
51

Chapter 5

Semantics: The Active Index

In multimedia computing, an important issue is how to index multimedia
objects, so that the multimedia objects can be accessed quickly and certain
actions can be performed automatically. In conventional database systems,
keyword-based indexing techniques are adequate to support users' needs. In
multimedia information systems, there are many applications that cannot be
properly supported by keyword-based techniques. In addition to keywords,
users often want to access/manipulate multimedia objects by shape, texture,
spatial relationships, etc. That is, certain features of the multimedia objects
are used as indexes, and, in many cases, they cannot be represented as
keywords. The representation of these feature-based indexes poses some
special problems:

(1) Indexes are approximately represented.

(2) Indexes do not have an implicit ordering, in the sense that if a, b and
c are three index values and a < b < c, it does not mean that multimedia
object b is more similar to visual object a than multimedia object c.

(3) Indexes may have interrelated multiple attributes.

Faced with these problems, the conventional indexing structures such as
B-tree, hashing, etc. cannot be used for the organization of indexes for
multimedia objects. New indexing structures must be explored which should
also support similarity retrieval. Moreover, the index structures should be
highly flexible and dynamic, with the following characteristics:

52 Chapter 5

(a) Active index instead of passive index: The index can be used to
perform actions.

(b) Partial index instead of total index: Only a few multimedia objects are
indexed.

(c) Dynamic index instead of static index: The index can evolve, grow
and shrink.

(d) Visible index instead of transparent index: The user is aware of the
existence of the index, perhaps as part of the knowledge structure. So the
index is not necessarily transparent.

(e) Imprecise index instead of precise index: The index can be used in
processing imprecise or approximate queries.

This chapter introduces a theoretical framework for the active index. The
theoretical framework is introduced in Section 1. To illustrate its application
to the Smart Image System, in Section 2 we present a three-level active
index. With an active index, we can effectively and efficiently handle smart
images that can respond to accessing, probing, and other actions. The
application to information retrieval in hyperspace is discussed in Section 3.
The computation power of the active index is analyzed in Section 4. The
active index can be used to realize Petri nets, generalized Petri nets such as
G-nets, B-trees, etc., but the dynamic nature of the active index makes it
even more powerful and flexible. The reversible index introduced in Section
5 facilitates feature-based indexing. An experimental active index system
has been implemented, whose main features are described in Section 6. In
Section 7, further research topics are discussed.

1. FORMAL DEFINITION OF THE ACTIVE INDEX

An index cell base (ICB) consists of a (possibly infinite) number of index
cells. An index cell (ic) accepts input messages and performs some
computation. It then activates another group of index cells, and posts the
output message to these output index cells. If some of these output index
cells have already been activated, they may simply accept the output from
the current index cell. The first output cell that accepts the output message
will remove it from the output list of the current cell.

After its computation, the index cell may remain active (live), or de-
activate itself (dead). An index cell will also become dead, if it remains

5. Semantics: The Active Index 53

inactive for a certain period of time, i.e., if no other cells (including itself)
send messages to it.

An active index (IX) consists of a finite number of index cells ic from
ICB. Thus an active index IX is a finite subset of the (possibly infinite) index
cell base ICB. When the active index is in actual computation, it consists
of a time-varying collection of index cells in different states, accepting
certain input messages and posting output messages to the output lists. To
describe precisely the behavior of the active index, we will first formally
define an index cell.

Definition 1: An index cell is described by ic = (X, Y, S, so, A, tmax, f, g)
where:

 X is the set of input messages including dummy input d.
 Y is the set of output messages including dummy output d.
 S is the set of states. S includes a set of ordinary states S and a special

state sdead called the dead state. If an index cell is in the dead state, it is a
dead index cell. Otherwise it is a live index cell.

 so in S is the initial state of the index cell ic. A is the set of action
sequences that can be performed by this index cell.

tmax is the maximum time for the cell to remain live, without receiving
any messages. If tmax is infinite, the cell is perennial.

f is a function: 2X x S -> {0,1} where 2X is the power set of input X. If
f({x1 ,..., xm}, s) is 1, then the cell accepts the input set { x1 ,..., xm} and x1,...,
xm are removed from the output lists of those cells that produce these output
messages. The removal of messages is an atomic action that will occur
simultaneously. If f({x1,..., xm }, s) is 0, the input messages are not accepted.
When several input sets can be accepted, one is chosen non-
deterministically.

g is a function: 2X x S -> 2ICB x Y x S x A such that given input
messages {x1 ,..., xm} which have been accepted, i.e., f({x1,..., xm},s) = 1,
and current state s, g(x,s) is a quadruple (Ic, y, s', a) where

(1) Ic is a set of output index cells to be activated. If an output index cell
is in the dead state, it is changed to the initial state so that it becomes a live
cell, and the clock t is initialized to be tmax. If an output index cell is already
live, its current state remains unchanged, but its clock t is re-initialized to be
tmax. If an output index cell is the special symbol nil, no output index cell is
actually activated.

(2) y is the output message for the output index cells in Ic. The output
could be the dummy message d, when there is no real output to the output
index cells. The first output index cell that accepts this output message y
will remove it from the output list of ic.

54 Chapter 5

(3) s' is the computed next state of ic. The true next state s of ic is the
dead state if clock time t becomes zero or negative, and s' otherwise. If the
next state s' is the dead state, the index cell becomes dead.

(4) a is the action-sequence performed by this index cell, which can be
regarded as the output of the cell to the external environment.

Definition 2: The output list oL of an ic is of the following form: [(Ic1,
y1), (Ic2, y2), ..., (Icm, ym)], where yi is the output message posted to the ic's in
the set Ici. If any ic in Ici accepts yi, the tuple (Ici, yi) is removed from the
output list.

