
CS 2410 Graduate Computer Architecture
Fall 2017

Project 2: Dynamic Scheduling Simulator
Assigned: October 30, 2017.

Due: December 1, 2017 by 11:59 PM.

1 Introduction

In this project, you will implement a simulation of dynamic instruction scheduling with Tomasulo’s
algorithm. Suppose we name the simulator, tomsim . Your simulator will mimic the behavior of a
dynamic instruction scheduler to model the timing of the execution of instructions. The simulator
does not need to model instruction semantics. tomsim will read an input program instruction
trace and output statistics about the trace.

The simulator will also support a data cache and a memory. You do not have to develop the
data cache or memory simulation yourself; you will simply reuse the components available from
SST for this purpose.

2 Overview

tomsim will input an instruction trace of X instructions. An instruction trace is an ordered list
of the instructions executed by a program. The instruction trace for this project will not have any
branch or jump instructions.

tomsim will also input a configuration that specifies the number of functional units (FU) of
different types (integer, divider, multiplier, load and store), the number of reservation stations for
each FU type, and the execution latency of each functional unit type.

Using the instruction trace and the configuration, tomsim will mimic the scheduling of Toma-
sulo’s algorithm. Instructions will go through the Issue, Read Operand, Execute and Write Register
steps of the algorithm.

Once all instructions are consumed from the trace, the simulator will output statistics.

3 Simulation Model

tomsim will need to model the pipeline stages for Tomasulo’s algorithm (Issue, Read Operands,
Execute and Write Register). The pipeline is single instruction in-order issue.

Issue: Instructions proceed in-order through Issue and Read Operands. If there is no reservation
station available in Issue for an instruction, the pipeline stalls until a reservation station of the
required type is available. If there is a reservation station available in Issue, then the reservation
station is allocated to the instruction (marked busy). You do not need to implement an instruction
cache/memory. You can keep the instructions read from the trace in an array similar to project 1.
The instructions are issued from the array one by one.

Read Operand: After Issue, an instruction moves to Read Operand with an assigned reservation
station. In Read Operand, the instruction reads any available source operands from the register
file, renames its unavailable source registers, and renames its destination register (to the assigned
reservation station).

If some operand is not available in Read Operand, the instruction waits until the operands are
available in this stage. Instructions may bypass one another in Read Operand, depending on when
their operands become available.
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When an instruction becomes ready to execute (i.e., it has all of its operands), a check is done
in Read Operand for the availability of a FU of the type needed to execute the instruction. If
an appropriate functional unit is not available, then the instruction waits in Read Operand until
a FU becomes available. Multiple instructions may be ready together and need the same FU
type. If there are more ready instructions than available functional units of the required type, the
oldest instructions are dispatched to the free FUs. Ties can be broken arbitrarily. The younger
instructions continue to wait in Read Operand.

Execute: When operands are ready and a FU is available, an instruction is dispatched to the
functional unit in Execute. A dispatched instruction stays in Execute, occupying the FU and
reservation station, for the number of cycles specified by the FU’s latency. For instance, if an
Integer unit is specified to have latency 1, then an instruction spends 1 cycle in Execute after
reading operands and being dispatched to the FU. In the best case, the integer instruction takes 4
cycles in total to go through the pipeline (Issue, Read Operands, 1-cycle Execute, Write Register).
You do not need to model the semantics (the operation) of the instruction in Execute.

Write Register: Once an instruction finishes executing, it broadcasts the availability of its
destination value to any waiting instructions and the register file. This broadcast happens in the
Write Register stage. It takes 1 clock cycle. Thus, a consumer instruction waiting on a register
value can potentially be dispatched to execute on the cycle after the broadcast. You may assume
an infinite number of common data busses (CDB)! That is, you do not need to model the potential
structural hazard for a CDB. Note that multiple instructions can proceed through Write Register
on the same clock cycle. In Write Register, the functional unit and reservation station occupied by
an instruction are released. You do not need to model the actual data values, but you will need to
model the renaming associated with the completion of an instruction.

Pipeline Model: There are four functional unit types: Integer, Multiplier, Divider, and Load/Store.
The table below gives the opcode types that are executed by each functional unit type.

