A Normalization Framework for Multimedia Databases

S.K. Chang1, V. Deufemia2, G. Polese2

(1) Department of Computer Science, 6101 Sennott Building,

University of Pittsburgh, Pittsburgh, PA, USA, 15260

chang@cs.pitt.edu

 (2) Dipartimento di Matematica e Informatica, Università di Salerno,

Via Ponte don Melillo, 84084 Fisciano, Salerno, ITALY

{deufemia, gpolese}@unisa.it

Abstract

We present a normalization framework for the design of multimedia database schemes with reduced manipulation anomalies. To this sake we first discuss how to describe the semantics of multimedia attributes based upon the concept of generalized icons, already used in the modeling of multimedia languages. Then, we introduce new extended dependencies involving different types of multimedia data. Such dependencies are based on distance functions that are used to detect semantic relationships between complex data types. Based upon these new dependencies, we have defined five multimedia normal forms. Then, we have shown how to apply some of them to normalize multimedia databases used in e-learning applications, for which we also analyze the impact of normalization on performances. Finally, we have performed a simulation on a large image dataset to analyze the impact of the proposed framework in the context of content-based retrieval applications.

Index terms --- multimedia database management systems (MMDBMS), anomalies, data dependencies, content-based retrieval.

1. Introduction

In the last decade multimedia databases have been used in many application fields. The internet boom has increased this trend, introducing many new interesting issues related to the storage and management of distributed multimedia data. For these reasons data models and database management systems (DBMSs) have been extended in order to enable the modeling and management of complex data types, including multimedia data. Researchers in this field have agreed on many characteristics on which to base the classification of multimedia DBMSs (MMDBMS). Some of them are [Nar96]:

· The data model for representing multimedia information. This should provide effective means to represent relationships among media types.

· The indexing techniques used to enable content based retrieval of multimedia information.

· The query language. This should allow to efficiently express complex characteristics of data to be retrieved, like multimedia data.

· The clustering techniques on multimedia information to enhance its retrieval.

· Support for distributed multimedia information management.

· Flexible architectures.

The latter is a critical point, because multimedia information systems are in continuous evolution. Thus, it is important that the architectures of MMDBMSs be flexible enough to be extensible and adaptable to future needs and standards. A conspicuous number of MMDBMS products have been developed. Examples include CORE [WNM95], OVID [OT93], VODAK [LR95], QBIC [FSN95], ATLAS [SKR95], etc., each providing enhanced support for one or more media domains among text, sound, image, and video. At the beginning, many DBMS producers would preferably rely on the object-oriented data model to face the complexity of multimedia data, but there have also been examples of MMDBMSs based on the relational data model and on specific, non-standard data models. However, in order to facilitate the diffusion of multimedia databases within industrial environments researchers have been seeking solutions based on the relational data model, possibly associated to some standard design paradigm, like those used with traditional relational DBMSs (RDBMSs). Extensible relational DBMSs have been an attempt in this direction. In the last years DBMS vendors have produced extended versions of relational DBMSs [Ren97], with added capabilities to manage complex data types, including multimedia. In particular, these new products extend traditional RDBMSs with mechanisms for implementing the concept of object/relational universal server. In other words, they provide means to enable the construction of user defined Data Types (UDT), and Functions for manipulating them (UDF). New standards for SQL have been created, and SQL3 [EN03,SQL96] has become the standard for relational DBMSs extended with object oriented capabilities. The standard includes UDTs, UDFs, LOBs (a variant of Blobs), and type checking on user defined data types, which are accessed through SQL statements. Early examples of extensible RDBMSs include Postgres [SK95], IBM/DB2 version 5 [Dav00], Informix [Ren97], and ORACLE 8 [Ora99].

As MMDBMSs technology has started becoming more mature, the research community has been seeking new methodologies for multimedia software engineering. Independently from the data model underlying the chosen MMDBMS, multimedia software engineering methodologies should include techniques for database design, embedding guidelines and normal forms to prevent anomalies that might arise while manipulating multimedia data. In the literature we find some new normalization techniques extending traditional normal forms for relational databases [SG02,AL04,VLL04]. However, many of them focus on specific domains, and no general purpose normalization framework for multimedia is provided. In particular, the technique in [SG02] focuses on the normalization of image databases by partitioning images so as to enhance search and retrieval operations. To this sake the technique aims to define dependencies among image features, which suggest the designer how to efficiently map them into a database schema. The techniques in [AL04,VLL04] focus on the normalization of XML documents.

The normalization of multimedia databases needs to account for many new issues as opposed to alphanumeric databases. Many different types of complex data need to be analysed. In this paper we describe a general purpose framework to define normal forms in multimedia databases. The framework applies in a seamless way to images as well as to all the other different media types. The semantics of multimedia attributes is defined by means of generalized icons [Cha96], previously used to model multimedia languages. In particular, generalized icons are here used to derive extended dependencies, which are parameterized upon the similarity measure used to compare multimedia data. Based on these new dependencies, we define five normal forms aiming to reach a suitable partitioning of multimedia data, and to improve the quality of database schemes so as to prevent possible manipulation anomalies. As a practical application, in the paper we show how to use the proposed framework for normalizing multimedia databases used in e-learning applications. In particular, we have applied our normal forms to transform the database schema in order to make it suitably accessible from different client devices, including PDAs and other mobile devices, each with different multimedia and bandwidth capabilities. Based on this example, we have provided some experimental data to show the impact of the normalization process on access performances. Moreover, we have performed a simulation on a large image dataset in the context of content-based retrieval applications, aiming to analyze the impact of the proposed framework on retrieval performances and errors.

The paper is organized as follows. In Section 2 we describe semantics of attributes in multimedia databases. In Section 3 we present the extended dependencies of our framework. In Section 4 we propose new normal forms based upon the extended dependencies. The e-learning case study is presented in Section 5, whereas the experiments for evaluating the framework are presented in Section 6. Finally, discussion is provided in Section 7.

2. Semantics of Multimedia Attributes

Before discussing dependencies and normal forms for multimedia databases we need to define the semantics of multimedia attributes.

A dependency is a property of the semantics of attributes. Database designers use their understanding of the semantics of attributes to specify functional dependencies among them [EN03]. As we now, other than alphanumeric data, multimedia databases can store complex data types, such as text, sound, image, and video. Prime versions of MMDBMSs provided a new data type for storing complex data, namely the binary large object (BLOB). This storage technique yielded some problems, because BLOBs are non-interpreted byte streams, hence the DBMS has no knowledge concerning their structure and the content of their components. It can only see them as atomic data types. Although inefficient, the simple structure of the BLOB data type makes it general enough to model most of the complex data types used in multimedia databases. Thus, a better solution should at least allow us to model and manipulate all the different complex data types that might be needed in multimedia computing. This is why some RDBMS vendors have aimed to develop extensible RDBMSs, that is, RDBMSs extended with new complex data types, together with added capabilities to let developers define and implement their own data types, and the corresponding manipulation functions.

Beyond the storage strategy used for the different media types, we define a framework to model their semantics so as to be able to derive functional dependencies between them. To this sake, we have exploited the framework of generalized icons [Cha96], which are dual objects (xm, xi), with a logical part xm, and a physical part xi. They can be used to describe multimedia objects such as images, sounds, texts, motions, and videos. A generalized icon for modeling images is like a traditional icon, whereas those for modeling sounds, texts, motions, and videos are earcons, ticons, micons, and vicons, respectively. For all of them we denote the logical part with xm, whereas the physical parts will be denoted with xi for icons, xe for earcons, xt for ticons, xs for micons, and xv for vicons. The logical part xm always describes semantics, whereas xi represents an image, xe a sound, xt a text, xs a motion, and xv a video. Furthermore, a multicon is a generalized icon representing composite multimedia objects [ACG97]. Thus, a multicon will also be a dual object, where the logical part represents the semantics of the combined media. Generalized icons can be combined by means of special icon operators. The latter are dual objects themselves, where the logical part is used to combine the logical parts xm of the operand icons, whereas the physical part is used to combine their physical parts xi. For instance, by applying a temporal operator to several icons and an earcon we might obtain a vicon, with the physical part representing a video, and the logical part describing the video semantics.

