Name \qquad

CS/COE 0447 Example Problems for Exam 2
 Fall 2010

1. This time, consider a non-leaf function lisa. This function has no arugments or return value. The return address is on the stack at offset 12 and the activation record is 12 bytes. Give a sequence of three MIPS instructions that cause a function return.

$l w$	$\$ r a, 12(\$ s p)$	\# loads the return address
addi	$\$ s p, \$ s p, 12$	\# adjust the stack pointer to pop the activation frame
$j r$	$\$ r a$	\# do the return

2. Suppose the stack pointer ($\$ \mathrm{sp}$) has the value 0xFF0000020 and the activation record has two halfword fields. Give a single instruction that will load the second field in the activation record into register $\$ \mathrm{t} 0$.
lh $\quad \$ t 0,2(\$ s p) \quad$ \# current $\$$ sp is the $A R$, 2nd field is in 2nd halfword
For the next questions, consider the program code below (with line numbers):
\# assume $\$ \mathrm{sp}=0 \times \mathrm{xFFFF} 0020$
0
1
li $\$ s 0,1$
li $\$ s 1,2$
jal _bart
j quit
_bart: addi \$sp,\$sp,-8
sw \quad \$s0,0 (\$sp)
sw $\$ r a, 4(\$ s p)$
jal _homer
lw \$ra, 4 (\$sp)
lw $\$ \mathrm{~s} 0,0(\$ \mathrm{sp})$
addi $\$ s p, \$ s p, 8$
jr \$ra
_homer: addi $\$ s p, \$ s p,-4$
sw $\$ \mathrm{~s} 1,0(\$ \mathrm{sp})$
addi $\$ \mathrm{~s} 1, \$ 0,10$
move $\$ v 0, \$ s 1$
lw $\$ \mathrm{~s} 1,0(\$ \mathrm{sp})$
addi $\$ s p, \$ s p, 4$
jr \$ra
18
19
quit:
....
3. Give the value of $\$ s p$ on each line from the code:

Line 5: $\quad \$$ sp's value is ___ OxFFFF0018
Line 8: $\quad \$$ sp's value is ___OxFFFF0018
\qquad
Line 13: $\quad \$$ sp's value is \qquad OxFFFF0014 \qquad
Line 19: $\quad \$$ sp's value is \qquad 0xFFFF0020 \qquad
\qquad
4. Assume memory is all 0 s. Fill in the table below to show the memory contents (as words) after the code above executes (i.e., when line 19 is reached):

Address	Value at this Address
0xFFFF0028	Ox0
0xFFFF0024	Ox0
0xFFFF0020	Ox0 (initial \$sp before line 4)
0xFFFF001C	address of line 3 (return addr)
0xFFFF0018	Ox1 (\$sO stored here line 5)
0xFFFF0014	Ox2 (\$s1 stored here line 12)
0xFFFF0010	Ox0
0xFFFF000C	Ox0

note: this solution corrects the error mentioned in class on 11/16/09.
5. Show the steps to multiply the 4-bit numbers 3 and 5 with the "fast shift-add multipler". Use the table below. List the multiplicand (M) and product (P) in binary. In the field "step", write "ADD" when the multiplicand is added. Write "SHIFT" to indicate when the product is shifted. In the iteration "Start" write the initial values for the mutiplicand and product. You may not need all steps (rows) in the table.

Iter.	Multiplicand (M)	Product (P)	Step
Start	0011	00000101	set product $=0$ s:R
1	0011	00110101 00011010	lsb $=1=>+M$ shift right 1
2	0011	00011010 00001101	lsb $=0=>+0$ shift right 1
3	0011	00111101 00011110	lsb=1 => +M shift right 1
4	0011	00011110 00001111	lsb=0 $=>+0$ shift right 1
5	NOT NEEDED		
6	NOT NEEDED		

\qquad

Iter.	Multiplicand (M)	Product (P)	Step
7	NOT NEEDED		

6. Show the steps to multiply an 6-bit number 17 and 3 with Booth's algorithm. Use the table below. List the multiplicand and product in binary. In the field "step", write "ADD", "SUB", or "NO OP" to indicate which operation is done on each iteration.

Iter.	Multiplicand (M)	Product (P)	Step
Start	010001 (negation is 101111)	0000000000110	set P, with pad bit
1	010001	1011110000110 1101111000011	$l s b s=10:-M$ shift right arithmetic
2	010001	1101111000011 1110111100001	$l s b s=11:+0$ shift right arithmetic
3	010001	0011001100001 0001100110000	$l s b s=01:+M$ shift right arithmetic
4	010001	0001100110000 0000110011000	$l s b s=00:+0$ shift right arithmetic
5	010001	0000110011000 0000011001100	$l s b s=00:+0$ shift right arithmetic
6	010001	0000011001100 0000001100110	$l s b s=00:+0$ shift right arithmetic
7	NOT NEEDED	Final answer is: 000000110011	N/A

7. Explain how the "fast shift-add multiply" improves over the original "slow shift-add multiply". Be sure to indicate what hardware changes make the "fast version" faster than the "slow version".
combines registers, reduces size of $A L U$ \& does 3-steps in paralle. last two make it fast.
8. Suppose we want to do the computation $S=A+B . A$ and B are positive 2 's complement 8 -bit binary numbers. Give a boolean expression that indicates whether there was an overflow when these numbers are added. To represent a certain bit i in A, B or S, use $A_{j,} B_{i}$ or S_{j} E.g., bit position 3 in A is A_{3}. Assume the bits are numbered 0 to 7 (right to left).
overflow happens when input values have same sign but output has different one Overflow $=\left(A_{7} \wedge B_{7} \wedge \neg S_{7}\right) O R\left(\neg A_{7} \wedge \neg B_{7} \wedge S 7\right)$

