Name \qquad

CS/COE 0447 Example Problems for Exam 3 Fall 2009

1. This time, consider a non-leaf function lisa. This function has no arugments or return value. The return address is on the stack at offset 12 and the activation record is 12 bytes. Give a sequence of three MIPS instructions that cause a function return.

$l w$	$\$ r a, 12(\$ s p)$	\# loads the return address
addi	$\$ s p, \$ s p, 12$	\# adjust the stack pointer to pop the activation frame
$j r$	$\$ r a$	\# do the return

2. Suppose the stack pointer ($\$ \mathrm{sp}$) has the value 0xFF0000020 and the activation record has two halfword fields. Give a single instruction that will load the second field in the activation record into register $\$ \mathrm{t} 0$.
lh $\quad \$ t 0,2(\$ s p) \quad$ \# current $\$$ sp is the $A R$, 2nd field is in 2nd halfword
For the next questions, consider the program code below (with line numbers):
\# assume $\$ \mathrm{sp}=0 \times \mathrm{xFFFF} 0020$
0
1
li $\$ s 0,1$
li $\$ s 1,2$
jal _bart
j quit
_bart: addi $\$ s p, \$ s p,-8$
sw \quad \$s0,0 (\$sp)
sw $\$ r a, 4(\$ s p)$
jal _homer
lw $\$$ ra, $4(\$ s p)$
lw $\$ \mathrm{~s} 0,0(\$ \mathrm{sp})$
addi $\$ s p, \$ s p, 8$
jr \$ra
_homer: addi $\$ s p, \$ s p,-4$
sw $\$ \mathrm{~s} 1,0(\$ \mathrm{sp})$
addi $\$ \mathrm{~s} 1, \$ 0,10$
move $\$ v 0, \$ s 1$
1w $\$ \mathrm{~s} 1,0(\$ \mathrm{sp})$
addi $\$ s p, \$ s p, 4$
jr \$ra
18
19
quit:
....
3. Give the value of $\$ s p$ on each line from the code:

Line 5: $\quad \$$ sp's value is ___ OxFFFF0018
Line 8: $\quad \$$ sp's value is ___OxFFFF0018
\qquad
Line 13: $\quad \$$ sp's value is \qquad OxFFFF0014 \qquad
Line 19: $\quad \$$ sp's value is \qquad OxFFFF0020 \qquad
\qquad
4. Assume memory is all 0 s. Fill in the table below to show the memory contents (as words) after the code above executes (i.e., when line 19 is reached):

Address	Value at this Address
0xFFFF0028	Ox0
0xFFFF0024	Ox0
0xFFFF0020	Ox0 (initial \$sp before line 4)
0xFFFF001C	address of line 3 (return addr)
0xFFFF0018	Ox1 (\$sO stored here line 5)
0xFFFF0014	Ox2 (\$s1 stored here line 12)
0xFFFF0010	Ox0
0xFFFF000C	Ox0

note: this solution corrects the error mentioned in class on 11/16/09.
5. Show the steps to multiply the 4-bit numbers 3 and 5 with the "fast shift-add multipler". Use the table below. List the multiplicand (M) and product (P) in binary. In the field "step", write "ADD" when the multiplicand is added. Write "SHIFT" to indicate when the product is shifted. In the iteration "Start" write the initial values for the mutiplicand and product. You may not need all steps (rows) in the table.

Iter.	Multiplicand (M)	Product (P)	Step
Start	0011	00000101	set product $=0$ s:R
1	0011	00110101 00011010	lsb $=1=>+M$ shift right 1
2	0011	00011010 00001101	lsb $=0=>+0$ shift right 1
3	0011	00111101 00011110	lsb=1 => +M shift right 1
4	0011	00011110 00001111	lsb=0 $=>+0$ shift right 1
5	NOT NEEDED		
6	NOT NEEDED		

\qquad

Iter.	Multiplicand (M)	Product (P)	Step
7	NOT NEEDED		

6. Show the steps to multiply an 6-bit number 17 and 3 with Booth's algorithm. Use the table below. List the multiplicand and product in binary. In the field "step", write "ADD", "SUB", or "NO OP" to indicate which operation is done on each iteration.

