicts for the 
same name

• Eliminate by changing names!

• For registers - “register renaming” - done by 
compiler or hardware 



Page 18

35

Renaming in the Unroll Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F0,-8(R1)

ADDD F4,F0,F2

SD -8(R1),F4

LD F0,-16(R1)

ADDD F4,F0,F2
SD -16(R1),F4

LD F0,-24(R1)

ADDD F4,F0,F2

SD -24(R1),F4

SUBI R1,R1,32

BNEZ R1,Loop

Where are the name
dependences in this
loop?
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Renaming in the Unroll Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F0,-8(R1)

ADDD F4,F0,F2

SD -8(R1),F4

LD F0,-16(R1)

ADDD F4,F0,F2
SD -16(R1),F4

LD F0,-24(R1)

ADDD F4,F0,F2

SD -24(R1),F4

SUBI R1,R1,32

BNEZ R1,Loop

The name dependences
force the loop to be 
mostly scheduled in a
serial fashion.

Eliminate the name
dependences by
register renaming

Output dependence
Antidependence
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Renaming in the Unroll Example

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8

LD F10,-16(R1)

ADDD F12,F10,F2
SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,32

BNEZ R1,Loop

With registers renamed,
the true dependences
now constrain the
scheduling of the loop.

Each loop body can
be overlapped with the
others.
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Control Dependences

• Determines ordering of instructions with respect 
to branches

• All instructions are dependent on some branch

if (cond) 

A;

if (cond2) 

B;

C;

return;

C1

A

C2

B

C

return

A,B,C are completely
independent - C could
depend on A or B and
would need an edge
(A,C) or (B,C)
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Control Constraints

• If i dependent on branch B, then i can’t be 
moved above B (so its exception isn’t controlled 
by B)

• If i not dependent on branch B, then i can’t be 
moved after B (so its execution dependent on B)
Loop: …

BEQZ R1,exit

LD F6,0(R1)

ADD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,8

BEQZ R1,exit

…
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Control Constraints

• If i dependent on branch B, then i can’t be 
moved above B

• If i not dependent on branch B, then i can’t be 
moved after B.
Loop: …

BEQZ R1,exit

LD F6,0(R1)

ADD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,8

BEQZ R1,exit

…

Presence of BEQZ 
prevents moving 
instructions because 
of the control 
dependences
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Control Constraints

• If i dependent on branch B, then i can’t be 
moved above B.

• If i not dependent on branch B, then i can’t be 
moved after B.
Loop: …

BEQZ R1,exit

LD F6,0(R1)

ADD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,8

BEQZ R1,exit

…

Because trip count is a
multiple of 32, the compiler 
can determine that the 
intervening branches won’t 
be taken.  The control
dependences are reduced.

42

Overcoming Control Constraints

• DLX pipeline - control dependences preserved by 
– Executing in order
– Not executing before branch outcome known 

• To improve performance - may violate control 
dependences

– As long as program correctness maintained!
– Preserve exception and data flow behavior
– Exceptions: “No new exceptions” caused by code motion 

above a branch.
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Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

44

Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

Hoist LW above the branch
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Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

Hoist LW above the branch -
a new exception may result 
since BEQZ guards R2
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Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

• Data flow
ADD R1,R2,R3

BEQZ R4,L0

SUB R1,R5,R6

L0: OR R7,R1,R8
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Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

• Data flow
ADD R1,R2,R3

BEQZ R4,L0

SUB R1,R5,R6

L0: OR R7,R1,R8

If branch taken, R1 
comes from the ADD

48

Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

• Data flow
ADD R1,R2,R3

BEQZ R4,L0

SUB R1,R5,R6

L0: OR R7,R1,R8

If branch not taken, R1 
comes from the SUB
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Overcoming Control Constraints

• Exceptions
BEQZ R2,L1

LW R1,0(R2)

L1: …

• Data flow
ADD R1,R2,R3

BEQZ R4,L0

SUB R1,R5,R6

L0: OR R7,R1,R8

• OR data dependent on ADD, SUB but control 
dependent on BEQZ

Have to preserve the
data flow although the
dependences on OR are
preserved.
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Overcoming Control Constraints

• Sometimes it’s OK
ADD R1,R2,R3

BEQZ R12,L0

SUB R4,R5,R6

ADD R5,R4,R9

L0: OR R7,R8,R9

Suppose R4 is dead 
at L0

R4 is dead here
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Overcoming Control Constraints

• Sometimes it’s OK
ADD R1,R2,R3

BEQZ R12,L0

SUB R4,R5,R6

ADD R5,R4,R9

L0: OR R7,R8,R9

Suppose R4 is dead 
after L0 - then we 
can move the SUB 
above the branch

52

Overcoming Control Constraints

• Sometimes it’s OK
ADD R1,R2,R3

BEQZ R12,L0

SUB R4,R5,R6

ADD R5,R4,R9

L0: OR R7,R8,R9

• R4 dead, so data flow not affected and SUB 
won’t cause an exception.

• It may also be OK if we can “fix up” the data flow 
if we went the “wrong way” - path sensitive 
optimizations (speculation) try to do this.

Suppose R4 is dead 
after L0 - then we 
can move the SUB 
above the branch
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Loop Carried Dependences

• A parallelizable loop - no cyclic dependences 
across successive iterations of the loop

• Loop carried dependence - exists across more 
than one iteration of the loop

for (i = 0; i < 100; i++)

A[i+1] = A[i] + C[i] + S;

• A[i+1] depends on the value of A[i] from the 
previous loop iteration.

54

Loop Carried Dependences

for (I=1; I<=100; I=I+1) {

A[I] = A[I] + B[I];

B[I+1] = C[I] + D[I];

}

• Can we parallelize this loop?
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Loop Carried Dependences

for (I=1; I<=100; I=I+1) {

A[I] = A[I] + B[I];

B[I+1] = C[I] + D[I];

}

• Loop carried dependence involving B[].
– S1 dependent on S2 from previous iteration.
– S2 not dependent on S1 

• Hence, we can parallelize this loop (no cycles)

56

Parallelized Loop

A[I] = A[1] + B[1];

for (I = 1; I <= 99; I+=1) {

B[I+1] = C[I] + D[I];

A[I+1] = A[I+1] + B[I+1];

}

B[101] = C[100] + D[100];

• Loop carried dependence removed - moved to 
within an iteration rather than between iterations.

• Statements within the iteration must obey the true 
dependence on B[I+1].


