
CS	2410	–	Project	2	Frequently	Asked	Questions	
	
Q:	How	to	interoperate	with	cache	and	memory?	
	
A:	In	project	2,	you	will	use	SST’s	existing	cache	and	memory	models.	You	do	not	need	to	implement	these	
models.	The	description	on	the	last	page	of	the	project	write-up	shows	how	to	connect	the	cache	and	the	
memory	together	through	SST	links.		The	focus	of	this	project	is	the	Tomasulo	scheduler	that	is	used	by	a	
dynamically	 scheduled	out-of-order	 execution	CPU.	 The	project	 also	 shows	 the	power	of	 SST	 through	
reuse	of	existing	and	tested	simulation	models	(the	cache	and	memory!).		
	
For	 this	 project,	 you	 will	 need	memory	 read/write	 functions	 that	 access	 the	memory	 hierarchy.	 The	
memory	hierarchy	has	variable	latency	since	an	access	might	hit	or	miss	in	the	L1	cache.	These	functions	
are	the	same	as	you	used	in	project	1.		In	fact,	you	can	try	this	in	your	existing	project	1.		Simply	modify	
project	1	to	include	cache	(as	shown	below),	and	then	try	rerunning	it.		It	should	work	with	the	cache!			
	
Q:	How	to	set	cache	parameters?	
	
A:	 The	 project	 2	write-up	 specifies	 that	 two	 cache	 parameters	 can	 be	 set	 from	 the	 simulator’s	 JSON	
configuration	file:	cache	associativity	(associativity)	and	cache	capacity	(cache_size).		These	values	
can	be	 read	 from	 the	 JSON	configuration,	 and	 then	used	 to	 set	 the	 SST	 cache	model’s	 corresponding	
parameters	in	the	SST	Python	script.		Here	is	an	example	of	how	to	set	the	SST	cache	model	parameters	
in	the	SST	Python	script:	

import json
with open(<configuration file>, 'r') as inp_file:
 sim_config = json.load(inp_file)

cache_config = sim_config.get("cache")
l1_cache = sst.Component("l1cache", "memHierarchy.Cache")
Setting cache parameters
l1_cache.addParams({
 "cache_line_size":16, # Same as block size
 "associativity":cache_config.get("associativity"),
 "cache_size":cache_config.get("size"),
 "cache_frequency": "1GHz", # Same as cpu
 "access_latency_cycles": 1,
 "L1": True
})
	
Q:	How	to	handle	loads	and	stores?	Do	I	need	to	model	the	data	and	the	addresses?	
	
A:	 You	can	modify	project	1	 to	generate	 instruction	 traces.	To	do	so,	 simply	change	your	project	1	 to	
output	 each	 instruction	 executed	 that	 is	 not	 a	 control	 transfer.	 	 The	 output	 is	 just	 the	 hexadecimal	
encoding	of	the	instruction	(in	ASCII).	For	loads	and	stores,	however,	the	trace	also	needs	to	include	the	
addresses	 accessed	 by	 memory	 operations.	 The	 cache	 needs	 to	 the	 addresses	 to	 correctly	 access	
cache/memory.	 Data	 values	 are	 not	 needed.	 For	 load/store	 instructions,	 output	 both	 the	 encoded	
instruction	and	the	address	loaded/stored.	E.g.,	suppose	your	trace	generator	executes	the	instruction	lw
$r1,$r0	and	the	value	held	in	$r0	is	0x000C.		The	trace	generator	would	output	this	line:	
		
4100 000C

	
		
	