In our framework we associate a generalized icon to each complex attribute, using the logical part to describe its semantics, and the physical part to describe the physical appearance based upon a given storage strategy. The logical parts of generalized icons will have to be expressed through a semantic model. Conceptual graphs are an example of formal semantic model that can be used to describe logical parts of generalized icons [Cha96]. Alternatively, the designer can use frames, semantic networks, or visual CD forms [CPO94].

As an example, choosing a frame based representation, an image icon representing the face of a person may be described by a frame with attributes describing the name of the person, the colors of the picture, objects appearing in it, including their spatial relationships. A vicon will contain semantic attributes describing the images of the video photograms, the title of the video, the topic, the duration, temporal relationships, etc. Similarly, semantic attributes in an earcon might be used to describe the title of the sound, if any, the genre, the singer (in case it is a song), the sampling rate, etc.

Based on the specific domain of the multimedia database being constructed, the designer will have to specify the semantics of simple and complex attributes according to the chosen semantic model. Once s/he has accomplished this task, the generalized icons for the multimedia database are completely specified, which provides a semantic specification of the tuples in the database.

As an example, to describe semantics in a database of singers we might use attributes name, birthday, genre, as alphanumeric attributes, and picture as an icon representing the singer picture, one or more earcons to represent some of his/her songs, and one or more vicons to represent his/her video clips. A tuple in this database describes information about a specific singer, including his/her songs and video clips. This provides a complete semantic specification of the tuple.

3. Extended Dependencies

In traditional relational databases a functional dependency is defined as a constraint between two sets of attributes from the database [Cod72]. Given two sets of attributes X and , a functional dependency between them is denoted by X. The constraint says that, for any two tuples t1 and t2, if t1[X] = t2[X], then t1[Y] = t2[Y]. This concept cannot be immediately applied to multimedia databases, since we do not have similar simple and efficient methods to compare multimedia attributes. In other words, we need a method for defining equalities between groups of attributes involving complex data types.

Generally speaking, the matching of complex attributes needs to be an approximate match. In fact, the problem of comparing complex data for equality resembles the problem of retrieval from multimedia databases, where the query is entered by sketching or composing an object belonging to the same media type of the one being retrieved. Then, by using a specific indexing and retrieval technique [DCL97], it is possible to retrieve a set of objects from the database that are similar to the query objects. Thus, it is also possible to select the most similar object, since the objects in the answer set are ranked according to a certain degree of similarity.

We follow a similar criterion to define extended functional dependencies for multimedia databases. This means that we can extend the definition of dependency by selecting a specific similarity function and thresholds to perform approximate comparisons of complex data types. Thus, the functional dependencies change if we use different similarity functions. As a consequence, we enrich the notation used for functional dependencies to include symbols representing the chosen similarity function. Before this, in what follows we introduce some basic concepts of the relational model and of similarity theory [SJ99].

In the relational model the database is viewed as a set of relations of time-varying content. A multimedia database is formed by one or more relations of the form R(x1: X1,…, xn: Xn), where X1,…,Xn are data types, and xi is the name of the i-th field or column of the relation R. An instance of R, that is, its content at a given time is defined as a subset of the Cartesian product X1×…×Xn. This instance can be represented as a relation having as rows (named tuples) the elements of the subset of X1×…×Xn, and as columns the attributes of R. If R = {X1,…, Xn} is a database scheme, then we write attr(R) for (i=l..n Xi. If t is a tuple of this relation (i.e., an element in an instance of R), then t[A] denotes the value of this tuple in the A-column; t[A] is called the A-value of r. A schema consists of a set of relations, where each relation is defined by its attribute sets, and some semantic constraints. In this paper we restrict our attention to constraints which can be expressed as multimedia functional dependencies (MFDs).

Tuples of a relation can be compared by means of a set of relevant features . For instance, images can be compared using attributes like color, texture, shape, etc.; audio data can be compared using loudness, pitch, brightness, bandwidth, and harmonicity. The values of each feature F ( belong to a domain D = dom(F).

The similarity between two elements x and y in a tuple is based on distance measures or, equivalently, on similarity functions, defined on feature spaces that we assume to be metric spaces. In the following, we will always refer to metric distance functions, but it should be understood that the same considerations apply to similarity function, given the symmetry between distance and similarity functions [San01].

In particular, given two elements x and y belonging to a given data type X, we consider distance functions of type d: D2 → [0,1], such that for each vx, vy (D d(vx, vy) returns the distance of x from y with respect to the feature space D. In what follows we indicate such distance with d(x, y) for any two elements x, y: X. Moreover, given a data type X, we denote with D(X) the set of distance functions defined on X, and with Xd the feature space on which the distance function d is defined.

In order to evaluate the similarity between the multimedia objects of two tuples we introduce a tuple distance function, which summarizes the results produced by the different distance functions applied to the elements of the tuples. In particular, given a relation R(z1:Z1,…, zn:Zn), if x=(x1,…, xn) and y=(y1,…, yn) are two tuples of R, then (x, y) = g(d1(x1, y1),…, dn(xn, yn)) measures the distance between x and y, where di(D(Zi) and
g: [0,1]n→[0,1] is a monotone aggregation function that combines the n scores to derive an overall score. Aggregation functions should satisfy the triangular co-norm (t-conorm) properties, that is, the zero identity, monotonicity, commutativity, and associativity properties. There are several t-conorm aggregation functions defined in fuzzy logic literature [Fag96,Zad65], among which the max function is the most commonly used. Notice that if n=1 then (x, y)=d1(x, y). Given a set of data types X, we denote with TD(X) the set of tuple distance functions defined on X.

Definition 3.1. Let R(z1:Z1,…, zn:Zn),  be a tuple distance function on R, t be a maximum distance threshold, x=(x1,…, xn) and y=(y1,…, yn) be two tuples in R, we say that x is similar within t to y with respect to , denoted with x ((t) y, iff (x, y)(t.

Now we are ready to introduce the notion of functional dependency for multimedia databases, named type-M functional dependency.

Definition 3.2 (type-M functional dependency)
Let R be a relation with attribute set U, and X, Y (U. Xg1(t’) → Yg2(t’’) is a type-M functional dependency (MFD) relation if and only if for any two tuples t1 and t2 in R that have t1[X] (g1(t’) t2[X], then t1[Y] (g2(t’’) t2[Y], where g1(TD(X) and g2(TD(Y), whereas t’ and t’’ ([0,1] are thresholds.

This means that the features used by g2 on Y depend on the features used by g1 on X; or, alternatively, the values of the features used by g1 on X component imply the range of values for the features used by g2 on Y component. Notice that given a distance function d1 and a threshold t, x1 (d1(t) x2 and x2 (d1(t) x3 does not imply x1 (d1(t) x3, as shown in Fig. 3.1. However, we can state that x1 (d1(2t) x3. In general, if Xd1(t’) → Yd2(t’’) holds then for any two tuples t1 and t2 that have t1[X] (d1(kt’) t2[X], then t1[Y] (d2(kt’’) t2[Y], with k((.

Thus, given an element x belonging to a data type X, the equivalent class of x respect to a distance function d(D(X) and a threshold t([0,1] is defined as [x](d(t)= {y(X | y (d(t) x}. Similarly, for a tuple x=(x1,…, xn) of a relation R(z1:Z1,…, zn:Zn), the equivalent class of x respect to a tuple distance function  is defined as [x]((t) = {(y1,…, yn) | yi (di(ti) xi, with yi(Zi, di(D(Zi), ti([0,1] for 1 (i (n and (x,y)= g(d1(x1,y1),…, dn(xn,yn))}.