Iter.	Multiplicand (M)	Product (P)	Step
Start	010001 (negation is 101111)	0000000000110	set P, with pad bit
1	010001	1011110000110 1101111000011	$l s b s=10:-M$ shift right arithmetic
2	010001	1101111000011 1110111100001	$l s b s=11:+0$ shift right arithmetic
3	010001	0011001100001 0001100110000	$l s b s=01:+M$ shift right arithmetic
4	010001	$\begin{aligned} & 0001100110000 \\ & 0000110011000 \end{aligned}$	$l s b s=00:+0$ shift right arithmetic
5	010001	$\begin{aligned} & 0000110011000 \\ & 0000011001100 \end{aligned}$	$l s b s=00:+0$ shift right arithmetic
6	010001	0000011001100 0000001100110	$l s b s=00:+0$ shift right arithmetic
7	NOT NEEDED	Final answer is: 000000110011	N/A

7. Suppose we want to do the computation $S=A+B . A$ and B are positive 2 's complement 8 -bit binary numbers. Give a boolean expression that indicates whether there was an overflow when these numbers are added. To represent a certain bit i in A, B or S, use $A_{j,} B_{i}$ or S_{i} E.g., bit position 3 in A is A_{3}. Assume the bits are numbered 0 to 7 (right to left).
overflow happens when input values have same sign but output has different one

$$
\text { Overflow }=\left(A_{7} \wedge B_{7} \wedge \neg S_{7}\right) \text { OR }\left(\neg A_{7} \wedge \neg B_{7} \wedge S 7\right)
$$

8. Give the negation in one's complement binary representation (5 bit numbers) for the decimal numbers:

5d
Negation (in one's complement binary) \qquad 11010 \qquad

Name \qquad

Negation (in one's complement binary) ___ 10101 \qquad
Negation (in one's complement binary) ___01111 \qquad
9. Give the negation in two's complement binary representation (5 bits) for the decimal numbers:

11d
Negation (in two's complement binary) __ 10101 \qquad
15d
-13d
Negation (in two's complement binary) ___ 10001 \qquad
Negation (in two's complement binary) ___01101 \qquad
10. Give Booth's encoding for the 8 -bit numbers:
-19d
Booth's encoding \qquad $00-110-11-1$ \qquad
-19 in two's comp: 11101101
-19 in two's comp with 0 pad: 111011010
Booth's encoding: 00-11 0-11-1
check yourself: $-2^{5}+2^{4}-2^{2}+2^{1}-2^{0}=-32+16-4+2-1=-19$
27d
Booth's encoding \qquad 0010-110-1 \qquad
27 in two's comp: 00011011
27 in two's comp with 0 pad: 000110110
Booth's encoding: 0010-110-1
check yourself: $2^{5}-2^{3}+2^{2}-2^{0}=32-8+4-1=27$
62d
Booth's encoding \qquad 0100 00-10 \qquad
62 in two's comp: 00111110
62 in two's comp with 0 pad: 001111100
Booth's encoding: 0100 00-10
check yourself: $2^{6}-2^{1}=62$
11. Using 1-bit adders, draw the circuit for a 4-bit ripple-carry addition unit. See book / class lecture slides.
12. Using 1-bit adders and 1-bit inverters (i.e., the not of a bit), draw a circuit for a 4-bit ripplecarry subtract unit.

See book / class lecture slides (drawn on the board during class).
\qquad
13. Consider restoring division with hardware design \#3 (the design with a 32-bit divisor and a 64bit remainder register that holds the remainder and quotient). Assume the quotient and divisor are 5 bit unsigned numbers. Fill in the table below for 17 / 3 . For each step, indicate what shift, subtraction, and addition operations are done in the "Step Notes" column.

