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CS/COE 0447 Example Problems for Exam 3

Fall 2009

1. This time, consider a non-leaf function lisa. This function has no arugments or return value. 

The return address is on the stack at offset 12 and the activation record is 12 bytes. Give a 
sequence of three MIPS instructions that cause a function return. 

lw $ra,12($sp) # loads the return address
addi $sp,$sp,12 # adjust the stack pointer to pop the activation frame
jr $ra # do the return

2. Suppose the stack pointer ($sp) has the value 0xFF0000020 and the activation record has two 

halfword fields. Give a single instruction that will load the second field in the activation record 
into register $t0. 

lh $t0, 2($sp) # current $sp is the AR, 2nd field is in 2nd halfword

For the next questions, consider the program code below (with line numbers):
# assume $sp = 0xFFFF0020

0 li $s0,1

1 li $s1,2

2 jal _bart

3 j quit

4 _bart: addi $sp,$sp,-8

5 sw $s0,0($sp)

6 sw $ra,4($sp)

7 jal _homer

8 lw $ra,4($sp)

9 lw $s0,0($sp)

10 addi $sp,$sp,8

11 jr $ra

12 _homer: addi $sp,$sp,-4

13 sw $s1,0($sp)

14 addi $s1,$0,10

15 move $v0,$s1

16 lw $s1,0($sp)

17 addi $sp,$sp,4

18 jr $ra

19 quit: ....

3. Give the value of $sp on each line from the code:  

Line 5: $sp’s value is _______0xFFFF0018_______________

Line 8: $sp’s value is  _______0xFFFF0018_______________

Line 13: $sp’s value is  _______0xFFFF0014_______________

Line 19: $sp’s value is  _______0xFFFF0020_______________
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4. Assume memory is all 0s. Fill in the table below to show the memory contents (as words) after 

the code above executes (i.e., when line 19 is reached):  

note: this solution corrects the error mentioned in class on 11/16/09. 

5. Show the steps to multiply the 4-bit numbers 3 and 5 with the “fast shift-add multipler”. Use 

the table below. List the multiplicand (M) and product (P) in binary. In the field “step”, write 
“ADD” when the multiplicand is added. Write “SHIFT” to indicate when the product is shifted. 
In the iteration “Start” write the initial values for the mutiplicand and product. You may not 
need all steps (rows) in the table. 

Address Value at this Address

0xFFFF0028 0x0

0xFFFF0024 0x0

0xFFFF0020 0x0 (initial $sp before line 4)

0xFFFF001C address of line 3 (return addr)

0xFFFF0018 0x1 ($s0 stored here line 5)

0xFFFF0014 0x2 ($s1 stored here line 12)

0xFFFF0010 0x0

0xFFFF000C 0x0

Iter. Multiplicand (M) Product (P) Step

Start 0011 0000 0101 set product=0s:R

1 0011 0011 0101
0001 1010

lsb=1 => +M
shift right 1

2 0011 0001 1010
0000 1101

lsb=0 => +0
shift right 1

3 0011 0011 1101
0001 1110

lsb=1 => +M
shift right 1

4 0011 0001 1110
0000 1111

lsb=0 => +0
shift right 1

5 NOT NEEDED

6 NOT NEEDED
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6. Show the steps to multiply an 6-bit number 17 and 3 with Booth’s algorithm. Use the table 

below. List the multiplicand and product in binary. In the field “step”, write “ADD”, “SUB”, or 
“NO OP” to indicate which operation is done on each iteration.  

7. Suppose we want to do the computation S = A + B. A and B are positive 2’s complement 8-bit 

binary numbers. Give a boolean expression that indicates whether there was an overflow when 
these numbers are added. To represent a certain bit i in A,  B or S, use Ai, Bi or Si. E.g., bit 

position 3 in A is A3.  Assume the bits are numbered 0 to 7 (right to left).  

overflow happens when input values have same sign but output has different one
Overflow = (A7 ∧ B7 ∧ ¬S7) OR (¬A7  ∧ ¬B7  ∧ S7)

8. Give the negation in one’s complement binary representation (5 bit numbers) for the decimal 

numbers: 