[image: image1.emf] X d 1

t 1 [X]

t 2 [Y]

t 1 [Y]

t 3 [X]

t 2 [X]

Y d 2

t'

Fig 3.1. Relationships among tuples on domains Xd1 and Yd2
As an example, if we define a functional dependency between attributes FINGERPRINT and PHOTO of police database, and use the fingerprint matching function FINGERCODE for comparing digital fingerprint [JPH00], and the similarity technique used by QBIC for comparing photo images, we would write as follows

FINGERPRINTFINGERCODE(t’)  PHOTOQBIC(t’’)
This constraint says that for any two tuples t1 and t2 such that t1[FINGERPRINT] is considered similar within the threshold t’ to t2[FINGERPRINT] by the FINGERCODE, then t1[PHOTO] is considered similar within the threshold t’’ to t2[PHOTO] by the QBIC. Given the semantics of the FINGERPRINT attribute it is expectable that a designer will fix the value of t’ close to zero.

From definition 3.2 it is clear that XI →Ys2 is a type-M dependency relation where I is the identity relation and s2 is a tuple distance function. In particular, XI → YI is a type-M dependency relation. In other words if we use identity relations as distance functions, we can regard any dependency relation as a type-M dependency relation. Therefore, some of the type-M normal forms we define in this paper will be identical to the usual normal forms, as long as we use identity relations as distance functions. In the following we omit the tuple distance function from the MFDs when this corresponds to the identity relation.

As an example, in a multimedia database of songs, suppose SONG is an attribute storing the earcon for a song, and GENRE is an attribute storing the genre of the song stored in SONG. It might be the case that SONG implies the attribute GENRE, yielding an MFD. Thus, given two tuples t1 and t2, if the two earcons t1[SONG] and t2[SONG] are considered similar according to a distance function s1, then also their genre should be similar. We write

SONGs1  GENRE
if every time t1[SONG] is considered similar to t2[SONG] according to the similarity technique s1 then also t1[GENRE] = t2[GENRE], where GENRE is an alphanumeric attribute, for which we use the identity relation, whereas SONG is an earcon. However, as it can be imagined, the distance function used heavily affects the functional dependencies. In fact, a distance function might consider two songs similar only because they have a similar title, which would not imply they have the same genre. This is why the distance function has to be explicitly represented in the notation.

As for classical dependency relations, the existence of certain MFDs in a relation implies the existence of others. Inference rules are means to construct these implicit dependencies. In the following we define inference rules for MFDs. Given a MFD Xg1(t1) → Yg2(t2) , we denote with Dist(g1, X) the sequence of distance functions applied by g1 on X. Moreover, given two functions g1(TD(X) and g2(TD(Y) we define g1(hg2(x,y)= h(g1(x),g2(y)) with h t-conorm aggregation function.
1. The reflexive rule XYg1(t1) → Yg2(t2) holds if Dist(g1, Y)=Dist(g2, Y) and t2(t1. That is, the reflexive rule holds if the distance functions used by g1 and g2 on the attributes in Y are the same, and the threshold for g2 is greater than the one for g1.

2. The augmentation rule {Xg1(t1) → Yg2(t2)}╞ XZg3(t3) → YZg4(t4), holds if Dist(g1, X) = Dist(g3, X), Dist(g2, Y) = Dist(g4, Y), Dist(g3, Z) = Dist(g4, Z)=I, t3(t1 and t4(t2.

3. The transitive rule {Xg1(t1) → Yg2(t2), Yg2(t3) → Zg3(t4) }╞ Xg1(t5) → Zg3(t6), holds if t2(t3, t1(t5, and t4(t6.

4. The decomposition rule {Xg1(t1) → YZg2(t2)}╞ Xg1(t4) → Yg3(t3), holds if Dist(g2, Y) = Dist(g3, Y), t1(t4, and t2(t3.

5. The union rule {Xg1(t1) → Yg2(t2), Xg1(t3) → Zg3(t4)}╞ Xg1(t5) → YZg4(t6), where g4=g2(hg3, t5(t1, t5(t3, t6(t2, and t6(t4.

6. The pseudotransitive rule {Xg1(t1) → Yg2(t2), WYg3(t3) → Zg4(t4)}╞ WXg5(t5) → Zg4(t6), holds if
Dist(g1, X) = Dist(g5, X), Dist(g2, Y) = Dist(g3, Y), Dist(g3, W) = Dist(g5, W), t3(t2, t5(t1, and t6(t3.

In the following we give the proofs for the previous inference rules.

Proofs. (1) Suppose that there exist two tuples tu1 and tu2 in a relation instance r of R such that g1(tu1[XY],tu2[XY]) = g3(tu1[X],tu2[X]) (h g2(tu1[Y],tu2[Y])≤ t1. Then g2(tu1[Y],tu2[Y])≤ t1 since h(a,b)≥max{a,b}.

(2) Suppose that Xg1(t1) → Yg2(t2) hold in a relation instance r of R but that XZg3(t3) → YZg4(t4) does not hold. Then there must exist two tuples tu1 and tu2 in r such that g1(tu1[X],tu2[X]) ≤ t1, g2(tu1[Y],tu2[Y]) ≤ t2, g3(tu1[XZ],tu2[XZ]) = g1(tu1[X],tu2[X]) (h I(tu1[Z],tu2[Z]) = g1(tu1[X],tu2[X]) ≤ t1 and g4(tu1[YZ],tu2[YZ]) >t4. This is not possible because g4(tu1[YZ],tu2[YZ]) = g2(tu1[Y],tu2[Y]) (h I(tu1[Z],tu2[Z]) ≤ t2 ≤ t4.
(3) Let us assume that Xg1(t1) → Yg2(t2) and Yg2(t3) → Zg3(t4) hold in a relation instance r of R. Then for any two tuples tu1 and tu2 in r such that g1(tu1[X],tu2[X]) ≤ t1 we have g2(tu1[Y],tu2[Y]) ≤ t2≤ t3, and hence we also have g3(tu1[Z],tu2[Z])≤t4. This means that also Xg1(t5) → Zg3(t6) hold with t1(t5, and t4(t6.

(4) Let us assume that Xg1(t1) → YZg2(t2) holds in a relation instance r of R. Then YZg2(t2) → Yg3(t3) holds from (1) with Dist(g2, Y) = Dist(g3, Y) and t3(t2. Using (3) Xg1(t4) → Yg3(t3) holds with t1(t4, and t2(t3.

(5) Let us assume that Xg1(t1) → Yg2(t2), Xg1(t3) → Zg3(t4) hold in a relation instance r of R. Then Xg1(t6) → XYg5(t7) holds from (2) with Dist(g5, X)=I, t6(t1 and t7(t2. Moreover, XYg6(t8) → YZg7(t9) holds from (2) with Dist(g6, Y)= Dist(g7, Y)=I, t8(t3 and t9(t4. Using (3) Xg1(t6) → YZg4(t6) holds with t8(t7 and t6(t9(t4.
(6) Let us assume that Xg1(t1) → Yg2(t2), WYg3(t3) → Zg4(t4) hold in a relation instance r of R. Then WXg5(t5) → WYg6(t6) holds from (2) with Dist(g5, W)= Dist(g6, W)=I, t5(t1 and t6(t2. Using (3) WXg5(t5) → Zg4(t6) holds with t6(t3.
For traditional databases multivalued dependencies (MVDs) were introduced as a generalization of functional dependencies to capture a significant amount of semantic information useful for normalization [Fag77]. In the following we extend the notion of MVD to multimedia databases.

Definition 3.3 (type-M multivalued dependency)
Let R be a multimedia relation with attribute set U, and X, Y (U. Xg1(t') →» Yg2(t'')[g3(t''')] is a type-M multivalued dependency (MMD) relation if and only if for any two tuples t1 and t2 in R such that t1[X] (g1(t') t2[X], there also exist in R two tuples t3 and t4 with the following properties:

· t3[X], t4[X] ([t1[X]](g1(t')

· t3[Y] (g2(t'') t1[Y] and t4[Y] (g2(t'') t2[Y]

· t3[R– (XY)] (g3(t''') t2[R – (XY)] and t4[R – (XY)] (g3(t''') t1[R – (XY)].

where g1(TD(X), g2(TD(Y) and g3(TD(R–(XY)), whereas t', t'' and t''' ([0,1] are thresholds.