Name \qquad
9. Give the negation in one's complement binary representation (5 bit numbers) for the decimal numbers:

5d Negation (in one's complement binary) ___11010___
10d
Negation (in one's complement binary) ___10101 \qquad
-15d Negation (in one's complement binary) ___01111__
10. Give the negation in two's complement binary representation (5 bits) for the decimal numbers:

11d
Negation (in two's complement binary) \qquad 10101 \qquad
15d
Negation (in two's complement binary) ___ 10001 \qquad
-13d
Negation (in two's complement binary) \qquad 01101 \qquad
11. Give Booth's encoding for the 8 -bit numbers:
-19d
Booth's encoding \qquad $00-110-11-1$ \qquad
-19 in two's comp: 11101101
-19 in two's comp with 0 pad: 111011010
Booth's encoding: 00-11 0-11-1
check yourself: $-2^{5}+2^{4}-2^{2}+2^{1}-2^{0}=-32+16-4+2-1=-19$
27d
Booth's encoding \qquad 0010-110-1 \qquad
27 in two's comp: 00011011
27 in two's comp with 0 pad: 000110110
Booth's encoding: 0010-110-1
check yourself: $2^{5}-2^{3}+2^{2}-2^{0}=32-8+4-1=27$
62d
Booth's encoding \qquad 0100 00-10 \qquad
62 in two's comp: 00111110
62 in two's comp with 0 pad: 001111100
Booth's encoding: 0100 00-10
check yourself: $2^{6}-2^{1}=62$
12. Give two reasons to use Booth's algorithm (encoding) to improve the multiplication hardware.

1. it can reduce the number of addition operations
2. it handles signed multiplication
\qquad
3. Floating point numbers represent a "richer" set of values than integer numbers. Nevertheless, processors support integer numbers and programs frequently use them. What primary advantage does integer numbers and operations offer over floating point numbers and operations?
integer operations are significantly faster, programs frequently use discrete values thus, using integer for common operations/values offers a big performance benefit.
4. Using 1-bit adders, draw the circuit for a 4-bit ripple-carry addition unit.

See book / class lecture slides.
15. Using 1-bit adders and 1-bit inverters (i.e., the not of a bit), draw a circuit for a 4-bit ripplecarry subtract unit.

See book / class lecture slides (drawn on the board during class).
16. Consider the sum of products boolean equation: $A^{\prime} B C+A B C+A^{\prime} B^{\prime} C$. Give the truth table representation for this boolean equation. (A^{\prime} is NOT A and + is OR)

This truth table has eight rows with three input values (A, B, C) and one output. Label the rows by counting in bianry from 0 to 7 . Row 011 (i.e., where $A=0, B=1, C=1$) has a 1 in the output, row 111 has a 1 in the output, and 001 has a 1 in the output. All other output values are 0.
17. Suppose you want to design a hardware circuit that has two inputs A and B, and one output O. The output O has the value 1 when exactly one input (A / B) is a 1 . Give the truth table for this circuit design.

INPUTS	
\boldsymbol{A}	\underline{B}
0	0
0	1
1	0
1	1
(this is exclusive-OR!)	0

18. For question 15 , what is the boolean equation for the truth table?

$$
O=A^{\prime} B+A B^{\prime}
$$

Name
19. Here is a truth table. What is the boolean equation for O ?

INPUTS			
\mathbf{A}	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\mathbf{O U T P U T}$
0	0	0	$\underline{\mathbf{0}}$
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0
$==^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$			

20. Let's consider a 4-bit adder. If each 1-bit adder takes 2 ns to compute an output (1-bit result and carry-out), how long does it take to compute the full 4-bit result?
it takes 4 * 2ns = 8ns (Note: We'll have more to say about this soon.)
21. Consider problem 17 again. This time, let's compute the time for subtraction (A-B). Suppose the 1 -bit inverter (used to complement the B input of each 1 -bit adder) takes 1 ns. How long does it take to compute an answer with this subtraction unit? (Be careful: Think about whether the invert operations can be done simultaneously.)
it takes 1ns additional for the first invert (9ns total); the rest are done in parallel.
22. Suppose you have a program P. This program executes 1000 regular instructions, 100 floating point multiply instructions, and 5 floating point square root instructions. Assume a regular instruction takes 10 ns , a floating point multiply takes 100 ns and and floating point square root takes 1000 ns. What is the total amount of time (in ns) that the program takes to execute (the "execution time")?

$$
\text { time }=1000 * 10 \mathrm{~ns}+100 * 100 \mathrm{~ns}+5^{*} 1000 \mathrm{~ns}=25000 \mathrm{~ns}
$$

23. Consider the program in question 18. Let's suppose we can improve the floating-point multiply to take 80ns or we can improve the floating-point square root to take 800 ns . We cannot do both improvements. Compute the execution time with both improvements. Which improvement would you do?

$$
\begin{aligned}
& \text { timeA }=1000 * 10 n s+100 * 80 n s+5^{*} 1000 n s=23000 n s \\
& \text { timeB }=1000 * 10 n s+100 * 100 n s+5 * 800 n s=24000 n s \\
& \text { the first choice is actually faster, so I'd pick this one, assuming "costs" are the same. }
\end{aligned}
$$

24. Now, consider the fastest improvement from 19 and the original situation from problem 18. What is the speedup of the improvement versus the original case?

$$
\text { speedup }=\text { slow/fast }=25000 n s / 23000 n s=1.09 \text { speedup }
$$