5d Negation (in one’s complement binary) ___11010_____________

7 NOT NEEDED

Iter. Multiplicand (M) Product (P) Step

Start 010001
(negation is 101111)

000000 000011 0 set P, with pad bit

1 010001 101111 000011 0
110111 100001 1

lsbs=10: -M
shift right arithmetic

2 010001 110111 100001 1
111011 110000 1

lsbs=11: +0
shift right arithmetic

3 010001 001100 110000 1
000110 011000 0

lsbs=01: +M
shift right arithmetic

4 010001 000110 011000 0
000011 001100 0

lsbs=00: +0
shift right arithmetic

5 010001 000011 001100 0
000001 100110 0

lsbs=00: +0
shift right arithmetic

6 010001 000001 100110 0
000000 110011 0

lsbs=00: +0
shift right arithmetic

7 NOT NEEDED Final answer is:
000000 110011 

N/A

Iter. Multiplicand (M) Product (P) Step
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10d Negation (in one’s complement binary) ___10101_____________

-15d Negation (in one’s complement binary) ___01111_____________

9. Give the negation in two’s complement binary representation (5 bits) for the decimal numbers: 

11d Negation (in two’s complement binary) ___10101_____________

15d Negation (in two’s complement binary) ___10001_____________

-13d Negation (in two’s complement binary) ___01101_____________

10. Give Booth’s encoding for the 8-bit numbers:

-19d Booth’s encoding  _______00-11 0-11-1__________________

-19 in two’s comp: 1110 1101
-19 in two’s comp with 0 pad: 1110 1101 0
Booth’s encoding: 00-11 0-11-1  

check yourself: -25+24-22+21-20 = -32+16-4+2-1=-19

27d Booth’s encoding  ________ 0010 -110-1_________________

27 in two’s comp: 0001 1011
27 in two’s comp with 0 pad: 0001 1011 0
Booth’s encoding: 0010 -110-1

check yourself: 25-23+22-20 = 32 - 8 + 4 -1 = 27

62d Booth’s encoding  ________0100 00-10__________________

62 in two’s comp: 0011 1110
62 in two’s comp with 0 pad: 0011 1110 0
Booth’s encoding: 0100 00-10

check yourself: 26-21 = 62

11. Using 1-bit adders, draw the circuit for a 4-bit ripple-carry addition unit.

See book / class lecture slides.

12. Using 1-bit adders and 1-bit inverters (i.e., the not of a bit), draw a circuit for a 4-bit ripple-
carry subtract unit. 

See book / class lecture slides (drawn on the board during class).
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13. Consider restoring division with hardware design #3 (the design with a 32-bit divisor and a 64-
bit remainder register that holds the remainder and quotient). Assume the quotient and divisor 
are 5 bit unsigned numbers. Fill in the table below for 17 / 3. For each step, indicate what shift, 
subtraction, and addition operations are done in the “Step Notes” column. 

note: the full step 1 is shown for clarity. 

14. Now, consider non-restoring division with hardware design #3 (the design with a 32-bit divisor 
and a 64-bit remainder register that holds the remainder and quotient). Assume the quotient 
and divisor are 5 bit unsigned numbers. Fill in the table below for 17 / 3. For each step, indi-
cate when shift, addition and/or subtraction operations are done in the “Step Notes” column. 