Because of the symmetry in the definition, whenever Xg1(t1) →» Yg2(t2)[g3(t3)] holds in R, so does Xg1(t1) →» [R – (XY)]g3(t3)[g2(t2)].

An MMD Xg1(t1) →» Yg2(t2)[g3(t3)] in R is called a trivial MMD if (a) Y (X or (b) X(Y = R. An MMD that satisfies neither (a) nor (b) is called a non trivial MMD.

Similarly to multimedia functional dependencies (MFDs), we can define inference rules for MMDs.

1. Xg1(t1) →» Yg2(t2)[g3(t3)] ╞ Xg1(t1) →» [R – (XY)]g3(t3)[g2(t2)], where g1(TD(X), g2(TD(Y), g3(TD(R–(XY)), and t1, t2, t3 ([0,1].

2. If Xg1(t1) →» Yg2(t2)[g3(t3)] and W(Z then WXg4(t1) →» YZg5(t2)[g6(t3)] where Dist(g4, W) = Dist(g5, Z) = I, Dist(g1, X) = Dist(g4, X), and Dist(g2, Y) = Dist(g5, Y).

3. {Xg1(t1) →» Yg2(t2)[g3(t3)], Yg2(t2) →» Zg4(t4)[g5(t5)] }╞ Xg1(t1) →» (Z – Y)g6(t4)[g7(t7)] where Dist(g3, Z–Y) = Dist(g4, Z–Y) = Dist(g6, Z–Y) and g7(TD(R–(Z–Y)).

4. Xg1(t1) → Yg2(t2) ╞ Xg1(t1) →» Yg2(t2)[g3(t3)].

5. If Xg1(t1) →» Yg2(t2)[g3(t3)] and there exists W with the properties that (a) W(Y = (, (b) Wg4(t4) → Zg5(t5), and (c) Y(Z, then Xg1(t1) → Zg5(t5).

Given a set D of MFDs and MMDs specified on a relation schema R, we can use the inference rules to infer the set of all dependencies D+ that will hold in every relation instance of R that satisfies D.

In order to present the notion of multimedia join dependency we need to introduce the multimedia operations of projection and join. Given a relation r over a multimedia relation R(X), a subset Y of X, a tuple distance function g(TD(Y), and a threshold t, the multimedia projection of R on Y respect to g(t), denoted with Y,g(t)(R), is defined by

Y,g(t)(R) = { v(Y) | v (r and g(v, w)(t for each tuple w in u[Y]}

Note that the duplicate elimination is performed according to the function g and the associated threshold t. Obviously, if t = 0 then w = v, and the tuple distance function g corresponds to exact matching for the particular features it considers.
Let R(X,Y) and S(Y,Z) be multimedia relations where X, Y, and Z are disjoint sets of attributes, g(TD(Y) be a tuple distance function, and t be a threshold. The multimedia join of R and S respect to g(t), denoted with R (g(t) S, is the relation defined by

R (g(t) S = {(x,y,z,k) | (x,y) (R, (y’, z) (S with y (g(t) y’, and k=g(y,y’)}

That is, the multimedia join is created by linking tuples of R with tuples of S that have similar values, within a threshold t respect to a function g, for all the attributes that are common to the two multimedia relations. The parameter k is introduced in the joined tuples, and represents a fuzzy value describing their degree of similarity.

Notice that the multimedia join raises many new issues and problems. In fact, we have higher probability to generate spurious tuples due to false alarms. Moreover, false dismissals lead to a new type of manipulation anomaly, not existing in traditional alphanumeric databases, namely the problem of dismissed tuples. These are tuples that should have been generated as a result of the multimedia join, but indeed they were discarded because a false dismissal occurred. We empirically analyze these issues in the evaluation section (Section 6), where we describe how these anomalies manifest under different thresholds. In these experiments conducted on a large real-world image dataset we have always been able to find a threshold interval where such anomalies are acceptable.

In the following we give the definition of Type-M join dependency.

Definition 3.4 (type-M join dependency)
Let R be a relation on U, and {X1,…,Xn} (U, with the union of Xi’s being U. If R = X1,g1(t1)(R) (g1(t1) X2,g2(t2)(R) (g2(t2)…(gn-1(tn-1) Xn,I (R), we say that R satisfies a Type-M Join Dependency (MJD), denoted by ([g1(t1),…, gn-1(tn-1)][X1,..., Xn], where gi(TD(Xi (Xi+1) and ti ([0,1] for each 1 (i (n-1.

An MVD is a special case of an MJD. An MVD Xg1(t1) →» Yg2(t2)[g3(t3)] for a relation on R is the MJD ([g1(t1)(g2(t2), g1(t1) (g3(t3)](XY, X(R-Y)).

In the following we provide some inference rules to infer MJDs. Let S={X1,…,Xn} and R={Yn+1,…,Ym}.

1. (╞ ([g(t)][X], for any finite set of attributes X, and with g(TD(X), t ([0,1].

2. ([g1(t1),…, gn-1(tn-1)][S] ╞ ([g1(t1),…, gn-1(tn-1), gn(tn)][S, Y] if Y (attr(S) and gn(TD(Y).

3. ([g1(t1),…, gn-1(tn-1), gn(tn), gn+1(tn+1)][S, Y, Z] ╞ ([g1(t1),…, gn(tn) (gn+1(tn+1)][S, YZ].

4. {([g1(t1),…, gn-1(tn-1), gn(tn)][S, Y], ([gn+1(tn+1),…, gm-1(tm-1)][R]} ╞ ([g1(t1),…, gn-1(tn-1), gn(tn), gn+1(tn+1),…, gm-1(tm-1)][S, R] if Y = attr(R).

5. ([g1(t1), g2(t2)][S, YA] ╞ ([g1(t1), g2(t2)][S, Y] if A (attr(S).

4. Normal Forms in Multimedia Databases
In traditional alphanumeric databases normal forms are used to derive database schemes that prevent manipulation anomalies [EN03]. Similar anomalies can arise in multimedia database. Thus, a multimedia database designer should take all the precautions at database design time to avoid such anomalies. As an example, let us consider the following relation of an Art Exhibition multimedia database schema, with some MFDs associated to its attributes:

	Artist
	Exhibition
	#Room
	Artist Photo
	Poster
	Video

It is easy to imagine how the schema of such relation will yield manipulation anomalies, because it mixes together too many types of information. In fact, if we delete an exhibition from the database, we might lose an artist’s data, such as his/her photo. Moreover, in order to perform such operation we need to perform deletion across all the tuples referring to that exhibition, because the relation schema yields duplication of information regarding an exhibition. If we are willing to insert an artist’s picture, without knowing data of an exhibition, we have to leave some blank attributes, one of which belongs to the primary key. In order to avoid such anomalies, we should have stored information about exhibitions separately from those of artists.

Other types of anomalies arise from the fact of grouping to many multimedia data in the same multimedia attribute. For instance, the soundtrack of a video might be useful for different queries and multimedia presentations, hence we need to store the video and its soundtrack as two separated multimedia attributes, together with synchronization information to coordinate their combination. Thus, we need to segment the vicon associated to the video. Synchronization information can be stored as metadata or as special relations, depending on the specific MMDBMS technology used.