Iteration	Divisor (D)	Remainder (R)	Step Notes
Init	00011	0000010001	initial values
1	00011	$\begin{aligned} & 1110110001 \\ & 0000100010 \end{aligned}$	$\begin{gathered} R=R-D \\ R<0:+D, \text { left shift } 0 \text { into lsb } \end{gathered}$
2	00011	$\begin{aligned} & 1111000010 \\ & 0001000100 \end{aligned}$	$\begin{gathered} R=R-D \\ R<0:+D, \text { left shift } 0 \text { into lsb } \end{gathered}$
3	00011	$\begin{aligned} & 1111100100 \\ & 0010001000 \end{aligned}$	$\begin{gathered} R=R-D \\ R<0:+D, \text { left shift } 0 \text { into Isb } \end{gathered}$
4	00011	$\begin{aligned} & 0000101000 \\ & 0001010001 \end{aligned}$	$\begin{gathered} R=R-D \\ R>0: \text { left shift } 1 \text { into lsb } \end{gathered}$
5	00011	$\begin{aligned} & 1111110001 \\ & 0010100010 \end{aligned}$	$\begin{gathered} R=R-D \\ R<0:+D, \text { left shift } 0 \text { into Isb } \end{gathered}$
6	00011	$\begin{aligned} & 0001000010 \\ & 0010000101 \end{aligned}$	$\begin{gathered} R=R-D \\ R>0 \text { : left shift } 1 \text { into lsb } \end{gathered}$
Done		0001000101	right shift the left half of R by 1 result=5, remainder=2

note: the full step 1 is shown for clarity.
14. Now, consider non-restoring division with hardware design \#3 (the design with a 32-bit divisor and a 64-bit remainder register that holds the remainder and quotient). Assume the quotient and divisor are 5 bit unsigned numbers. Fill in the table below for 17 / 3. For each step, indicate when shift, addition and/or subtraction operations are done in the "Step Notes" column.

Iteration	Divisor	Remainder	Step Notes
Init	00011	0000010001	initial values
1	00011	$\begin{aligned} & 1110110001 \\ & 1101100010 \end{aligned}$	$\begin{gathered} R=R-D \\ R<0: \text { left shift } 0 \text { into lsb } \end{gathered}$
2	00011	$\begin{aligned} & 1111000010 \\ & 1110000100 \end{aligned}$	$\begin{gathered} R=R+D \\ R<0: \text { left shift } 0 \text { into lsb } \end{gathered}$
3	00011	$\begin{aligned} & 1111100100 \\ & 1111001000 \end{aligned}$	$\begin{gathered} R=R+D \\ R<0: \text { left shift } 0 \text { into lsb } \end{gathered}$
4	00011	$\begin{aligned} & 0000101000 \\ & 0001010001 \end{aligned}$	$R=R+D$ $R>0$: left shift 1 into Isb
5	00011	$\begin{aligned} & 1111110001 \\ & 1111100010 \end{aligned}$	$\begin{gathered} R=R-D \\ R<0: \text { left shift } 0 \text { into lsb } \end{gathered}$
6	00011	$\begin{aligned} & 0001000010 \\ & 0010000101 \end{aligned}$	$\begin{gathered} R=R+D \\ R>0: \text { left shift } 1 \text { into lsb } \end{gathered}$

\qquad

Done		0001000101	right shift the left half of R by 1 result $=5$, remainder $=2$

15. Floating point numbers represent a "richer" set of values than integer numbers. Nevertheless, processors support integer numbers and programs frequently use them. What primary advantage does integer numbers and operations offer over floating point numbers and operations?
integer operations are significantly faster, programs frequently use discrete values thus, using integer for common operations/values offers a big performance benefit.
16. Using IEEE 754 representation for single precision floating point, give the 32-bit binary encoding for the numbers below. Show the sign, exponent, and significand.