Iteration Divisor (D) Remainder (R) Step Notes

Init 00011 00000 10001 initial values

1 00011 11101 10001
00001 00010

R = R - D
R<0: +D, left shift 0 into lsb

2 00011 11110 00010
00010 00100

R = R - D
R<0: +D, left shift 0 into lsb

3 00011 11111 00100
00100 01000

R = R - D
R<0: +D, left shift 0 into lsb

4 00011 00001 01000
00010 10001

R = R - D
R>0: left shift 1 into lsb

5 00011 11111 10001
00101 00010

R = R - D
R<0: +D, left shift 0 into lsb

6 00011 00010 00010
00100 00101

R = R -D
R>0: left shift 1 into lsb

Done 00010 00101 right shift the left half of R by 1
result=5, remainder=2

Iteration Divisor Remainder Step Notes

Init 00011 00000 10001 initial values

1
00011 11101 10001

11011 00010
R = R - D

R<0: left shift 0 into lsb

2
00011 11110 00010

11100 00100
R = R + D

R<0: left shift 0 into lsb

3
00011 11111 00100

11110 01000
R = R + D

R<0: left shift 0 into lsb

4
00011 00001 01000

00010 10001
R = R + D

R>0: left shift 1 into lsb 

5 00011 11111 10001
11111 00010

R = R - D
R<0: left shift 0 into lsb

6 00011 00010 00010
00100 00101

R = R + D
R>0: left shift 1 into lsb



Name ______________________________________________

6 of 12

15. Floating point numbers represent a “richer” set of values than integer numbers. Nevertheless, 

processors support integer numbers and programs frequently use them. What primary advan-
tage does integer numbers and operations offer over floating point numbers and operations? 

integer operations are significantly faster, programs frequently use discrete values
thus, using integer for common operations/values offers a big performance benefit. 

16. Using IEEE 754 representation for single precision floating point, give the 32-bit binary encod-
ing for the numbers below. Show the sign, exponent, and significand. 

Number: -2.40625 Float: _____________________________________

answer: sign is -1, so sign bit will be = 1
integral part is 2 = 10b
fractional part: 

0.40625 × 2 = 0.8125 1st bit is 0

0.8125 × 2 = 1.625 2nd bit is 1

0.625 × 2 = 1.25 3rd bit is 1

0.25 × 2 = 0.5 4th bit is 0

0.5 × 2 = 1.0 5th bit is 1
thus, the number is 10.01101
we need to normalize the number by shifting the decimal point to the left one position.

in the normalized form, we will shift back to the right, thus the exponent is 21

the normalized form is 1.001101 × 21

now, we compute the exponent in biased form: biased exp = 1 + 127 = 128
in binary, the biased exponent = 10000000b
finally, we have the representation: 

Number: 11.2265625 Float: _____________________________________

answer: sign is +, so the sign bit is 0
integral part is 11, so in binary it is 1011b
fractional part is 0.2265625

0.2265625 × 2 = 0.453125

0.453125 × 2 = 0.90625

0.90625 × 2 = 1.8125

0.8125 × 2 = 1.625

0.625 × 2 = 1.25

0.25 × 2 = 0.5

0.5 × 2 = 1.0
thus, we have 1011.0011101

Done
00010 00101 right shift the left half of R by 1

result = 5, remainder = 2

sign exp significand

1 10000000 0011010...0

1 bit 8 bits 23 bits
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we put into normal form: 1.0110011101 × 23

put the exponent into biased form: biased exp = 3 + 127 = 130
in binary, biased exp = 10000010b
finally, we have the representation: 

Number: -0.00244140625 Float: ______________________________________

answer: sign is -, so the sign bit is 1
integral part is 0, so in binary it is 0b
fractional part is 0.00244140625

0.00244140625 × 2 = 0.0048828125

0.0048828125 × 2 = 0.009765625

0.009765625 × 2 = 0.01953125

0.01953125 × 2 = 0.0390625

0.0390625 × 2 = 0.078125

0.078125 × 2 = 0.15625

0.15625 × 2 = 0.3125

0.3125 × 2 = 0.625

0.625 × 2 = 1.25

0.25 × 2 = 0.5

0.5 × 2 = 1.0
thus, we have 0.00000000101

we put into normal form: 1.01 × 2-9

put the exponent into biased form: biased exp = -9 + 127 = 118
in binary, biased exp = 01110110b
finally, we have the representation: 

17. Suppose we have the following numbers encoded as IEEE 754 single precision floats. is the 

decimal value (i.e., base 10) for each number: 

answer: sign bit is 0, so it’s positive
biased exp = 10000001b = 129, so actual exp = 129 - 127 = 2

thus, we have 1.01101 × 22

moving the decimal point to the right 2 places, we get: 101.101b
integral part is 101b = 5d

fractional part is 101b = 2-1 + 2-3 = 0.625

sign exp significand

0 10000010 01100111010...0

1 bit 8 bits 23 bits

sign exp significand

1 01110110 010...0

1 bit 8 bits 23 bits

sign exp significand

0 10000001 011010...0

1 bit 8 bits 23 bits
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so, the answer is 5.625d 