In this section we present three normal forms for multimedia databases. They are based on the type-M dependencies defined above. Therefore, their results depend upon the distance functions used to derive dependencies, and can be used to derive multimedia database schemes without potential manipulation anomalies. Moreover, the application of a normal form itself might need a specific manipulation function, such as a segmentation function, to handle a specific media type.
Our first normal form for multimedia attributes (1MNF) regards the granularity of multimedia attributes. We say that a multimedia database schema is in first multimedia normal form (1MNF) if each attribute A has the type of number, string or elementary generalized icon. For instance, image attributes can be decomposed in a certain number of k image components, which will be stored as separated attributes. In this case, the application of the normalization process is based on a specific segmentation function. This normalization process can also be applied to composite multimedia objects to decompose them into elementary generalized icons, which will be stored in separate attributes. For instance, as seen above, we might have a vicon attribute and might want to separate sounds from images. Again, the application of these normal forms requires the availability of specific segmentation function. Moreover, as said above the decomposition of a composite multimedia attribute may require the storing of additional data structures to enable the reconstruction of the original attribute format. In particular, such data structure should store the relations between the different attribute components.

We say that a multimedia database schema is in second multimedia normal form (2MNF) if it is in 1MNF and each non prime attribute A is fully dependent on the primary key. In case there is a partial dependency of A from a subset {ki,…, kj} of key attributes, then the designer can decide to normalize the schema by splitting the original schema R into two sub-schemes R1 = R - Tand R2 = ki,…, kjT,where T = ABi | Bi R, {ki…kj}s1 → Bi s2. For brevity, in the following we omit the threshold from the similarity expressions.

As an example, let us analyse the MFDs and the normal forms of the relation schema from the art exhibition multimedia database seen above.
{Artist, Exhibition}→ #Room is a full dependency, but {Artist, Exhibition} → ArtistPhotod1 and {Artist, Exhibition} → {Poster, Video}d2 are partial dependencies because of mfd2 and mfd3, respectively. These MFDs lead to the decomposition of the relation into the following three relations, each of which is in 2MNF.

	Artist
	Exhibition
	#Room
	
	Artist
	Artist Photo
	
	Exhibition
	Poster
	Video

We say that a multimedia database schema R is in third multimedia normal form (3MNF) if it is in 2MNF and the non prime attributes are not mutually dependent. Equivalently, we can say that whenever a MFD Xs1 → As2 holds in R, either
(a) X is a superkey of R, or
(b) A is a prime attribute of R.

As an example, let us consider the following simple multimedia relation:

	Opera
	#Room
	Num_of_religuaries
	Map

The dependency mfd2 violates 3MNF because #Room is not a superkey of the relation, and Num_of_Religuaries and Map are not prime attribute. We can normalize the relation schema by decomposing it into the following two 3MNF relation schemas. We construct the first relation by removing the attributes violating 3MNF, namely Num_of_Religuaries and Map, from the original relation, and placing them with #Room into the second relation.

	Opera
	#Room
	
	#Room
	Num_of_religuaries
	Map

From the discussion so far we notice that the normal forms we define are characterized by the specific distance functions used to derive functional dependencies. As an example, let us consider the following simple multimedia database schema:

	Singer
	Genre
	Video

Each tuple in this simple database contains the name of a singer, his/her genre, and a set of his/her video.

A designer might first decide to apply traditional first normal form to the attribute Video, since this is a multivalued attribute. Thus, the new schema will be as follows:

	Singer
	Genre
	
	Singer
	Vnum
	Video

where the video have been stored in a separate relation, with a foreign key Singer on the original table, since there is a 1 to N relationship between singers and their video. Notice that we needed to add a new attribute Vnum on the new relation to form a key. The new attribute is a serial number to distinguish the different videos of a singer.

At this point, there might be the need to apply our first normal form to separate each video into three components, namely a song title, a vicon for the video itself, and an earcon for the background song. Thus, the second relation will be as follows,

	Singer
	Title
	Song
	Video

The extraction of the title attribute made the Vnum attribute useless, hence we eliminated it, and made the pair of attributes (Singer, Title) the new primary key. We can reasonably imagine a scenario in which three similarity functions s1, s2 and s3 generate the following dependencies:

{Singer, Title}s1 → Songs2
Songs2 → Videos3
The second dependency violates 3MNF, because the attribute Song is not a primary key, nor Video is a prime attribute. In order to normalize such relation schema we need to separate the Song and Video attributes to form a third relation. However, the designer might decide to limit the splitting of tables due to efficiency issues.

Iteratively transforming a database schema to put it in 1MNFs may cause the introduction of MMDs. Such undesirable dependencies can be detected by the following multimedia normal form. We say that a multimedia database schema R is in fourth multimedia normal form (4MNF) with respect to a set of multimedia dependencies D if, for every nontrivial MMD Xg1(t1) →» Yg2(t2)[g3(t3)] in D+, X is a superkey for R. In case there is a nontrivial MMD Xg1(t1) →» Yg2(t2)[g3(t3)] in D+ with X not superkey for R, then the designer can decide to normalize the schema by splitting the original schema R into two sub-schemes R1 = (XY)and R2 = (RY).

As an example, let us consider the following simple multimedia relation:

	Exhibition
	#Room
	Operas

The multivalued dependency mmd1 violates 4MNF because Exhibition is not a superkey of the relation. We can normalize the relation schema by decomposing it into the following two 4MNF relation schemas.
	Exhibition
	#Room
	
	Exhibition
	Operas

Finally, a multimedia database schema R that is in fifth multimedia normal form (5MNF) guarantees the lossless join properties, and prevents the problem of dismissed tuples. Formally, we say that R is in 5MNF with respect to a set D of MFDs, MMDs, and MJDs if, for every nontrivial type-M join dependency ([g1(t1),…, gn-1(tn-1)](X1,..., Xn) in D+, every Xi is a superkey for R.

5. Normalizing Multimedia Databases for e-Learning Applications
In this section we describe the design process of multimedia databases for e-learning applications.

[image: image2.png]Fle Edt View Favortes Took Help

Qe - © - [¢1 [2 N D search S12 Fevorkes. @D eda €2

ARGOMENTO &

L SERVIZIO DI ORIENTAMENTO,

[Ficerca Documentazione

3. VALORIE ASPET

NERALI

35 PROCESSO DI PROGETTAZIONE

3.6 PROCESSO DI PROGRAMMAZIONE

34 PROCESSO DI ATTUAZIONE

Sistemi i gualica
Formazione al1’autovalutazione e
alla certificazione di qualita

Roms, 9-10 Dicembre 2003

oiica Dati Personai

[Eenco evertr

[Cotendaria Persanale

[Documenti Persanal
Link Personai

[Crter i ricerca

Tablet PC Input Panel

-
&8 x

[[JC JC2 JC s JC« Js JCe J7 Je J s J[o [JC=JC Bp J[Home J[Polp |
[T JCaJw e JC I JCv JLw I I e JL e JL T JC 1 I \ J (g J[Pan]
[JLe L JL oIl eJlnJL i JeJC 0 JL — J[__per J[Psen |
[Shit L= JC « L e JL v L6 JL a JLm JL - JL - JL 7 0 Shit] [moer_J[_Pawe]
oo JO® a1 ICE e 13 I] =2 J Crune J[sk]

Witing Pad | Keyboard

& © & » = PRsModemMa.. | &) httpiffwww.didal.. | L GPRS Status

|[&7 heepss o Y untited - paint «mER BT 22

Fig. 5.1. A typical distance learning application displayed on Tablet PC with a GPRS connection

Such applications should provide facilities to let students access multimedia documents through the web, by using different clients (laptop, tablet, PDA, etc.), which might have different multimedia and bandwidth capabilities. Figure 5.1 shows a typical screen of an e-learning application, where a video is played on the left side, and slides are browsed synchronously with the video on the right side. Students might access this site not only by using different client devices, but also connections with different bandwidth, such as modems, ADSL, GPRS, etc. Thus, the normalization process of multimedia databases underlying this type of applications should be structured in a way to guarantee a suitable trade off between QoS and hardware capabilities.

Let us suppose that the database designer has produced a database schema including the following relation, and that the tuple distance functions s/he has used yield the multimedia functional dependencies mfd1, mfd2.