Number: -2.40625
Float: \qquad
answer: sign is -1 , so sign bit will be $=1$
integral part is $2=10 \mathrm{~b}$
fractional part:
$0.40625 \times 2=$
$0.8125 \times 2=$
0.8125

1st bit is 0
$0.625 \times 2=$
1.625

2nd bit is 1
$0.25 \times 2=$
1.25

3 rd bit is 1
4th bit is 0 5th bit is 1
$0.5 \times 2=$
1.0
thus, the number is 10.01101
we need to normalize the number by shifting the decimal point to the left one position.
in the normalized form, we will shift back to the right, thus the exponent is 2^{1}
the normalized form is 1.001101×2^{1}
now, we compute the exponent in biased form: biased exp $=1+127=128$
in binary, the biased exponent $=10000000 \mathrm{~b}$
finally, we have the representation:

sign	exp	significand
1	10000000	$0011010 . .0$
1 bit	8 bits	23 bits

Number: 11.2265625
Float: \qquad
answer. sign is + , so the sign bit is 0
integral part is 11 , so in binary it is 1011b
fractional part is 0.2265625
$0.2265625 \times 2=0.453125$
$0.453125 \times 2=\quad 0.90625$
$0.90625 \times 2=$
1.8125
$0.8125 \times 2=$
1.625
$0.625 \times 2=$
1.25
$0.25 \times 2=$
0.5
$0.5 \times 2=$
1.0
thus, we have 1011.0011101

Name \qquad
we put into normal form: $1.0110011101 \times 2^{3}$
put the exponent into biased form: biased exp $=3+127=130$
in binary, biased exp = 10000010b
finally, we have the representation:

sign	exp	significand
0	10000010	$01100111010 \ldots 0$
1 bit	8 bits	23 bits

Number: - 0.00244140625
Float: \qquad
answer: sign is - , so the sign bit is 1 integral part is 0 , so in binary it is 0 b fractional part is 0.00244140625

$0.00244140625 \times 2=$	0.0048828125
$0.0048828125 \times 2=$	0.009765625
$0.009765625 \times 2=$	0.01953125
$0.01953125 \times 2=$	0.0390625
$0.0390625 \times 2=$	0.078125
$0.078125 \times 2=$	0.15625
$0.15625 \times 2=$	0.3125
$0.3125 \times 2=$	0.625
$0.625 \times 2=$	1.25
$0.25 \times 2=$	0.5
$0.5 \times 2=$	1.0

thus, we have 0.00000000101
we put into normal form: 1.01×2^{-9}
put the exponent into biased form: biased exp $=-9+127=118$
in binary, biased exp = 01110110b
finally, we have the representation:

sign	exp	significand
1	01110110	$010 \ldots 0$
1 bit	8 bits	23 bits

17. Suppose we have the following numbers encoded as IEEE 754 single precision floats. is the decimal value (i.e., base 10) for each number:

sign	exp	significand
0	10000001	$011010 \ldots 0$
1 bit	8 bits	23 bits

answer. sign bit is 0 , so it's positive
biased $\exp =10000001 \mathrm{~b}=129$, so actual $\exp =129-127=2$
thus, we have 1.01101×2^{2}
moving the decimal point to the right 2 places, we get: 101.101 b
integral part is $101 \mathrm{~b}=5 \mathrm{~d}$
fractional part is $101 \mathrm{~b}=2^{-1}+2^{-3}=0.625$

Name \qquad
so, the answer is 5.625 d

sign	\exp	significand
1	01111011	$10 \ldots 0$
1 bit	8 bits	23 bits

answer: sign bit is 1 , so it's negative
biased $\exp =01111011 \mathrm{~b}=123$, so actual $\exp =123-127=-4$
thus, we have 1.1×2^{-4}
moving the decimal poit to the left 4 places, we get 0.00011
integral part is 0
fractional part is $2^{-4}+2^{-5}=0.09375$
so, the answer is -0.09375
18. When the bias is 127 , give the binary encoding for the number 39 d .
biased number $=39+127=166 d=10100110 b$
19. When the bias is 1023, give the binary encoding for the number -39d.

$$
\text { biased number }=-39+1023=984 d=1111011000 b
$$

20. Biased representation for the exponent offers a significant advantage over other representations, like two's complement. What is the advantage?
they allow the use of integer (faster) operation to do simple sorting based on the exponent
21. Consider the sum of products boolean equation: $A^{\prime} B C+A B C+A^{\prime} B^{\prime} C$. Give the truth table representation for this boolean equation.

