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CS/COE 0447 Example Problems for Exam 2 
Spring 2011 

1) Show the steps to multiply the 4-bit numbers 3 and 5 with the “fast shift-add multipler”. Use 
the table below. List the multiplicand (M) and product (P) in binary. In the field “step”, write 
“ADD” when the multiplicand is added. Write “SHIFT” to indicate when the product is 
shifted. In the iteration “Start” write the initial values for the mutiplicand and product. You 
may not need all steps (rows) in the table.  

Iter.  Multiplicand (M) Product (P) Step 

Start 
 

0011 0000 0101 set product=0s:R 

1 
 

0011 0011 0101 
0001 1010 

lsb=1 => +M 
shift right 1 

2 
 

0011 0001 1010 
0000 1101 

lsb=0 => +0 
shift right 1 

3 
 

0011 0011 1101 
0001 1110 

lsb=1 => +M 
shift right 1 

4 
 

0011 0001 1110 
0000 1111 

lsb=0 => +0 
shift right 1 

5 
 

NOT NEEDED   

6 
 

NOT NEEDED   

7 
 

NOT NEEDED   

 

 

 

 



Name ______________________________________________ 

2 of 9 

2) Show the steps to multiply an 6-bit number 17 and 3 with Booth’s algorithm. Use the table 
below. List the multiplicand and product in binary. In the field “step”, write “ADD”, “SUB”, or 
“NO OP” to indicate which operation is done on each iteration.   

Iter.  Multiplicand (M) Product (P) Step 

Start 
 

010001 
(negation is 101111) 

000000 000011 0 set P, with pad bit 

1 
 

010001 101111 000011 0 
110111 100001 1 

lsbs=10: -M 
shift right arithmetic 

2 
 

010001 110111 100001 1 
111011 110000 1 

lsbs=11: +0 
shift right arithmetic 

3 
 

010001 001100 110000 1 
000110 011000 0 

lsbs=01: +M 
shift right arithmetic 

4 
 

010001 000110 011000 0 
000011 001100 0 

lsbs=00: +0 
shift right arithmetic 

5 
 

010001 000011 001100 0 
000001 100110 0 

lsbs=00: +0 
shift right arithmetic 

6 
 

010001 000001 100110 0 
000000 110011 0 

lsbs=00: +0 
shift right arithmetic 

7 
 

NOT NEEDED Final answer is: 
000000 110011  

N/A 

 

3) Explain how the “fast shift-add multiply” improves over the original “slow shift-add multi-
ply”. Be sure to indicate what hardware changes make the “fast version” faster than the 
“slow version”. 

 combines registers, reduces size of ALU & does 3-steps in paralle. last two make it fast. 
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4) Consider restoring division with hardware design #3 (the design with a 32-bit divisor and 

a 64-bit remainder register that holds the remainder and quotient). Assume the quotient 
and divisor are 5 bit unsigned numbers. Fill in the table below for 17 / 3. For each step, in-
dicate what shift, subtraction, and addition operations are done in the “Step Notes” column.  

Iteration Divisor (D) Remainder (R) Notes 
Init 00011 00000 10001 Initial values 
1 00011 11101 10001 

00001 00010 
R=R-D 
R<0: +D, left shift 0 into lsb 

2 00011 11110 00010 
00010 00100 

R=R-D 
R<0: +D, left shift 0 into lsb 

3 00011 11111 00100 
00100 01000 

R=R-D 
R<0: +D, left shift 0 into lsb 

4 00011 00001 01000 
00010 10001 

R=R-D 
R>0: left shift 1 into lsb 

5 00011 11111 10001 
00101 00010 

R=R-D 
R<0: +D, left shift 0 into lsb 

6 00011 00010 00010 
00100 00101 

R=R-D 
R>0: left shift 1 into lsb 

Done 00011 00010 00101 Right shift the left half of R by 1 
Result = 5, Remainder = 2 

 

5) Suppose we want to do the computation S = A + B. A and B are positive 2’s complement 8-
bit binary numbers. Give a boolean expression that indicates whether there was an overflow 
when these numbers are added. To represent a certain bit i in A, B or S, use Ai, Bi or Si. 
E.g., bit position 3 in A is A3.  Assume the bits are numbered 0 to 7 (right to left).   

 
  overflow happens when input values have same sign but output has different one 
    Overflow = (A7 ∧ B7 ∧ ¬S7) OR (¬A7  ∧ ¬B7  ∧ S7) 
 

6) Give the negation in one’s complement binary representation (5 bit numbers) for the deci-
mal numbers:  

  5d  Negation (in one’s complement binary)   ___11010_____________ 
 
  10d Negation (in one’s complement binary)   ___10101_____________ 
 
  -15d Negation (in one’s complement binary)   ___01111_____________ 
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7) Give the negation in two’s complement binary representation (5 bits) for the decimal num-
bers:  

  11d Negation (in two’s complement binary)   ___10101_____________ 
 
  15d Negation (in two’s complement binary)   ___10001_____________ 
 
  -13d Negation (in two’s complement binary)   ___01101_____________ 
 

8) Give Booth’s encoding for the 8-bit numbers: 
  -19d Booth’s encoding    _______00-11 0-11-1__________________ 
 
  -19 in two’s comp: 1110 1101 
  -19 in two’s comp with 0 pad: 1110 1101 0 
  Booth’s encoding: 00-11 0-11-1   
  check yourself: -25+24-22+21-20 = -32+16-4+2-1=-19 
 
  27d Booth’s encoding    ________ 0010 -110-1_________________ 
 
  27 in two’s comp: 0001 1011 
  27 in two’s comp with 0 pad: 0001 1011 0 
  Booth’s encoding: 0010 -110-1 
  check yourself: 25-23+22-20 = 32 - 8 + 4 -1 = 27 
 
  62d Booth’s encoding   ________0100 00-10__________________ 
 
  62 in two’s comp: 0011 1110 
  62 in two’s comp with 0 pad: 0011 1110 0 
  Booth’s encoding: 0100 00-10 
  check yourself: 26-21 = 62 
 

9) Give two reasons to use Booth’s algorithm (encoding) to improve the multiplication hard-
ware.  