	#Lesson
	Title
	ID_MOB
	Type
	Speaker
	SFP
	S_Photo
	Presentation_Low
	Presentation_Medium
	Presentation_High

Each tuple in this relation contains the sequential number of a lesson, its title, the identifier of the associated multimedia objects, the lesson type (i.e., lecture, seminary, laboratory, etc.), the name of the speaker with its fingerprint (SFP) and its photo, and the multimedia presentations. The latter are stored in three different quality formats to suite different student access facilities. Let us also suppose that in this application the multimedia presentations of a lesson are multicons including the video of the lecturer, the associated audio, and the slides presented by the lecturer. In this early sketch of the database schema Lessons relation stores such presentations as a single tuple. However, due to possible limited bandwidth of some students’ connections, we might need to decompose the whole presentation into simpler components so that each student might view only those supported by its devices. Moreover, in order to have these components readily accessible we need to store them separately into the database, together with meta data representing synchronization information necessary to recompose them. To this aim, we apply the first normal form to separate each presentation into three components, namely a micon for the slides, a vicon for the video itself, and an earcon for the speech component. Let us suppose that we have the same audio and the same slides for the three different quality formats, hence we will use one micon and one earcon for all of them, yielding a total number of 5 attributes instead of 9, as shown by the following relation.

	#Lesson
	ID_MOB
	Title
	Type
	Speaker
	SFP
	S_Photo
	Slides
	Audio
	Video_Low
	Video_Medium
	Video_High

Such a schema already highlights some inefficiency. In fact, if the same lesson is offered in two different languages, we will use two tuples that only differ in the speaker and the audio components, but they share the same video. This schema might entail manipulation anomalies. In fact, if we want to replace the video component with a new one we need to perform this operation on two tuples (this is even worst if the same lesson is offered into more than two languages). Moreover, when deleting a lesson we lose the associated multimedia objects which might be useful for other lessons. For example, we might want to use the multimedia contents describing a binary tree both in a Data Structure lesson and a Programming lesson.

These anomalies occur because we have grouped different media components in the same multimedia object and heterogeneous information in the same relation. The first problem can be solved by applying our 1MNF, whereas the second can be solved by applying our 2MNF and 3MNF.

The functional dependency mfd1 reveals that the relation schema Lessons is not in 2MNF. The application of our normalization rule leads to the following relation schemes:

	ID_MOB
	Title
	#Lesson
	Type
	Speaker
	SFP
	S_Photo

	ID_MOB
	Slides
	Audio
	Video_Low
	Video_Medium
	Video_High

Notice that the attribute ID_MOB in the relation Lessons is a foreign key pointing to the multimedia presentation associated to a lecture.

The functional dependencies mfd2 and mfd3 reveal a violation of 3MNF. Thus, applying our normalization rule would lead to the following database schema.

	ID_MOB
	Title
	#Lesson
	Type

	ID_MOB
	Slides
	Audio
	Video_Low
	Video_Medium
	Video_High

	Audio
	Speaker
	
	Speaker
	SFP
	S_Photo

However, when normalizing databases the designer always makes some efficiency considerations before splitting relations. In our case, given that the attribute audio does not carry additional information we might remove the relation audio and introduce a direct foreign key from the relation Multimedia_Contents to the relation Speakers, yielding the following schema.

	ID_MOB
	Title
	#Lesson
	Type

	ID_MOB
	Slides
	Audio
	Video_Low
	Video_Medium
	Video_High
	Speaker

	Speaker
	SFP
	S_Photo

The MFD {SFP}FINGERCODE → {Speaker} does not violate the 3MNF because now Speaker is a prime attribute.

At this point we might notice that the same set of slides can be used by different lecturers, and that some of them might be useful for constructing different lessons. However, if we delete a lesson we lose all of them. This happens because in the schema shown above they are grouped together in a single attribute, which violates the 1MNF. Thus, we might store each single slide in a separate relation, together with additional slide information, such as slide comment. Given that a single slide might be used in more than one lecture, and that a single lecture uses many different slides, we have a many to many relationship between lessons and slides, yielding the following normalized schema:

	Title
	ID_MOB
	#Lesson
	Type
	
	Lesson
	ID_Slide
	Seq_Number

	ID_Slides
	Slide
	Comments

6. FRAMEWORK EVALUATION

Advantages and drawbacks of normalization have been widely discussed in the relational database literature [ACP99,EN03]. The multimedia database field shares many of the issues and problems discussed in such literature, but it also provides several new specific aspects to be analyzed. In particular, as in traditional databases also in multimedia databases the normalization process entails a design overhead, and its benefits heavily depend on the characteristics of the specific application context. For example, in some application contexts it might happen that a highly fragmented normalized database schema makes data navigation inefficient. Moreover, since multimedia databases are mainly targeted to applications involving content-based retrieval of multimedia data, it becomes crucial to evaluate the impact of normalization over these application domains. In this context, the impreciseness of comparisons involving multimedia attributes is another important issue to be considered. Thus, the multimedia database designer needs more sophisticated guidelines and tools to be able to understand the degree of normalization that guarantees the right compromise with respect to performances and correctness of results for each specific application context.

In order to better highlight these concepts, in what follows we describe the application of our normalization framework in two domains: content-based retrieval of images from a heterogeneous dataset, and the e-learning application described in section 5. In the first experiment we collected some quantitative data to analyze the trade-off between efficiency and retrieval errors on the normalized database, whereas in the second one we collected data to compare access performances of the normalized database with respect to the initial database schema.
6.1 Evaluating the framework in an image retrieval context

In what follows we analyze the impact of the proposed normalization framework in the context of a content-based retrieval application. In particular, we performed a simulation through an application entailing content-based retrieval from a large MPEG-7 image dataset, aiming to measure possible additional errors introduced by the normalization process. The image dataset used in this experiment contained about 24k images, and it has been derived by converting the Berkeley’s CalPhotos collection [Cal00] to the MPEG7 format. We first describe a relation taken from the database schema of the selected application, and then describe the normalization process applied to it. In particular, we show how the threshold used in a functional dependency affects the retrieval performances, also evaluated with respect to errors.

We considered the schema of a database whose data describe the characteristics of the above mentioned image dataset, including information about semantics of images, authors, etc. In particular, for describing our experiment we focus on the following significant relation extracted from the whole database schema:

[image: image3.emf]

Photo

Path Icon Features Author Semantic s ID Photo Name

With the attribute Features we abstractly refer to a subset of MPEG7 features used to index the image for retrieval purposes. At implementation level we have one attribute for each type of feature. For our experiment we have used the following three image features: color layout, edge histogram, and scalable color. The attribute Icon is an image characterizing the category to which each single image belongs. These attributes yield the following type-M functional dependency:

Featuresg(t1) → Icon

where g is the composite function g=c1*d1+c2*d2+c3*d3, d1 is the Meehl index [Mee] computed on the color layout feature, d2 and d3 are the Pattern difference functions [Sint75] computed on the edge histogram feature and the scalable color feature, respectively; c1,c2 and c3 are constant such that c1+c2+c3=1; I is the Identity function. In our simulation we achieved best performances with respect to errors by setting c1=0.4, c2=0.2, c3=0.4.

The functional dependency highlighted above reveals that the relation schema Photo is not in 2MNF. The application of our normalization technique leads to the following relation schemes:

[image: image4.emf]

Photo

Path Features Author Semantic ID Photo Name Icon Features

Icon

It is worth noting that the designer must detect functional dependencies based on his/her knowledge of the application domain, hence without using the actual data. However, when the database is populated it will be necessary to set the thresholds because they will affect the way data will be distributed across relations. In our experiment we have analyzed correctness and performances by using different thresholds. In particular, we have produced several versions of the database by populating it through different thresholds. Then, we have performed one-hundred content-based queries on each version of the database, by using the Query by Example paradigm on a common set of query images randomly selected from the dataset. The diagram in Figure 6.1 shows experimental results in terms of percentage of errors measured on different versions of the database generated by varying the threshold in the range 0.18-0.25. In our simulation we have observed that with thresholds below 0.18 there is no considerable variation in the percentage of errors.