This truth table has eight rows with three input values (A, B, C) and one output. Label the rows by counting in bianry from 0 to 7 . Row 011 (i.e., where $A=0, B=1, C=1$) has a 1 in the output, row 111 has a 1 in the output, and 001 has a 1 in the output. All other output values are 0.
22. For the boolean equation and truth table from question 21, give its Karnaugh map.
23. Based on the Karnaugh map from question 22, can the boolean equation be minimized? If so, give its minimized form. Otherwise, simply list the original equation to answer this question.
24. For your answer from question 23 , draw the circuit that implements the boolean equation.
\qquad
25. Give the minimized boolean equation for the Karnaugh map below.

	CD					
		$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	
	$\mathbf{0 0}$	0	0	0	0	
	$\mathbf{0 1}$	0	1	1	0	
	$\mathbf{1 1}$	0	1	1	0	
	$\mathbf{1 0}$	0	0	0	0	

In $A B$ (01 and 11), A is both 0 and 1, so it can be eliminated. In CD (01 and 11), C is both 0 and 1 , so it can be eliminated. Thus, we have just BD for this equation.
26. Give the minimized boolean equation for the Karnaugh map below.

	CD					
	$\mathbf{A B}$	$\mathbf{0 0}$	0	$\mathbf{0 1}$	$\mathbf{1 1}$	
	$\mathbf{0 0}$	0	1	0	1	
	$\mathbf{0 1}$	0	1	0	1	
	$\mathbf{1 1}$	0	1	0	0	
	$\mathbf{1 0}$		0	0		

Look at the column for C'D (01): A and B have both 0 and 1, so they can be eliminiated, giving only $C^{\prime} D$. Now, consider the column for $C D^{\prime}$ (10): B is both 0 and 1, thus it can be eliminated. This minterm is $A^{\prime} C D$ '. The minimized sum of products is: $C^{\prime} D+A^{\prime} C D$ '.
27. Suppose we want to construct a $4: 1$ multiplexor. This multiplexor selects as an output one of its four inputs. How many rows are in the full truth table for this operation?

A 4:1 mux has six input signals. There are four input "data signals" (to select among) and two "control signals" that select one of the four input data signals to steer to the output. Thus, the full truth table has 2^{6} rows.
28. Using AND, OR, and NOT gates, draw the circuit for the boolean equation from question 26. Circuit for $C^{\prime} D+A^{\prime} C D^{\prime}$

Name \qquad
29. Using only NAND gates, draw a minimal circuit for the boolean equation $A^{\prime} B^{\prime}+C D$. Hint: Use straightforward substitutions of ANDs, ORs and NOTs with the NAND equivalents (see lecture slides). Observe whether any of the operations after substitution can be eliminated.

Simplified circuit for $A^{\prime} B^{\prime}+C D$ (using NAND gates)

30. Prove that your circuit from question 29 is equivalent to $A^{\prime} B^{\prime}+C D$. Hint: Write a boolean equation for the circuit and transform it, step-by-step, into $A^{\prime} B^{\prime}+C D$ with Boolean algebra.

The equation for the circuit is $\neg\left(\neg(\neg A \wedge \neg B) \wedge \neg\left(C^{\wedge} D\right)\right)$. We can transform this as:

$$
\begin{array}{ll}
\neg(\neg(\neg A \wedge \neg B) \wedge \neg(C \wedge D)) & \text { Initial equation } \\
=\neg((\neg \neg A \vee \neg \neg B) \wedge(\neg C \vee \neg D)) & \\
=\neg((A \vee B) \wedge(\neg C v \neg D)) & \text { Sistribute inner nots with DeMorgan's Law } \\
=\neg(A \vee B) v \neg(\neg C \vee \neg D) & \text { Distribute outer not with DeMorgan's Law } \\
=(\neg A \wedge \neg B) \vee(\neg \neg C \wedge \neg \neg D) & \text { Distribute not with DeMorgan's law } \\
=(\neg A \wedge \neg B) \vee(C \wedge D) & \text { Simplify the "not-not" and we're done. }
\end{array}
$$

thus, we have arrived at $A^{\prime} B^{\prime}+C D$ (using different notation).
31. Using only NOR gates, draw a minimal circuit for the boolean equation $A^{\prime} B+C D$. (Can you prove this circuit is equivalent to $A^{\prime} B^{\prime}+C D$?)