Type Opcodes

Integer add, sub, nor, and, lis, liz, lui, put, halt
Divider div, exp, mod
Multiplier mul
Load/Store (ls) lw/sw

Each functional unit has reservation stations associated with it. The reservation stations are
associated by functional unit type. For instance, the reservation stations for an Integer functional
unit are separate from the reservation stations for a Divider functional unit. However, all functional
units of the same type share the same set of reservation stations. Thus, an instruction can be
dispatched from the reservation station of some type to any functional units of that type. For
instance, a pipeline might have 2 Integer units sharing 8 reservation stations. The organization for
this case is shown in Figure 1. An instruction from the 8 reservation stations can be dispatched to
either of the Integer functional units.

4 Memory Hierarchy

In this project, you must have a L1 data cache and main memory. For the cache, you should use
SST’s cache component, and for the memory, use SST’s simple DRAM component (the same as
project 1). To handle load and store instructions, assume the following.

1. There is a single load-store unit (L/S unit) that handles loads and stores. This unit has an
input queue, i.e., reservation stations, which are managed as a first-in, first-out queue (FIFO).
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Figure 1: 8 reservation stations with two Integer functional units.

Loads/stores that are newly issued to the L/S unit are inserted at the tail of the queue. A
load/store executes only when it reaches the head of the queue and its source operands are
available. The load/store is removed from the queue when the cache/memory responds with
an acknowledgement of completion. This structure avoids the need to schedule loads and
stores, i.e., there is no need for memory disambiguation since loads and stores are executed
in program order. Likewise, there is forwarding of store destination values to loads from the
queue. Yes, this is L/S unit inefficient, but hey, it’s simple(r)!

2. When a load/store reaches the head of the queue and has its source operands, the load/stores
is dispatch to the L/S unit, which computes the effective address. After the number of
cycles specified for the L/S unit’s latency have elapsed, the memory operation is sent to the
cache/memory. Such an operation is said to be “pending”. A pending memory operation does
not block the CPU pipeline. However, let’s assume that only one memory operation can be
pending at any time. When the memory operation completes, the head pointer is advanced
to the next operation in the queue. (Don’t forget: A load needs to broadcast the loaded value
to the CDB.) The L/S unit latency in the configuration file is how many cycles it takes to
compute the effective address (see below).

3. The L/S unit’s FIFO queue needs to be able to receive source operand values from the
register file or from a CDB broadcast. In reality, this queue is nothing more than a bunch of
reservation stations, where the dispatch order to the L/S unit is enforced to be FIFO (rather
than first ready to execute).

4. The data cache is configurable: the associativity and the cache size can be changed. The block
size is fixed to 16 bytes (8x 16-bit words). That is, the SST cache parameter cache line size

should be set to 16. The allowable associativities are 1 (direct mapped), 2, 4 and 8. The
associativity is set with the SST cache paramenter, associativity. The allowable cache sizes
are 256 bytes to 8,192 bytes. The cache size is set with the SST cache parameter, cache size.
The cache’s frequency should be set to the CPU’s clock frequency (i.e., cache frequency is
set to the CPU clock frequency). The access latency for the cache is 1 clock cycle (i.e.,
access latency cycles is 1). Be sure to set the SST cache parameter L1 to true.
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5. The cache and memory configuration and organization can be setup in SST’s Python config-
uration file. See the example in the hints on how to connect the cache to the memory.

Extra credit: Do you want to try something more challenging? Yes, you say! OK, try to imple-
ment full memory disambiguation and forwarding from the stores directly to loads on a matching
address. You can make this even more fun: Allow multiple pending memory operations. For this
project, you probably won’t notice any benefit, but generally, these “optimizations” are usually
implemented. You can get some extra credit, if you decide to try this. Amount of extra credit to
be determined.

5 Project Requirements

The simulator should be runnable from the command line with SST. It will take three file name
arguments:

file names: trace.t configuration.json output.json

where, trace.t is the input trace, configuration.json is the configuration of the pipeline, and
output.json is the output result.

5.1 Input Trace

The input trace is a list of X encoded instructions. It has the same format and encodings as
project 1. You can re-use your input program code from project 1. However, the input trace will
not have any branches or jump instructions.

For testing, you can use your X simulator to generate a trace. Simply add output statements
to your simulator that outputs the instructions executed to a file (one instruction in hex format
per line). When a branch or jump is executed, do not output anything. This output file is now an
instruction trace that can be input to tomsim .