Obviously, the threshold also affects the size of the database and the average response time of queries, especially when the normalization process yields the splitting of relations. In fact, a higher threshold yields a lower number of tuples in the relation created by the splitting process. In our experiment we have used an algorithm for the Disk Cover Problem [XCZ04] to select the pivot features to be inserted as tuples in the relation Icon. Figures 6.2 and 6.3 show how the size of the database and the average query response time change by varying the threshold. Since with modern computers hardly ever disk space is a concern, the designer should set the threshold in a way to reach a right compromise between errors and query response time.

[image: image5.emf]6

11

15

22

33

40

48

53

0

10

20

30

40

50

60

0,18 0,19 0,20 0,21 0,22 0,23 0,24 0,25

Threshold

Percentage of errors n

Fig. 6.1. Percentage of errors of the retrieval results with respect to threshold.

[image: image6.emf]141

129

115

104

87

75

68

59

0

20

40

60

80

100

120

140

160

0,18 0,19 0,20 0,21 0,22 0,23 0,24 0,25

Threshold

DB size (in Mb) c

 Fig. 6.2. Trend of database size with respect to threshold.

[image: image7.emf]19,95

18,39

17,87

16,50

15,66

14,34

14,06

12,85

0,00

5,00

10,00

15,00

20,00

25,00

1 2 3 4 5 6 7 8

Threshold

Average time (in sec.) c

Fig. 6.3. Trend of query response time with respect to threshold.

The non normalized database schema had a size of 212Mb. By submitting the above mentioned one-hundred queries to it we observed an average response time of 16 seconds. In conclusion, we claim that there are appropriate threshold ranges guaranteeing reduced response times and database size without affecting correctness considerably.

6.2 Evaluating the framework in an e-learning application context
We performed simulation experiments on a multimedia database consisting of twelve lessons, two instructors and thirty students. We have divided the students into two groups based on the connection bandwidth they could use: dial up connection (56kbps) and ADSL connection (640kbps). Then, we have performed several simulations by varying the mix of the two groups of students accessing the multimedia database simultaneously. For each simulation we have estimated the minimum, average, and maximum access time needed by each group of students to access the lessons. Such parameters have always been computed twice, once on the initial database schema (whose size is of 178 Mb) and once on the normalized schema (whose size is of 163 Mb) presented in section 5. In particular, the tuple selected from the initial Lessons schema has two types of presentations: the Presentation Low attribute of 4.35 Mb and the Presentation High attribute of 11 Mb, whereas the tuple selected from the normalized schema has an Audio attribute of 1.27 Mb, a Slide attribute of 0.5 Mb, a Video Low attribute of 2.63 Mb and a Video High attribute of 9.70 Mb.

[image: image8.jpg]Table I Simulation Results.

Non-Normalized Database

Student’s group miz

Access Times

56kbps 640kbps | Minimum Average Mazimum
Simulation 1 30 0 6.26 14.75 28.99
Stmulation 2 20 10 2.97 8.09 16.89
Stmulation 3 10 20 3.27 6.88 21.39
Stmulation 4 0 30 4.40 8.45 12.29

Normalized Database

Student’s group miz

Access Times

56kbps 640kbps | Minimum Average Mazimum
Stmulation 1 30 0 1.90 5.09 12.84
Stmulation 2 20 10 1.09 4.97 9.64
Simulation 3 10 20 1.76 3.98 7.38
Stmulation 4 0 30 115 3.74 7.78

The results of the simulation are summarized in Table I. It can be easily noticed that even for relatively small multimedia attributes the normalized multimedia database provides better access performances. Moreover, with the non-normalized database it strangely happened that we gained worse average performances by increasing the number of students with high connection bandwidth. More precisely, we have observed that 20 students with ADSL connections represent the threshold from which the performances of the DBMS get worse in the execution of the queries. This is mainly due to the fact that the database has to serve more requests simultaneously, hence it has some loss of performance, whereas in other cases requests from slow connections can be served later. On the other hand, we have observed that the normalized database allows more than 20 fast connections before starting losing performances.

The histogram in Fig. 6.4 shows how the average access time to the multimedia lessons changes by varying the “mix” of the two groups of students. Other than lower average access times, the normalized database also shows smaller variations across different mix of students with respect to the non-normalized one.

[image: image9.emf]0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

(30,0) (25,5) (20,10) (15,15) (10,20) (5,25) (0,30)

Student Groups Balance

Students' Average Access Times (in sec.)

Fig. 6.4 Histogram showing average access performances.

These performance gaps increase when the database contains bigger multimedia attributes. To this end we have performed further simulations to monitor the average access time with bigger multimedia objects. In particular, we have considered a non-normalized database of 869 Mb whose normalized version is of 788Mb. Fig. 6.5 shows performances gained on an entry of a non-normalized (normalized, resp.) database containing a Presentation High (Video High, resp.) attribute of 61 Mb (59.7 Mb, resp.).

[image: image10.emf]524,94

1800

8,07

7,86

9,12

10,02

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(30,0) (15,15) (0,30)

Student Groups Balance

Students' Average Access Time (in sec.)

Non-Normalized

Normalized

Fig. 6.5. Performances comparison on a large multimedia object.

In conclusion, we have shown that in the application context described in section 5 the normalization process can bring benefits not only in terms of reduced manipulation anomalies, but also in terms of access performances. Thus, our approach provides a multimedia database designer with a mean to evaluate and improve the quality of the database schema that in many circumstances can result into enhanced performances.

7. Discussion

In this paper we have proposed a normalization framework for multimedia databases. Our goal here it has been to derive proper design guidelines to improve the quality of multimedia database schemes. The framework is parametric with respect to the distance functions used for the different media domains, and allows many degrees of normalization, depending upon the distance function and the segmentation techniques used to decompose complex multimedia attributes. We have also shown the application of our framework in the context of two important domains using multimedia databases, that is content-based image retrieval and e-learning, and have proven its effectiveness through experimental data.

The framework is based on the concept of type-M dependency, formally defined in section 3. In practice, the detection of this type of dependencies might not be a simple activity. In fact, by following the traditional approach of alphanumeric relational databases the designer could detect type-M functional dependencies based on his/her knowledge. However, multimedia data are much more complex than alphanumeric data. Moreover, the existence of thresholds might yield this into a subjective activity. Alternatively, in order to reduce subjectivity, the detection of type-M dependencies could be accomplished by finding feature correlations, which is a problem widely analyzed in the literature. To this regard, several techniques have been proposed, such as principal component analysis (PCA) [Jac91], independent component analysis [Com94], etc. They are all based on training sets, and aim to identify independent features for indexing, querying, and retrieve multimedia data based on their contents. Thus, after performing this type of analysis the designer knows which are the features that are not independent, meaning that there must be some dependencies between them. This is a valuable information for designers to start characterizing the dependencies and to begin the normalization process. However, the approaches of feature selection cannot suggest whether the multimedia database and the application programs need to be redesigned upon the addition of new features.

With our framework, when new features are added, the designer can understand whether they will lead to database redesign. As an example, in a multimedia relation R = {photo, name, address}, where the mfd: photog1(t1)  {name, address}g2(t2) holds, suppose that photo can be in turn characterized by independent features such as eye, nose and mouth. In other words, three new features are selected. This can be incorporated into database design as follows. R can be replaced by R1={photo,eye,nose,mouth} and R2={eye,nose,mouth,name,address}, on which mfd1: photog1(t1)  {eye, nose, mouth}g3(t3), and mfd2: {eye, nose, mouth}g3(t3)  {name, address}g2(t2) hold, respectively. If photo and {eye, nose, mouth} are well-behaved in the sense that eye, nose and mouth are independent features totally characterizing photo, then the above normalization can always be carried out. Moreover, by looking at the redesigned database schema, the designer can tell whether the application programs will be affected. In particular, s/he can contrast the redesigned schema against class and use-case diagrams of the whole application to precisely detect the application programs that may be affected by the normalization step.