answer: sign bit is 1, so it’s negative
biased exp = 01111011b = 123, so actual exp = 123 - 127 = -4

thus, we have 1.1 × 2-4

moving the decimal poit to the left 4 places, we get 0.00011
integral part is 0

fractional part is 2-4 + 2-5 = 0.09375
so, the answer is -0.09375

18. When the bias is 127, give the binary encoding for the number 39d.

biased number = 39 + 127 = 166d = 10100110b

19. When the bias is 1023, give the binary encoding for the number -39d.

biased number = -39 + 1023 = 984d = 1111011000b 

20. Biased representation for the exponent offers a significant advantage over other representa-
tions, like two’s complement. What is the advantage? 

they allow the use of integer (faster) operation to do simple sorting based on the exponent

21. Consider the sum of products boolean equation: A’BC + ABC + A’B’C. Give the truth table rep-

resentation for this boolean equation.

This truth table has eight rows with three input values (A, B, C) and one output. Label the rows by 
counting in bianry from 0 to 7. Row 011 (i.e., where A=0, B=1, C=1) has a 1 in the output, row 
111 has a 1 in the output, and 001 has a 1 in the output. All other output values are 0. 

22. For the boolean equation and truth table from question 21, give its Karnaugh map.

23. Based on the Karnaugh map from question 22, can the boolean equation be minimized? If so, 

give its minimized form. Otherwise, simply list the original equation to answer this question.

24. For your answer from question 23, draw the circuit that implements the boolean equation. 

sign exp significand

1 01111011 10...0

1 bit 8 bits 23 bits
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25. Give the minimized boolean equation for the Karnaugh map below. 

In AB (01 and 11), A is both 0 and 1, so it can be eliminated. In CD (01 and 11), C is both 0 and 1, 
so it can be eliminated. Thus, we have just BD for this equation. 

26. Give the minimized boolean equation for the Karnaugh map below. 

Look at the column for C’D (01): A and B have both 0 and 1, so they can be eliminiated, giving only 
C’D. Now, consider the column for CD’ (10): B is both 0 and 1, thus it can be eliminated. This min-
term is A’CD’. The minimized sum of products is: C’D + A’CD’. 

27. Suppose we want to construct a 4:1 multiplexor. This multiplexor selects as an output one of its 

four inputs. How many rows are in the full truth table for this operation? 

A 4:1 mux has six input signals. There are four input “data signals” (to select among) and two 
“control signals” that select one of the four input data signals to steer to the output. Thus, the full 

truth table has 26 rows. 

28. Using AND, OR, and NOT gates, draw the circuit for the boolean equation from question 26. 

AB

CD

00 01 11 10

00 0 0 0 0

01 0 1 1 0

11 0 1 1 0

10 0 0 0 0

AB

CD

00 01 11 10

00 0 1 0 1

01 0 1 0 1

11 0 1 0 0

10 0 1 0 0

Circuit for C’D + A’CD’

A C D
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29. Using only NAND gates, draw a minimal circuit for the boolean equation A’B’ + CD. Hint: Use 

straightforward substitutions of ANDs, ORs and NOTs with the NAND equivalents (see lecture 
slides). Observe whether any of the operations after substitution can be eliminated. 

30. Prove that your circuit from question 29 is equivalent to A’B’ + CD. Hint: Write a boolean equa-

tion for the circuit and transform it, step-by-step, into A’B’ + CD with Boolean algebra. 

The equation for the circuit is ¬( ¬(¬A ^ ¬B) ^ ¬(C ^ D)). We can transform this as:

¬( ¬(¬A ^ ¬B) ^ ¬(C ^ D)) Initial equation
= ¬( (¬¬A v ¬¬B) ^ (¬C v ¬D)) Distribute inner nots with DeMorgan’s Law
= ¬( (A v B) ^ (¬C v ¬D)) Simplify the “not-not”
= ¬( A v B) v ¬(¬C v ¬D) Distribute outer not with DeMorgan’s Law
= (¬A ^ ¬B) v (¬¬C ^ ¬¬D) Distribute not with DeMorgan’s law
= (¬A ^ ¬B) v (C ^ D) Simplify the “not-not” and we’re done. 

thus, we have arrived at A’B’ + CD (using different notation). 