  1. it can reduce the number of addition operations 
  2. it handles signed multiplication  

10) Floating-point numbers represent a “richer” set of values than integer numbers. Neverthe-
less, processors support integer numbers and programs frequently use them. What primary 
advantage does integer numbers and operations offer over floating point numbers and op-
erations?  

 integer operations are significantly faster, programs frequently use discrete values 
 thus, using integer for common operations/values offers a big performance benefit.  
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11) Using 1-bit adders, draw the circuit for a 4-bit ripple-carry addition unit. 
  See book / class lecture slides. 
 

12) Using 1-bit adders and 1-bit inverters (i.e., the not of a bit), draw a circuit for a 4-bit ripple-
carry subtract unit.  

  See book / class lecture slides (drawn on the board during class). 

13) Consider the sum of products boolean equation: A’BC + ABC + A’B’C. Give the truth table 
representation for this boolean equation. (A’ is NOT A and + is OR) 

This truth table has eight rows with three input values (A, B, C) and one output. Label the rows 
by counting in binary from 0 to 7. Row 011 (i.e., where A=0, B=1, C=1) has a 1 in the output, 
row 111 has a 1 in the output, and 001 has a 1 in the output. All other output values are 0.  

14) Suppose you want to design a hardware circuit that has two inputs A and B, and one output 
O. The output O has the value 1 when exactly one input (A/B) is a 1. Give the truth table 
for this circuit design. 

  INPUTS OUTPUT 
  A B  O 
  0 0  0 
  0 1  1 
  1 0  1 
  1 1  0 
  (this is exclusive-OR!) 
 
 

15) For question 15, what is the boolean equation for the truth table?  

  O = A’B + AB’ 

16) Here is a truth table. What is the boolean equation for O? 

  INPUTS   OUTPUT 
  A B C   O 
  0 0 0   0 
  0 0 1   1 
  0 1 0   1 
  0 1 1   0 
  1 0 0   1 
  1 0 1   0 
  1 1 0   0 
  1 1 1   0 
 
 
  O=A’B’C + A’BC’ + AB’C’ 
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17) Let’s consider a 4-bit adder. If each 1-bit adder takes 2ns to compute an output (1-bit result 
and carry-out), how long does it take to compute the full 4-bit result?  

 it takes 4 * 2ns = 8ns (Note: We’ll have more to say about this soon.) 

18) Consider problem 17 again. This time, let’s compute the time for subtraction (A-B). Suppose 
the 1-bit inverter (used to complement the B input of each 1-bit adder) takes 1ns. How long 
does it take to compute an answer with this subtraction unit? (Be careful: Think about 
whether the invert operations can be done simultaneously.) 

 it takes 1ns additional for the first invert (9ns total); the rest are done in parallel.  
 the first choice is actually faster, so I’d pick this one, assuming “costs” are the same. 
 

19) Consider the logic function: F = A’BC’ + A’BC + AB’C + ABC. Draw a K-map for this func-
tion, circle the minimum terms (1s), and give the simplified Boolean equation. 
 
   

C  
0 1 

00   
01 1 1 
11  1 

AB 

10  1 
 
 Simplified form: F = A’B + AC 

20) Given the K-map below, what is the simplified Boolean equation? 

  CD 

  00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 0 1 1 0 
AB 

10 0 1 1 0 

 F = AD 
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21) Given the K-map below, what is the simplified Boolean equation? 

  CD 

  00 01 11 10 

00 1 1 0 0 

01 0 0 1 1 

11 0 0 1 1 
AB 

10 0 0 0 0 

 F = A’B’C’ + BC 

 

 

22) Consider the ALU below. Note this ALU has some minor wiring differences than the one 
described in class. Answer the questions below for this ALU. 

 

 

To perform addition, how should Ainvert, Binvert, CarryIn and Oper be set (if the input doesn’t 
matter, use an ‘X’)? 
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 Ainvert=0, Binvert=1, CarryIn=0, Oper=10 

To perform an OR operation, how should Ainvert, Binvert, CarryIn and Oper be set (if the input 
doesn’t matter, use an ‘X’)? 

 Ainvert=0, Binvert=1, CarryIn=X, Oper=00 

To perform a NAND operation, how should Ainvert, Binvert, CarryIn and Oper be set (if the in-
put doesn’t matter, use an ‘X’)? 

 Ainvert=1, Binvert=0, CarryIn=X, Oper=00 

To perform a NOR operation, how should Ainvert, Binvert, CarryIn and Oper be set (if the input 
doesn’t matter, use an ‘X’)? 

 Ainvert=1, Binvert=0, CarryIn=X, Oper=01 
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23) Consider the 4-bit ALU made with the 1-bit ALU from the previous questions. Suppose, 
Ainvert=0, Binvert=0, CarryIn=1, A=0100, B=0011, and Oper=10. What is Result? 

  Result = 0001 (this is subtract) 

24) Now, suppose, Ainvert=0, Binvert=0, CarryIn=1, A=0101, B=0011, and Oper=00. What 
is the result? 

  Result = 1101 (Binvert causes B to be inverted to 1100, which is OR’ed with A) 