In conclusion, by incorporating feature selection techniques in our approach potentially improves its deployment because it makes dependency detection more effective. In addition our approach let the designer analyze the impact of feature selection on database redesign and application development, making the design problem more a systematic and integrated multimedia software engineering activity.

The proposed framework is flexible enough to accommodate the requirement of different applications. In fact, since the multimedia dependencies and multimedia normal forms depend upon the tuple distance functions, by imposing additional constraints on tuple distance functions we can introduce more restricted multimedia dependencies and multimedia normal forms. For example, to support gesture languages in a virtual classroom for e-learning applications we can introduce different tuple distance functions to classify gestures as similar or dissimilar, leading to different protocols for gesture languages supported by the same underlying multimedia database. Furthermore other normal forms can be introduced if we explore deeper certain application domains such as e-learning.

Another important issue regards the normalization of multimedia databases in adaptive multimedia applications, where a media data may be replaced/combined/augmented by another type of media for people with different sensory capabilities. To this end, the normalization process yields a partitioning of the database that facilitates the management of adaptiveness.

However, multimedia applications rarely use multimedia components separately. Thus, an extensive partitioning of the database might lead to an increased overhead when joining multimedia components for a given presentations. This can be unacceptable for some application domains, such as web-based applications. Thus, for multimedia database applications we particularly stress the importance of reaching a suitable compromise between normalization and efficiency. This means that in a good design practice a designer should always be able to decide the right extent of partitioning according to the efficiency requirements in the context of the specific application.

References

[AL04] Arenas, M. and Libkin, L. 2004. A normal form for XML documents. ACM Trans. Database Syst. 29, 1, 195–232.

[ACG97] T. Arndt, A. Cafiero, A. Guercio. (1997). Multimedia Languages for Teleaction Objects. In: Proceedings of the IEEE Symposium on Visual Languages, pp.322-331.

[ACP99] Atzeni, P., Ceri, S., Paraboschi, S., and Torlone, R. 1999. Database Systems: Concepts, Languages and Architectures. McGraw-Hill, Inc., Hightstown, NJ.

[CalPhotos00] CalPhotos, "A database of photos of plants, animals, habitats and other natural history subjects," http://elib.cs.berkeley.edu/photos/, 2000.
[Cha96] S. K. Chang (1996) Extending Visual Languages for Multimedia, IEEE Multimedia Magazine, 3(3), pp. 18-26.

[CPO94] S. K. Chang, G. Polese, S. Orefice, M. Tucci. (1994). A Methodology and Interactive Environment for Iconic Language Design, International Journal of Human Computer Studies, Vol. 41, pp. 683-716.

[Cod72] E. F. Codd (1972) Further normalization of the database relational model, in Data Base Systems, R. Rusum Ed., Prentice Hall, Englewood Cliffs, N.J., pp. 33-64.

[Com94] P. Comon. Independent component analysis a new concept? Signal Processing, 36, 287-314, 1994.

[Dav99] J. Davis (1999) IBM/DB2 Universal Database: Building Extensible, Scalable Business Solutions, http://www.software.ibm.com/data/pubs/papers.

[DCL97] M. De Marsico, L. Cinque, S. Levialdi (1997) Indexing Pictorial Documents by Their Content: A Survey of Current Techniques, Image and Vision Computing 15(2), pp. 119-141.

[EN03] R. Elmasri, S.B.Navathe (2003) Fundamentals of Database Systems, 4th edition, Addison Wesley.

[Fag77] R. Fagin (1977) Multivalued dependencies and a new normal form for relational databases, ACM Trans Database Systems 2 (3), pp. 262-278.

[Fag96] Fagin, R. (1996) Combining fuzzy information from multiple systems, Proc. Fifteenth ACM Symp. on Principles of Database Systems, Montreal, pp. 216-226.

[FSN95] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker (1995) Query by Image and Video Content: The QBIC System, IEEE Computer 28(9), pp. 23-32.

[SQL96] ISO/IEC JTC1/SC21 N10489, ISO//IEC 9075, Part 8, Committee Draft (CD), Database Language SQLPart8: SQL/Object, July 1996.

[Jac91] J. E. Jackson, A User’s Guide to Principal Components, John Wiley & Sons, Inc., 1991.

[JPH00] Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S. (2000) Filterbank-based Fingerprint matching, IEEE Transactions on Systems, Man, and Cybernetics 9(5), pp. 846-859.

[LR95] M. Löhr and T.C. Rakow (1995) Audio support for an object-oriented database-management system, Multimedia Systems of ACM, 3, pp. 286-297.

[Mee97] Meehl, P. E. The problem is epistemology, not statistics: Replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions. In Harlow, L.L., Mulaik, S.A., and Steiger, J.H. (Eds.). What if there were no significance tests? Erlbaum, Mahwah NJ, 1997, 393-425.

[Nar96] A. D. Narasimhalu (1996) Multimedia databases, Multimedia Systems, 4, pp. 226-249.

[OT93] E. Oomoto, K. Tanaka (1993) OVID: Design and Implementation of a Video-Object Database System, IEEE Transaction on Knowledge and Data Engineering 5(4), pp. 629-643.

[Ora99] Oracle 8iTM Release 2 Features Overview (1999), November 1999, http://www.oracle.com.

[Ren97] M. Rennhackkamp (1997) Extending Relational DBMSs. DBMS Online, vol. 10, no. 13.

[SKR95] R. Sacks-Davis, A. Kent, K. Ramamohanarao, J. Thom, J. Zobel (1995) Atlas: A Nested Relational Database System for Text Applications, IEEE Transaction on Knowledge and Data Engineering 7(3), pp. 454-470.

[SJ99] S. Santini and R. Jain (1999) Similarity Measures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9), 871-883.

[San01] S. Santini (2001) Exploratory Image Databases: Content Based Retrieval. New York: Academic.

[SG02] S. Santini and A. Gupta (2002) Principles of schema design for multimedia databases. IEEE Transactions on Multimedia 4(2), pp. 248-259.

[Sint75] Sint, P.P. Similarity structures and similarity measures. Austrian Academy of Sciences Press, Vienna Austria, 1975 (in German).
[SK95] M. Stonebraker and G. Kemnitz (1995) The POSTGRES next-generation database management system. Communications of ACM, vol. 34, pp. 78-92.

[VLL04] Vincent, M. W., Liu, J., and Liu, C. 2004. Strong functional dependencies and their application to normal forms in XML. ACM Trans. Database Syst. 29, 3, 445–462.

[WNM95] J.K. Wu, A.D. Narasimhalu, B.M. Mehtre, C.P. Lam, Y.J. Gao (1995) CORE: a content-based retrieval engine for multimedia information system, Multimedia Systems, n.3, pp. 25-41.

[XCZ04] B. Xiao, J. Cao, Q. Zhuge, Y. He, E. Hsing-Mean Sha, “Approximation Algorithms Design for Disk Partial Covering Problem”, 7th International Symposium on Parallel
Architectures, Algorithms, and Networks, 2004, pp. 104-110.

[Zad65] Zadeh, L. (1965), Fuzzy sets, Information and Control vol. 8, 338-353.

Lessons

mfd2

mfd1

mfd3

mfd2

mfd1

mfd2

mfd1

Lessons

Lessons

mfd3

mfd1

mfd2

Speakers

Multimedia_Contents

Speakers

Multimedia_Contents

Slides

Audio_Speakers

Multimedia_Contents

mmd1

Lessons

mfd2

mfd1

mfd1

mfd3

mfd2

Lessons

Lessons_Slides

PAGE
9

_1191069049.doc

[image: image1]

Path

Name

ID Photo

Semantics

Author

Features

Icon

Photo

_1191415646.doc

[image: image1]

Path

Name

ID Photo

Semantic

Author

Features

Icon

Photo

Features

Icon

_1142885014.doc

Xd1

t1[X]

t2[X]

t3[X]

Yd2

t1[Y]

t2[Y]

t'

