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Chapter 2

Symbolic Projections

2.1 Introduction

What are symbolic projections? How can symbolic projections be applied
to pictorial information retrieval and spatial reasoning? A simple example
will �rst be presented to illustrate the concept.
Fig. 2.1(a) shows a picture with a house, a car and a tree. This picture

is called a symbolic picture, as opposed to an actual image, because it
contains objects that have symbolic names: house, tree, car, etc. Suppose
the objective is to �nd out whether there is a tree to the southeast of the
house. The x-projection of the above symbolic picture can be constructed
as follows:
The names of objects in each column of the symbolic picture are pro-

jected onto the x-axis. The < symbol is inserted to distinguish the objects
belonging to di�erent columns. Thus the x-projection is:

x-projection: house car < tree

Similarly, the y-projection is:

y-projection: house < tree < car

FIGURE 2.1. A symbolic picture (a) and its subpicture (b).

Unlike the projections of a mathematical function, the projections of a
symbolic picture are strings. A pair of two symbolic projections is called a
2D string [2].
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The statement \there is a tree to the southeast of a house" corresponds
to the symbolic picture shown in Fig. 2.1(b). This picture has the following
symbolic projections:

x-projection: house < tree

y-projection: house < tree

We immediately notice \house < tree" is a subsequence of \house car
< tree" and \house < tree" is a subsequence of \house < tree < car". In
this case, the two symbolic pictures can be perfectly reconstructed from
the two corresponding pairs of symbolic projections. Therefore, the above
statement can be veri�ed to be true, just by checking the subsequence
property of the 2D strings involved.
The Theory of Symbolic Projection was �rst developed by Chang and co-

workers [2] based upon the above described intuitive concept. It forms the
basis of a wide range of image information retrieval algorithms. It also sup-
ports pictorial-query-by-picture, so that the user of an image information
system can simply draw a picture and use the picture as a query.
Many researchers have since extended this original concept, so that there

is now a rich body of theory as well as empirical results. The extended
Theory of Symbolic Projection can deal with not only point-like objects,
but also objects of any shape and size [3, 4]. Moreover, the Theory can deal
with not only one symbolic picture, but also multiple symbolic pictures,
three-dimensional pictures, a time sequence of pictures, etc. [5].
The purpose of this chapter is to introduce the elements of Symbolic

Projection Theory as a complement of the Theory of Discrete Computed
Tomography. 2D string representations of symbolic pictures are described
in Section 2.2 . The matching of pictures using 2D strings is described in
Section 2.3. The remaining �ve sections review the various applications of
symbolic projections.

2.2 2D string representations of symbolic pictures

Let � be a set of symbols, or the vocabulary. Each symbol could represent
a pictorial object, a pixel, etc.
Let A be the set f '=' , '<', ':' g, where '=', '<' and ':' are three special

symbols not in �. These symbols will be used to specify spatial relationships
between pictorial objects.
A 1D string over � is any string x1 x2 . . .xn, n � 0, where the xi's are

in �.
A 2D string over �, written as (u,v), is de�ned to be
(x1 y1 x2 y2 . . .yn�1 xn, xp(1) z1 xp(2) z2 . . . . zn�1 xp(n))
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where
x1 . . .xn is a 1D string over �;

p: f1, . . . , ng ! f1, . . . , ng is a permutation over f1,. . . , ng;

y1 , . . . , yn�1 is a 1D string over A.

z1 , . . . , zn�1 is a 1D string over A;

We can use 2D strings to represent pictures in a natural way. As an
example, consider the picture shown in Fig. 2.2.

FIGURE 2.2. A picture f .

The vocabulary is � = fa; b; c; dg. The 2D string representing the above
picture f is,
( a = d < a = b < c , a = a < b = c < d )
= (x1 y1 x2 y2 x3 y3 x4 y4 x5, xp(1) z1 xp(2) z2 xp(3) z3 xp(4) z4 xp(5))

where
x1 x2 x3 x4 x5 is adabc;
p(1)=1, p(2)=3, p(3)=4, p(4)=5, p(5)=2;
xp(1) xp(2) xp(3) xp(4) xp(5) is aabcd;
y1 y2 y3 y4 is = < = <;
z1 z2 z3 z4 is = < = <.
In the above, the symbol '<' denotes the left-right spatial relation in