This exercise is left to the reader to solve. (Do the substitution as in problem 17 and then simplify the circuit with Boolean algebra, if possible.)
32. Suppose we want to implement a 1-bit ALU that can perform the logical operations OR, AND, XOR and NOT. This 1-bit ALU takes as input two 1-bit numbers: A and B. It produces as an output a single 1-bit number: C. If the ALU does a unary NOT operation, it ignores B. To build this ALU, you can use OR, AND, XOR and NOT gates. You also need a multiplexor to select among the four operations. Answer the following questions:
a) How many control signals are needed to select the operation to do with the ALU?

2 bits (signals) to select one of the four operations
b) How many inputs does the ALU's multiplexor have?

6 inputs: 4 values from OR, AND, XOR, and NOT gates, plus 2 control signals

Name \qquad
c) Draw the ALU circuit (using symbols for a mux, AND, OR, NOT and XOR).

Four Function 1-bit ALU

33. Larger muxes can be constructed from smaller ones. For example, a $4: 1$ mux can be constructed with 2:1 muxes. A 4:1 mux selects among four inputs for its one output. Draw a circuit diagram for a 4:1 mux, built with 2:1 muxes. (Hint: You need three 2:1 muxes.)

4:1 mux built with 2:1 muxes (S 1 and S 2 are select signals)

S1 and $S 2$ select one of the four inputs A, B, C, or D to steer to the output $O . S 1$ and $S 2$ is essentially a 2-bit selector: value $00(S 2=0, S 1=0)$ selects $A, 01(S 2=0, S 1=1)$ selects B, $10(S 2=1$, $S 1=0)$ selects C and $11(S 2=1, S 1=1)$ selects D.

Note: There are other ways to build muxes, but this is the most straightforward.
\qquad
34. Now, let's consider a $3: 1$ mux built with $2: 1$ muxes. Draw a diagram that shows the circuit. (Hint: You need two 2:1 muxes.)

3:1 mux built with 2:1 muxes (S 1 and S 2 are select signals)

Note: The selection values (i.e., signal values for S1 and S2) are not all used. In particular, the values used are 00 (select A), 01 (select B), and $1 X$ (select C, where X is "don't care" for S1).
35. Suppose a logic gate (OR, AND, NOT) takes 1 ns to compute a value. The time it takes a gate to compute a value is a "delay". If multiple gates are put together in succession, the total time for the combinational circuit will be the sum of the gate delays. For example, a circuit that has an AND gate followed by an OR gate has a delay of 2 ns (1ns for each gate). As another example, a circuit that has an AND gate that operates in paralle/ with an OR gate has a delay of 1ns (since the OR and AND are done in parallel). If each gate takes 1 ns , compute the total delay for a 16:1 mux built with $2: 1$ muxes. Hint: Compute the time for a single $2: 1$ mux. Next, determine how many muxes are connected in succession. The "longest path" through this circuit gives the total delay.

First, note that the longest path in a 2:1 mux has three gates: NOT \rightarrow AND $->O R$ (see diagram in logic1.pdf, slide \#26 on page 13). Thus, a 2:1 mux has a 3 * 1ns = 3ns delay.

Second, let's compute the number of 2:1 muxes that have to be traversed in a 16:1 mux. This structure is similar to the one from problem 21, except it has more "levels". There are four levels: level 1 has 8 muxes, level 2 has 4 muxes, level 3 has 2 muxes and level 4 has 1 mux. To traverse the full 16:1 mux, one mux in each level has to be traversed.

Finally, with four levels and 3ns per mux (level), the total delay is $4 * 3 n s=12 n s$.
Note the relationship to binary trees!

