Name \qquad

CS/COE 0447 Example Problems for Exam 2

Spring 2011

1) Show the steps to multiply the 4-bit numbers 3 and 5 with the "fast shift-add multipler". Use the table below. List the multiplicand (M) and product (P) in binary. In the field "step", write "ADD" when the multiplicand is added. Write "SHIFT" to indicate when the product is shifted. In the iteration "Start" write the initial values for the mutiplicand and product. You may not need all steps (rows) in the table.

Iter.	Multiplicand (M)	Product (P)	Step
Start	0011	00000101	set product $=0$ s: R
1	0011	001110101 00011010	lsb $=1=>+M$ shift right 1
2	0011	00011010 00001101	lsb $=0=>+0$ shift right 1
3	0011	00111101 00011110	lsb $=1=>+M$ shift right 1
4	0011	00011110	lsb $=0=>+0$ shift right 1
5	NOT NEEDED		
6	NOT NEEDED	NOT NEEDED	
7			

\qquad
2) Show the steps to multiply an 6-bit number 17 and 3 with Booth's algorithm. Use the table below. List the multiplicand and product in binary. In the field "step", write "ADD", "SUB", or "NO OP" to indicate which operation is done on each iteration.

Iter.	Multiplicand (M)	Product (P)	Step
Start	010001 (negation is 101111)	0000000000110	set P, with pad bit
1	010001	$\begin{aligned} & 1011110000110 \\ & 1101111000011 \end{aligned}$	$l s b s=10:-M$ shift right arithmetic
2	010001	$\begin{aligned} & 1101111000011 \\ & 1110111100001 \end{aligned}$	$l s b s=11:+0$ shift right arithmetic
3	010001	0011001100001 0001100110000	$l s b s=01:+M$ shift right arithmetic
4	010001	$\begin{aligned} & 0001100110000 \\ & 0000110011000 \end{aligned}$	$l s b s=00:+0$ shift right arithmetic
5	010001	$\begin{aligned} & 0000110011000 \\ & 0000011001100 \end{aligned}$	$l s b s=00:+0$ shift right arithmetic
6	010001	0000011001100 0000001100110	$l s b s=00:+0$ shift right arithmetic
7	NOT NEEDED	Final answer is: 000000110011	N/A

3) Explain how the "fast shift-add multiply" improves over the original "slow shift-add multiply". Be sure to indicate what hardware changes make the "fast version" faster than the "slow version".
combines registers, reduces size of ALU \& does 3-steps in paralle. last two make it fast.
\qquad
4) Consider restoring division with hardware design \#3 (the design with a 32-bit divisor and a 64-bit remainder register that holds the remainder and quotient). Assume the quotient and divisor are 5 bit unsigned numbers. Fill in the table below for $17 / 3$. For each step, indicate what shift, subtraction, and addition operations are done in the "Step Notes" column.

Iteration	Divisor (D)	Remainder (R)	Notes
Init	00011	0000010001	Initial values
1	00011	$\begin{aligned} & 1110110001 \\ & 0000100010 \end{aligned}$	$\begin{aligned} & R=R-D \\ & R<0:+D, \text { left shift } 0 \text { into } I s b \end{aligned}$
2	00011	$\begin{aligned} & 1111000010 \\ & 0001000100 \end{aligned}$	$\begin{aligned} & R=R-D \\ & R<0:+D, \text { left shift } 0 \text { into } I s b \end{aligned}$
3	00011	$\begin{aligned} & 1111100100 \\ & 0010001000 \end{aligned}$	$\begin{aligned} & R=R-D \\ & R<0:+D, \text { left shift } 0 \text { into } s b \end{aligned}$
4	00011	$\begin{aligned} & 0000101000 \\ & 0001010001 \end{aligned}$	$\begin{aligned} & R=R-D \\ & R>0 \text { : left shift } 1 \text { into lsb } \end{aligned}$
5	00011	$\begin{aligned} & 1111110001 \\ & 0010100010 \\ & \hline \end{aligned}$	$\begin{aligned} & R=R-D \\ & R<0:+D, \text { left shift } 0 \text { into } I s b \end{aligned}$
6	00011	$\begin{aligned} & 0001000010 \\ & 0010000101 \end{aligned}$	$\begin{aligned} & R=R-D \\ & R>0 \text { : left shift } 1 \text { into lsb } \end{aligned}$
Done	00011	0001000101	Right shift the left half of R by 1 Result $=5$, Remainder $=2$