string u, and the below-above spatial relation in string v. The symbol '='
denotes the spatial relation \approximately at the same spatial location
as". The symbol ':' denotes the relation "in the same set as". Therefore,
the 2D string representation can be seen to be the symbolic projection of
picture f along the x- and y- directions.
In the 2D string representation, the operators '=' can be omitted. There-

fore in the above example, the 2D string can be rewritten as (ad < ab < c,
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aa < bc < d).
If we are only interested in the relative spatial relationships between

objects, we can rewrite '<<' to '<' to obtain the reduced 2D string. For
example, the reduced 2D string of (a << b,ab) is (a < b,ab). Other types
of 2D strings can be found in [2].
A symbolic picture f is a mappingM x M ! W , where M = f1, 2, . . . ,

mg, and W is the power set of � (the set of all subsets of V ). The empty
set � then denotes a null object. In Fig. 2.2, the \blank slots" can be �lled
by empty set symbols, or null objects. The above picture is,
f(1,1) = fag f(1,2) = � f(1,3) = fdg;
f(2,1) = fag f(2,2) = fbg f(2,3) = �;
f(3,1) = � f(3,2) = fcg f(3,3) = �.
It is easy to see that from f , we can construct the 2D string (u,v). The

above example already illustrates the algorithm. Conversely, from the 2D
string (u,v), we can reconstruct f . As an example, suppose the 2D string
is (x1 x2 < x3:x4 < x5, x2 x3:x4 < x1 x5), where the notation x3:x4
indicates x3 and x4 are in the same set. We �rst construct the picture
shown in Fig. 2.3, based upon 1D string u, by placing objects having the
same spatial location (i.e., objects related by the '=' operator) in the same
\slot".

FIGURE 2.3. Reconstruction based upon 1D string u.

Next, we utilize 1D string v to construct the �nal picture, as shown in
Fig. 2.4.

FIGURE 2.4. Reconstruction based upon 1D string v.

If all the symbols in a 2D string are distinct, the reconstructed picture
is unique. If, however, there are identical symbols in the 2D string, then in
general there may be several di�erent reconstructed pictures. For example,
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the 2D string (a < a,a < a) may represent a picture with a in both the
upper-left and lower-right slots, or a picture with a in both the upper-
right and lower-left slots. How to characterize such ambiguous pictures for
di�erent types of 2D strings is discussed in [2].

2.3 Picture matching

2D string representation provides a simple approach to perform subpicture
matching on 2D strings. The rank of each symbol in a string u, which is
de�ned to be one plus the number of '<' preceding this symbol in u, plays
an important role in 2D string matching. We denote the rank of symbol
b by r(b). For example, symbols in the string \ad < b < c" have ranks 1,
1, 2, 3, respectively, and symbols in the string \a < c" have ranks 1, 2,
respectively.
A substring where all symbols have the same rank is called a local sub-

string.
A string � is s-contained in a string �, if � is a subsequence of a permu-

tation string of �.
A string � is a type-k 1D subsequence of string �, if (a) � is s-contained in

�, and (b) if a1w1b1 is a substring of �, a1 matches a2 in v and b1 matches
b2 in �, then

(type-0) r(b2)-r(a2)�r(b1)-r(a1) or r(b1)-r(a1)=0;
(type-1) r(b2)-r(a2)�r(b1)-r(a1)>0 or r(b2)-r(a2)=r(b1)-r(a1)=0;
(type-2) r(b2)-r(a2)=r(b1)-r(a1).

Now we can de�ne the notion of type-k (i=0,1,2) 2D subsequence as
follows. Let (u,v) and (u0,v0) be the 2D string representation of f and f 0,
respectively. (u0,v0) is a type-k 2D subsequence of (u,v) if (a) u0 is type-k
1D subsequence of u, and (b) v0 is type-k 1D subsequence of v. If the above
is true, we say f 0 is a type-k sub-picture of f .
In Fig. 2.5, f1, f2 and f3 are all type-0 f1 and f2 are type-1 The 2D

string representations are:

f (ad < b < c, a < bc < d);
f1 (a < b, a < b);
f2 (a < c, a < c);
f3 (ab < c, a < bc).

Therefore, to determine whether a picture f 0 is a type-k sub-picture of
f , we need only determine whether (u0,v0) is a type-k 2D subsequence of
(u;v). The picture matching problem thus becomes a 2D string matching
problem.