Here is an example trace:

800A

7000

89FF

7020

9100

7020

6800

5.2 Configuration

The simulator will be configured with a JSON file. The configuration will permit specifying the
number of functional units of different types, the number of reservation stations associated with a
functional unit type, and the latency of executing in the functional unit. The configuration also
permits configuring the cache and CPU clock speed. The JSON has the format:

{ "integer":{"number":2,"resnumber":4,"latency":1},

"divider":{"number":1,"resnumber":2,"latency":20},

"multiplier":{"number":2,"resnumber":4,"latency":10},

"ls":{"number":1,"resnumber":8,"latency":3},

"cache":{"associativity":1,"size":"4096B"},

"clock":"1GHz" }
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This configuration specifies the following:

1. There are 2 Integer FUs and 4 reservation stations. An integer operation takes 1 clock cycle.

2. There is 1 Divider FU unit with 2 reservation stations. A divide executes in 20 clock cycles.

3. There are 2 Multiplier FUs with 4 reservation stations. A multiply takes 10 clock cycles.

4. There is 1 Load/Store Unit. This unit has 8 reservation stations and takes 3 clock cycles
to compute an effective address (prior to being dispatched to the cache/memory). As noted
above, the reservation stations for the L/S unit are really a FIFO queue. The value for the
number of L/S units will always be set to 1.

5. The data cache is direct mapped and has 4,096 bytes. The size is specified in bytes with the
units specified. You can use this parameter directly to set the cache size.

6. The clock speed is 1000 MHz (1 GHz). You can use this parameter to directly set the speed
of the CPU’s clock in SST.

5.3 Output

The simulator will output statistics in JSON about execution. The output statistics are: number
of clock cycles for the whole trace, the number of instructions executed by each FU, the number of
stall cycles due to structural hazards, and the number of operands read from the register file. The
output JSON has the format:

{"cycles" : 100,

"integer" : [{ "id" : 0, "instructions" : 10 }, { "id" : 1, "instructions" : 8 }],

"multiplier" : [{ "id" : 0, "instructions" : 1 }, { "id" : 1, "instructions" : 0 }],

"divider" : [{ "id" : 0, "instructions" : 2 }],

"ls" : [{ "id" : 0, "instructions" : 3 }],

"reg reads" : 9,

"stalls" : 13 }

In this output, the field id distinguishes multiple functional units of the same type. The field
instructions is the number of instructions. The entries reg reads, stalls and cycles report
the number of register file reads, the number of pipeline structural hazard stalls and the number
of cycles for the simulation.

5.4 Programming Language, Libraries, etc

You must use SST to implement this project. You can use SST to provide the clock tick stimulus
to drive the simulation.

6 Turning in the Project

For grading, you will both turn in the project by email (as explained below) and schedule a demo
of the project with Wenchen Wang or Bruce Childers. Your project will be graded primarily during
the demo with possibly additional follow-up after the demo.

6.1 What to Submit

Prior to scheduling the demo, you must submit all files for the project. You must submit an archive
with your source files, header files, and a README file. Do not include SST itself. For instance,
your archive might include:
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tommy.cc (please include all source and header files, but don’t include SST itself)

README.txt (a help file; see below)

These files should be put into a single archive; you may use either a gzipped tar-ball, or a zip
file. Please name your submission with your last name. For instance, childers-project2.zip
is a good file name for Bruce Childers’ submission of project 2. I will use a Mac to unpack your
submission. If I cannot unpack the submission, or there are any missing files, I will not grade the
project and you may receive a 0.

In the README, put your name and e-mail address at the top of the file. The README file
should list what works (i.e., instructions implemented) and any known problems. If you have known
problems/issues (bugs!), then you should clearly specify the problems in this file. The explanation
and bug list are critical to grading. So, if you’re uncertain whether to include something, then err
on the side of writing too much and just include it.

Due date is: December 1, 2017 by 11:59 PM. Demos will be held shortly after this date.

6.2 Where to Submit

Submit your files to Wenchen Wang, email wew50@pitt.edu.

6.3 Demonstration

You will demo your simulator for grading. W will give you some test files (configurations and traces)
to run in the demonstration. These files will not be provided prior to the demonstration. I will give
them to you on an USB key. You should be able to load the test files into your simulator, configure
the simulator with the configuration, and run the simulation. You should be comfortable with
demonstrating the project, including changing the configuration, loading programs and explaining
your approaches.

All projects will be demonstrated shortly after December 1, 2017, likely during the week of
December 4. Please plan ahead. Each demo will be 20 minutes. A sign-up sheet with appointment
times will be made available prior to the demo date. If you have a class conflcit with the demo
day/times, we can make accommodations. If we have not received your file submission by the due
day/time, we will not grade the project and you may receive a 0.

Because the demos are intended to be short, please be prepared to quickly and smoothly show
what you have done! The time allotted for each demo is strict.