5) Suppose we want to do the computation $S=A+B . A$ and B are positive 2 's complement 8 bit binary numbers. Give a boolean expression that indicates whether there was an overflow when these numbers are added. To represent a certain bit i in A, B or S, use $A_{i,} B_{i}$ or S_{i}. E.g., bit position 3 in A is A_{3}. Assume the bits are numbered 0 to 7 (right to left).
overflow happens when input values have same sign but output has different one
Overflow $=\left(A_{7} \wedge B_{7} \wedge \neg S_{7}\right) O R\left(\neg A_{7} \wedge \neg B_{7} \wedge S 7\right)$
6) Give the negation in one's complement binary representation (5 bit numbers) for the decimal numbers:

5d Negation (in one's complement binary)
10d Negation (in one's complement binary)
\qquad 11010 \qquad
_10101 \qquad
-15d Negation (in one's complement binary) \qquad
01111
\qquad
7) Give the negation in two's complement binary representation (5 bits) for the decimal numbers:

11d Negation (in two's complement binary) \qquad
15d Negation (in two's complement binary)
_ 10001 \qquad
-13d Negation (in two's complement binary) \qquad 01101
8) Give Booth's encoding for the 8-bit numbers:
-19d Booth's encoding
$00-11$ 0-11-1 \qquad
-19 in two 's comp: 11101101
-19 in two's comp with 0 pad: 111011010
Booth's encoding: 00-11 0-11-1
check yourself: $-2^{5}+2^{4}-2^{2}+2^{1}-2^{0}=-32+16-4+2-1=-19$
27d Booth's encoding \qquad 0010-110-1 \qquad
27 in two 's comp: 00011011
27 in two's comp with 0 pad: 000110110
Booth's encoding: 0010-110-1
check yourself: $2^{5}-2^{3}+2^{2}-2^{0}=32-8+4-1=27$
62d Booth's encoding \qquad
62 in two's comp: 00111110
62 in two's comp with 0 pad: 001111100
Booth's encoding: 0100 00-10
check yourself: $2^{6}-2^{1}=62$
9) Give two reasons to use Booth's algorithm (encoding) to improve the multiplication hardware.

1. it can reduce the number of addition operations
2. it handles signed multiplication
10) Floating-point numbers represent a "richer" set of values than integer numbers. Nevertheless, processors support integer numbers and programs frequently use them. What primary advantage does integer numbers and operations offer over floating point numbers and operations?
integer operations are significantly faster, programs frequently use discrete values thus, using integer for common operations/values offers a big performance benefit.

Name \qquad
11) Using 1-bit adders, draw the circuit for a 4-bit ripple-carry addition unit. See book / class lecture slides.
12) Using 1-bit adders and 1-bit inverters (i.e., the not of a bit), draw a circuit for a 4-bit ripplecarry subtract unit.

See book / class lecture slides (drawn on the board during class).
13) Consider the sum of products boolean equation: $A^{\prime} B C+A B C+A^{\prime} B^{\prime} C$. Give the truth table representation for this boolean equation. (A^{\prime} is NOT A and + is OR)

This truth table has eight rows with three input values (A, B, C) and one output. Label the rows by counting in binary from 0 to 7 . Row 011 (i.e., where $A=0, B=1, C=1$) has a 1 in the output, row 111 has a 1 in the output, and 001 has a 1 in the output. All other output values are 0.
14) Suppose you want to design a hardware circuit that has two inputs A and B, and one output O. The output O has the value 1 when exactly one input (A / B) is a 1 . Give the truth table for this circuit design.