6 Chapter 2. Symbolic Projections

FIGURE 2.5. Picture matching examples, where f1 is a type-2 subpic-
ture of f , f2 is a type-1 subpicture of f , and f3 is a type-0 subpicture
of f .

In type-1 subsequence matching, each local substring in u should be
matched against a local substring in v. For example, in Fig. 2.5 substring
\a" in a < c of f2 is a subsequence of \ad" in ad < b < c of f , and
substring \c" in a < c is a subsequence of \c" in ad < b < c. Notice the
skipping of a rank is allowed in type-1 subsequence matching. Therefore,
the type-1 subsequence matching problem can be considered as a two-level
subsequence matching problem, with level-1 subsequence matching for the
local substrings, and level-2 subsequence matching for the \super-string"
where each local substring is considered as a super-symbol, and super-
symbol u1 matches super-symbol v1 if u1 is a subsequence of v1.
Type-2 subsequence matching is actually simpler, because the rank can-

not be skipped. That is to say, if local substring u1 of u matches local
substring v1 of v, then substring ui of u must match substring vi of v for
any i greater than 1. In the example shown in Fig 2.5, v = \a < c" of f2
is not a type-2 subsequence of \ad < b < c" of f .

2.4 Computer-aided design database

The 2D string representation is an e�cient way to represent symbolic pic-
tures, allowing an e�ective means for queries on image databases, spatial
reasoning, visualization and browsing. At the same time, we note that the
performance of the 2D string iconic indexing depends on the abstraction
from segmented images to symbolic pictures [6]. Many researchers have
been looking for good abstraction techniques from iconic images to sym-
bolic representation [7, 8, 9, 10, 11]. The iconic indexing approach should
be combined with pattern recognition so that iconic indices can be auto-
matically created.
In the following we describe some typical applications of the Theory of
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Symbolic Projection to image information retrieval. These are based upon
papers by researchers from many di�erent countries and are indicative of
the diversity of potential applications.
A CAD database \2 cranes on the hull with a superstructure behind

them and a mast, radar and funnel on the superstructure." To process such
queries Hildebrandt and Tang applied the symbolic projection technique in
3D to symbolic voxel models [12].
CAD data is usually stored in one of two forms: the boundary repre-

sentation or the constructive solid geometry form. In the boundary repre-
sentation an object is segmented into non-overlapping faces. Each face is
modelled by bounding edges and edges by end vertices. So the object is
modelled by a tree of depth three. In constructive solid geometry there are
primitives such as cylinders, boxes and cones combined and modi�ed by
operations such as union, intersection, di�erence, rotation and scale. The
database catalog of the CAD database is assumed to contain a simple voxel
model generated from the CAD data for queries.

FIGURE 2.6. Voxel ship model.

GIS databases typically store a collection of co-registered two dimen-
sional images of certain properties such as brightness, spot height and
slope, together with vector data such as roads, river and contours. Layers
of raster data can be interpreted directly as images and grouped together
to give voxel data. Vector data would have to be �rst converted into low
resolution raster data and then used as image or voxel data. The simpli�ed
2D representation could then be used on each band in the GIS to index
spatial information, and it may be possible to use the three dimensional
form to index spatial relations between all bands.
The simple voxel model encodes a three-dimensional object into slices. An

example is illustrated in Fig. 2.6, which shows a 20 by 20 by 20 voxel model.
Such models could be used to index a collection of CAD models and would
allow 3D spatial queries. A slice through this model is shown in Fig. 2.7,
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FIGURE 2.7. Slice of voxel model: h=hull, s=superstructure,
k=kingpost, m=mast and f=funnel. The arrows indicate a single
type-1 match returned for the query pattern of Fig. 2.8.

where the letters 'h', 's', 'k', 'm', and 'f' denote \hull", \superstructure",
\kingpost", \mast" and \funnel", respectively.

FIGURE 2.8. A query pattern.