7 Collaboration

In accordance with the policy on individual work, this project is strictly an individual effort. You
must not collaborate with a partner. It is your responsibility to secure and back up your files.

7.1 Grading the Project

We will grade the project with multiple configurations and traces covering many (if not all) of
X instructions during the demo. Your ability to easily and smoothly demonstrate the project
and answer questions will also be part of the evaluation. Primarily, the concern is functional
correctness and implementation of the project requirements. To ensure that your processor is
working as expected, you will find it very useful to write your own test case programs to cover all
instructions.
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8 Hints

These hints were originally written before we started to use SST. The hints still apply,
but you think about how to leverage SST’s discrete event simulation, particularly to
schedule callbacks in the future. I updated the hints to reflect some of SST.

The project needs to manage “simulation time”. The simulation time is simply a count of
cycles. The simulation proceeds in steps, which increments the simulation clock cycle count by one.
You can use SST’s clock tick for this purpose.

On each simulated clock cycle, multiple actions need to be performed to model the movement
and execution of instructions in the pipeline. The actions need to happen according to pipeline
conditions (e.g., operand availability) and latency of the actions. With this in mind, you will need
some way to cause simulation actions to happen on specific simulation clock cycles.

While there are many ways to manage simulation time and actions, a classic approach is discrete
event simulation, as employed by SST. In this method, you can keep a list of events with timestamps.
The simulation proceeds in steps of the CPU clock cycle, i.e., your simulation receives a callback on
each tick. On each clock cycle tick, the list is checked for events that have a timestamp matching
the current time. A matching event is removed from the list and handled on the current clock
cycle. In this approach, you are essentially managing the simulation yourself. You might want to
see what SST offers to do this as well (e.g., scheduling callbacks).

It will be useful to allow multiple event types in the list, where each event type is a different
action in the life of an instruction. An instruction will cause some event to be in the list, which
will be processed on a matching clock cycle to update the movement of the instruction.

As an example, consider an Instruction in Read Operands. This instruction might have put
a Read Operand event in the event list during Issue. The handler for the Read Operand event
would read the register file (when the simulation clock cycle matches the event’s timestamp). If
all operands can be read from the register file and a FU is available, a new Execute event would
be inserted (i.e., scheduled) for the next clock cycle. If the operands are not all ready or there is
no FU, then a new event would be scheduled to Read Operands again on the next cycle. In this
way, the instruction remains in Read Operands until the conditions to execute are satisfied. Other
actions for in-flight instructions can be handled similarly. You will probably need at least 4 event
types: Issue, Read Operands, Execute, and Write Result. Note, you may wish to have more event
types, such as a Wait event type when an instruction is waiting on operands/FU.

Most events can be inserted with a timestamp corresponding to the next clock cycle. An
Execute event, however, might be inserted with a further-away timestamp that corresponds to the
latency of the instruction (i.e., current time + latency of instruction).

You may also want to keep the event list ordered by timestamp (soonest first). This can help
the efficiency of processing the event list since you can terminate processing the list on a simulation
cycle when a timestamp is found that is greater than the current simulation clock cycle.

You may also find it useful to process events in order by their type. You may wish to process
events for later instructions in the pipeline before events of earlier instructions. For example, it
could be useful to process Write Register before Read Operand.

I strongly recommend that you plan your simulation before trying to implement it. The data
structures that you choose will likely have a big influence on your required effort. So, think carefully
here!! I also strongly recommend that you implement and test in steps. It is very difficult to
debug problems in this type of simulation; proceeding in small steps and carefully testing your
implementation in an incremental fashion can be a big life saver! Lastly, you will probably want to
write carefully crafted test cases. You can craft these test cases to exhibit certain timing behavior,
which can then be checked to test your simulator.
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Example of Cache/Memory Configuration

Here is an example of how to connect the L1 data cache and the memory in the SST Python
configuration script.

import sst

core = sst.Component("XSim","XSim.core")

core.addParams(...)

# Get memory latency

memory = sst.Component("data_memory", "memHierarchy.MemController")

memory.addParams(...)

l1_cache = sst.Component("l1cache", "memHierarchy.Cache")

l1_cache.addParams(...)

cpu_cache_link = sst.Link("cpu_cache_link")

cache_data_memory_link = sst.Link("cache_data_memory_link")

cpu_cache_link.connect(

(core, "data_memory_link", "100ps"),

(l1_cache, "high_network_0", "100ps")

)

cache_data_memory_link.connect(

(l1_cache, "low_network_0", "100ps"),

(memory, "direct_link", "100ps")

)
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