INPUTS		OUTPUT
\boldsymbol{A}	\boldsymbol{B}	\mathbf{O}
0	0	0
0	1	1
1	0	1
1	1	0
(this		exclusive-OR!)

15) For question 15 , what is the boolean equation for the truth table?

$$
O=A^{\prime} B+A B^{\prime}
$$

16) Here is a truth table. What is the boolean equation for O ?

INPUTS			OUTPUT
\mathbf{A}	\mathbf{B}	\mathbf{C}	$\underline{\mathbf{O}}$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$
O=A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}
$$

\qquad
17) Let's consider a 4-bit adder. If each 1-bit adder takes 2 ns to compute an output (1-bit result and carry-out), how long does it take to compute the full 4-bit result?
it takes $4 * 2 n s=8 n s$ (Note: We'll have more to say about this soon.)
18) Consider problem 17 again. This time, let's compute the time for subtraction (A-B). Suppose the 1-bit inverter (used to complement the B input of each 1 -bit adder) takes 1 ns. How long does it take to compute an answer with this subtraction unit? (Be careful: Think about whether the invert operations can be done simultaneously.)
it takes 1ns additional for the first invert (9ns total); the rest are done in parallel. the first choice is actually faster, so I'd pick this one, assuming "costs" are the same.
19) Consider the logic function: $F=A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C+A B C$. Draw a K-map for this function, circle the minimum terms (1s), and give the simplified Boolean equation.

		C	
		0	1
	00		1
	01	1	1
	11		1
	10		

Simplified form: $F=A^{\prime} B+A C$
20) Given the K-map below, what is the simplified Boolean equation?

		CD			
		$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{A B}$	$\mathbf{0 0}$	0	0	0	0
	$\mathbf{0 1}$	0	0	0	0
	$\mathbf{1 1}$	0	1	1	0
	$\mathbf{1 0}$	0	1	1	0

$$
F=A D
$$

\qquad
21) Given the K-map below, what is the simplified Boolean equation?

		CD			
		$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
	$\mathbf{0 0}$	1	1	0	0
	$\mathbf{0 1}$	0	0	1	
				1	1
	$\mathbf{1 1}$	0	0	0	1
	$\mathbf{1 0}$	0	0	0	

$$
F=A^{\prime} B^{\prime} C^{\prime}+B C
$$

22) Consider the ALU below. Note this ALU has some minor wiring differences than the one described in class. Answer the questions below for this ALU.

To perform addition, how should Ainvert, Binvert, CarryIn and Oper be set (if the input doesn't matter, use an ' X ')?
\qquad
Ainvert=0, Binvert=1, CarryIn=0, Oper=10

To perform an OR operation, how should Ainvert, Binvert, CarryIn and Oper be set (if the input doesn't matter, use an ' X ')?
Ainvert=0, Binvert=1, CarryIn=X, Oper=00

To perform a NAND operation, how should Ainvert, Binvert, CarryIn and Oper be set (if the input doesn't matter, use an ' X ')?
Ainvert=1, Binvert=0, CarryIn=X, Oper=00

To perform a NOR operation, how should Ainvert, Binvert, CarryIn and Oper be set (if the input doesn't matter, use an ' X ')?

Ainvert=1, Binvert=0, CarryIn=X, Oper=01

\qquad
23) Consider the 4-bit ALU made with the 1-bit ALU from the previous questions. Suppose, Ainvert=0, Binvert=0, CarryIn=1, $A=0100, B=0011$, and Oper=10. What is Result?

Result $=0001$ (this is subtract)
24) Now, suppose, Ainvert $=0$, Binvert $=0$, CarryIn $=1, A=0101, B=0011$, and Oper $=00$. What is the result?

Result $=1101$ (Binvert causes B to be inverted to 1100 , which is OR'ed with A)