In Fig. 2.8, a 3 by 4 by 2 pattern for a type-1 query is shown. A single
type-1 match returned is indicated by the arrows in Fig. 2.7. This search
pattern would be used with query \Find ship with 2 kingposts above hull
with superstructure in between them and mast followed by funnel above
superstructure".
A graphical user interface was constructed for a prototype ship database

application (Fig. 2.9). For textual information associated with a ship, typ-
ical database forms were employed. To enter and display the spatial re-
lations in the database, a graphical interface was employed where icons
representing objects could be placed on the grided outline of a hull, viewed
from above (top of Fig. 2.9). From this input, the required spatial rela-
tions could be determined and placed in a relational table to perform the
database query. In addition to type-k queries, the system also supports
pairwise relations matching so that similar patterns can be found more
e�ciently.
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FIGURE 2.9. Graphical user interface combining textual and symbolic
query with image retrieval.

2.5 Geographical information systems

The application of Theory of Symbolic Projection to Geographical Infor-
mation Systems was studied by Yuguo Sun [13].
Sun generalized the 2D G-string [5] to the 2D T-string. The 2D T-string

is able to represent three di�erent types of qualitative spatial relations,
i.e. topological relations, ordering relations and auxiliary relations. The
topological relations describe local spatial relations, such as equal, disjoint,
meet, edge, contain, and partial overlap. The ordering relations are the
two basic global spatial relations < and j (edge-to-edge concatenation). The
auxiliary relations include surround, partially surround, and quasi-partially
surround. The cutting mechanism basically follows the cutting mechanism
for the G-string, but re�ned by additional rules so that only the necessary
cutting lines important to one of the above types of relations will be drawn.
Techniques for constructing the 2D T-string from the symbolic picture, and
for spatial reasonings, have been developed. Since they are similar to the
techniques described in [14], the details will not be presented here.
An experimental Spatial Relations Retrieval System based upon the 2D

T-String was implemented for geographical information retrieval. The sys-
tem supports spatial reasoning, basic spatial relation query, complex spatial
relation query and similarity query. The geographical data is the land use
map of the Laohekou City in Hubei Province of China. The land use map
is shown in Fig. 2.10. The map contains 441 objects, and 337 of them are
displayed in the window area. Fig. 2.11 is an example of spatial reasoning.
The user selects a rectangular area of interest. The ordering relations (\A
is to the west of B", and \B is to the east of A") and topological relations
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FIGURE 2.10. Land use map.

FIGURE 2.11. Example of spatial reasoning.

(\A and B are separated spatially") can be derived from the 2D T-string
and displayed in the window area on the right.
Fig. 2.12 illustrates basic spatial relation query. The system can �nd out

object B meets object A, and object B is quasi-part-contained in A.
Fig. 2.13 illustrated complex spatial relation query. The system can �nd

out object D is contained in A and to the west of E, and object D is
contained in A and to the northwest of C.
Fig. 2.14 illustrates similarity query. The query is shown in the upper

right window, where A and B are resident land, and C is the railway, and
their approximate spatial relations are as shown. The result is displayed in
the lower right window.
For similarity retrieval, time-consuminggraph matching is required. How-
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FIGURE 2.12. Basic spatial relation query.

FIGURE 2.13. Complex spatial relation query.

ever, in practical applications, the targets are restricted to a prespeci�ed
small window area, and the constraints include not only spatial constraints,
but also constraints on the objects' attribute values such as shape, color,
etc. Therefore, similarity retrieval can be computed in a reasonable time.

2.6 Retrieval of similar Chinese characters

Although many methods have been proposed to solve the problem of Chi-
nese character retrieval, the problem of retrieval spatially similar Chinese
characters still remains. There are several motivations to consider the re-
trieval of similar Chinese characters. First, it can be useful in learning
Chinese characters. The structurally similar Chinese characters can be re-
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FIGURE 2.14. Similarity query.

trieved and presented to the student, so that the student can remember
the components of the characters and their meanings. Second, similarity
retrieval is also useful for Chinese character recognition, because it is ca-
pable of clustering similar characters.
Chang and Lin applied the Symbolic Projection Theory to Chinese char-

acter retrieval [15], by regarding the Chinese character as a symbolic pic-
ture. As illustrated in Fig. 2.15(a), the original image corresponds to a
Chinese character. Pattern recognition algorithm can be applied to seg-
ment the image into four major components A, B, C and D, as illustrated
in Fig. 2.15(b).

FIGURE 2.15. The original Chinese character (a), the symbolic picture
(b) and the segmented symbolic picture (c).