31. Using only NOR gates, draw a minimal circuit for the boolean equation A’B + CD. (Can you 

prove this circuit is equivalent to A’B’ + CD?)

This exercise is left to the reader to solve. (Do the substitution as in problem 17 and then simplify 
the circuit with Boolean algebra, if possible.)

32. Suppose we want to implement a 1-bit ALU that can perform the logical operations OR, AND, 

XOR and NOT. This 1-bit ALU takes as input two 1-bit numbers: A and B. It produces as an out-
put a single 1-bit number: C. If the ALU does a unary NOT operation, it ignores B. To build this 
ALU, you can use OR, AND, XOR and NOT gates. You also need a multiplexor to select among 
the four operations. Answer the following questions: 

a) How many control signals are needed to select the operation to do with the ALU?

2 bits (signals) to select one of the four operations 

b) How many inputs does the ALU’s multiplexor have? 

6 inputs: 4 values from OR, AND, XOR, and NOT gates, plus 2 control signals 

Simplified circuit for A’B’ + CD (using NAND gates)

A

B

C

D
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c) Draw the ALU circuit (using symbols for a mux, AND, OR, NOT and XOR). 

33. Larger muxes can be constructed from smaller ones. For example, a 4:1 mux can be con-

structed with 2:1 muxes. A 4:1 mux selects among four inputs for its one output. Draw a circuit 
diagram for a 4:1 mux, built with 2:1 muxes. (Hint: You need three 2:1 muxes.) 

S1 and S2 select one of the four inputs A, B, C, or D to steer to the output O. S1 and S2 is essen-
tially a 2-bit selector: value 00 (S2=0, S1=0) selects A, 01 (S2=0, S1=1) selects B, 10 (S2=1, 
S1=0) selects C and 11 (S2=1, S1=1) selects D. 

Note: There are other ways to build muxes, but this is the most straightforward. 

Four Function 1-bit ALU 

4:1 mux built with 2:1 muxes (S1 and S2 are select signals)

4:1

A B

A AND B

A OR B

A XOR B

NOT A

S1 S2

00

01

10

11

2:1

2:1

A

B

S1 S2

O

2:1

C

D
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34. Now, let’s consider a 3:1 mux built with 2:1 muxes. Draw a diagram that shows the circuit. 

(Hint: You need two 2:1 muxes.) 

Note: The selection values (i.e., signal values for S1 and S2) are not all used. In particular, the val-
ues used are 00 (select A), 01 (select B), and 1X (select C, where X is “don’t care” for S1). 

35. Suppose a logic gate (OR, AND, NOT) takes 1 ns to compute a value. The time it takes a gate 

to compute a value is a “delay”. If multiple gates are put together in succession, the total time 
for the combinational circuit will be the sum of the gate delays. For example, a circuit that has 
an AND gate followed by an OR gate has a delay of 2ns (1ns for each gate). As another exam-
ple, a circuit that has an AND gate that operates in parallel with an OR gate has a delay of 1ns 
(since the OR and AND are done in parallel). If each gate takes 1ns, compute the total delay 
for a 16:1 mux built with 2:1 muxes. Hint: Compute the time for a single 2:1 mux. Next, deter-
mine how many muxes are connected in succession. The “longest path” through this circuit 
gives the total delay. 

First, note that the longest path in a 2:1 mux has three gates: NOT -> AND ->OR (see diagram in 
logic1.pdf, slide #26 on page 13). Thus, a 2:1 mux has a 3 * 1ns = 3ns delay.

Second, let’s compute the number of 2:1 muxes that have to be traversed in a 16:1 mux. This 
structure is similar to the one from problem 21, except it has more “levels”. There are four levels: 
level 1 has 8 muxes, level 2 has 4 muxes, level 3 has 2 muxes and level 4 has 1 mux. To traverse 
the full 16:1 mux, one mux in each level has to be traversed. 

Finally, with four levels and 3ns per mux (level), the total delay is 4 * 3ns = 12ns. 

Note the relationship to binary trees! 

3:1 mux built with 2:1 muxes (S1 and S2 are select signals)

2:1

2:1

A

B

C

S1 S2

O