The technique of orthogonal relations [16] can then be applied to dis-
cover the important orthogonal relations and convert the symbolic picture
into the 2D string. As illustrated in Fig. 2.15(c), the following orthogonal
relations are discovered:
Ortho� relation(B,A) = fA1,A3 g
Ortho� relation(C,A) = fA2,A3 g
Ortho� relation(B,D) = fD1 g
Ortho� relation(C,D) = fD2 g
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Therefore, A is segmented into four pieces, and D is segmented into two
pieces. The 2D string is (A4 < A3< A1 B D1< A2 CD2, A4 D1 D2< A3 B
C < A1 A2). Given a Chinese character, it can be transformed into the 2D
string and then matched against the 2D strings of other Chinese characters.
By using type-0, type-1 or type-2 matching and a cost algorithm, Chang
and Lin can �nd weakly similar, partially similar or strongly similarChinese
characters.
In a related application, 2D strings have been applied to the retrieval

and recognition of handwritten signatures [17].

2.7 Three-dimensional image database querying

An extension of 2D strings to deal with three dimensional imaged scenes
was proposed in [18]. The approach relies on the consideration that two-
dimensional iconic queries and 2D string-based representations are e�ective
for the retrieval of images representing 2D objects or very thin 3D objects,
but they might not allow an exact de�nition of spatial relationships for im-
ages representing scenes with 3D objects. In fact in this case, an incorrect
representation of the spatial relationships between objects may result due
to two distinct causes. First, 2D icons cannot reproduce scene depth. 2D
icon overlapping can be used only to a limited extent since it impacts on the
understandability of the query. Second, as demonstrated by research in ex-
perimental and cognitive psychology, the mental processes of human beings
simulate the physical world processes. Computer generated line drawings
representing 3D objects are regarded by human beings as 3D structures and
not as image features, and they imagine spatial transformations directly in
3D space.
Therefore, an unambiguous correspondence is established between the

iconic query and image contents, if the spatial relationships referred to are
those between the objects in the scene represented in the image, rather than
those between the objects in the image. The dimensionality of data struc-
tures associated with icons must follow the dimensionality of the objects
in the scene represented in the image. A 3D structure should be employed
for each icon to describe a 3D scene. An example is illustrated in Fig. 2.16.
Representations of images are derived considering 3D symbolic projec-

tions of objects in the 3D imaged scene. Thirteen distinct operators, cor-
responding to the interval logic operators, distinguish all the possible re-
lationships between the intervals corresponding to the object projects on
each axis.
Retrieval systems employing this ternary representation of symbolic pro-

jections have been expounded in [18] and [19]. In these approaches, the
user reproduces a three-dimensional scene by placing 3D icons in a virtual



14 Chapter 2. Symbolic Projections

FIGURE 2.16. Querying a three-dimensional scene using pairwise 3D
relations.

space and sets the position of the camera in order to reproduce both the
scene and the vantage point from which the camera was taken. A spatial
parser translates the visual speci�cation into the representation language
and retrieval again is reduced to a matching between symbolic strings.

2.8 Medical image database system

2D string has been used in recognizing fungi in medical research [20].
This section describes the incorporation of 2D strings in a medical image
database system.
Radiological examinations are extremely important in health care. X-ray

�lm is the medium conventionally used for medical image archival purposes.
A PACS (Picture Archiving and Communication System) computer system
that supports digital image handling in a hospital environment. Facilities
typically provided by a PACS include image entry, archiving, communica-
tion, presentation, etc. A PACS is connected by high-speed network with
the HIS (Hospital Information System), in order to handle textual patient
data together with images.
Such new environment opens a whole new world of possibilities for the

utilization of medical images in the clinical environment, including com-
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puter assisted diagnosis, rediotherapy planning, surgery planning, medical
training, etc. Medical image indexing and retrieval by content, in particu-
lar, play a special role in this net setting.
I2C is an image database system which has been developed as a platform

for the design, implementation and evaluation of medical image indexing
and retrieval by content schemes [21]. This system allows the user to de-
�ne regions of interest (ROI) on the query image, and adjust the relative
importance of di�erent regions as well as their characteristics. The user
can draw a sketch and adjust the search parameters, to direct the image
retrieval process. The main concept in the design of I2C are image classes
and image description types. An image class encapsulates algorithms for
the organization, processing and indexing of the images in it. When a re-
quest for retrieval is placed with I2C, it is directed to the appropriate class.
The concept of the image description type encapsulates all the details of an
indexing and retrieval by content scheme, including the use of 2D strings.
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