Definition 3: An index cell base ICB is a (possibly infinite) collection of
index cells. Given an index cell base ICB, an active index IX is a finite
subset of ICB with n index cells, denoted by an n-place ic vector ic = (ic1,
ic2, ..., icn), where the ici's are ordered by their (arbitrary) subscripts in ICB.

Definition 4: The instantaneous description id of an an active index IX is
denoted by id = (ic, s, oL), where ic is the ic vector, s is the corresponding
state vector, and oL is the corresponding output list vector.

Definition 5: The trace of an active index IX with respect to (ic0, s0, oL0)
is:

(ic0, s0, oL0) ⇒
(ic1, s1, oL1) ⇒
.....
(icn, sn, oLn)

where (ici, si, oLi) ⇒ (icI+1, sI+1, oLI+1) due to the acceptance of input
messages by an index cell. The ⇒ symbol reads as “is transformed into”.

Such transformations may occur in any arbitrary order. Each
transformation step in the trace takes exactly one clock cycle.

If the trace is finite, the active index IX is terminating with respect to (ic0,
s0, oL0); otherwise it is nonterminating.

Therefore, an active index is initially specified by (ic0, s0, oL0) where ic0

is the initial ic vector, s0 is the initial state vector and oL0 is the initial output
list vector.

For example, we can start with a single index cell, so that the active index
initially starts with (ic0, s0, oL0), where s0 is the initial state of ic0, and the
output list oL0 is empty. Let f({}, s0) be 1, so that ic0 will accept an empty set
as input. Let f(V, s0) be 0 for any non-empty V. If we intend to activate
index cells in Ic and post a message y to them, it can be done by an
appropriate g function. After that, ic0 enters a state ssleep, where no input will

5. Semantics: The Active Index 55

be accepted. The tmax can be set to infinity. In other words, the sole purpose
of ic0 is to activate some index cells and post a message to them. By adding
states to ic0 appropriately, we can also make ic0 post individual messages to
each of the activated index cells.

Observation 1: An index cell ic can be modified to post n messages
individually to n output index cells.

Proof: Suppose f({x1 ,..., xm}, s) = 1 and we want to post messages yi

individually to ici , 1 ≤ i ≤ n, and then change state to s'. Let s1 , s2, ..., sn-1

be n-1 new states. Replace the original g({x1,..., xm}, s) = (Ic, y, s', a) by the
following: g'({x1,..., xm}, s) = ({ic1 }, y1, s1, a).

We can construct f' and g' as follows:

 f'({}, s1) = 1 and f'({}, s”) = 0 if s” ≠ s1

 g'({}, s1) = ({ic2 }, y2, s2, nil)
 f'({}, s2) = 1 and f'({}, s”) = 0 if s” ≠ s2

 g'({},s2) = ({ic3 }, y3, s3, nil)

 f'({}, sn-1) = 1 and f'({}, s”) = 0 if s” ≠ sn-1

 g'({},sn-1) = ({icn }, yn , s', nil)

Therefore, the ic will go through the states s1, ..., sn-1 and post the
messages individually to the output ic's, and then change state to s'. n

Notation 1: As a notational convenience, we will write the quadruple as
(Ic, W, s', a), where the cardinality of Ic and W must be identical, i.e., Ic =
{ic1 ,..., icn}, W = {y1 ,..., yn}, to indicate that each yi is posted to each ici

individually.

Notation 2: As a further notational convenience, we will allow Ic and W
to be lists. If Ic is of the form [ic,...,ic], this means the messages yi are all
posted to the same ic. If W is of the form [y,...,y], this means the same
message y is posted to each ici individually.

The above notation enables us to specify the posting of a message y
either to an individual ic, or to a group of ic's. In particular, a message can
be posted to a certain type of ic, if we do not yet know the identity of the
individual ic.

The external environment may also send messages to the active index. In
particular, the action sequence may cause the external environment to send
messages to some of the index cells, including the index cell that performs

56 Chapter 5

the said action sequence. This can be modelled by activating a special ic,
similar to the ic0 described above, to send messages to some of the index
cells.

2. THE ACTIVE INDEX FOR THE SMART IMAGE
SYSTEM

An active index is a dynamically changing net. As we shall see in
Section 4, active index can be used to realize Petri nets, generalized Petri
nets (G-nets), B-trees, etc. But its primary purpose is to serve as a dynamic
index. We now illustrate by an example.

In current visual information systems, images don't have the capabilities
to automatically respond to situational changes occurred in their
environments. With advances in software and hardware technologies,
images can play a more active role in their applications. For example, in the
medical domain, after the examination of a patient's nuclear image, a doctor
may want to compare images of the same patient at different states
(exercising, normal, excited, etc.), then to examine images in the time
domain (past histories), and finally to check images from other modalities.
Instead of having the doctor to retrieve these relevant images with explicit
queries and to convert and highlight the images properly, an active image
can monitor the doctor's actions and provide the necessary information in
proper formats on time.

To improve the effectiveness and efficiency of visual information
systems, images should invoke actions by themselves. Depending upon
applications, they can move themselves into proper local storage, pre-
process themselves into the appropriate representations, and display
themselves on the screen at the right time.

A smart image is an image with an associated knowledge structure,
where knowledge includes attributes, routine procedures for how the image
is used, and dynamic links to other objects for performing related actions.

A smart image knows what actions to take based on the user's interaction
with the image and on the environmental changes to the images.

2.1 Smart Image Design for Large Image Databases

To illustrate how the active index can be applied to the Smart Image
System, let us describe the 3-level active index for the Smart Image System,
using the theoretical framework presented in Section 1.

5. Semantics: The Active Index 57

2.1.1 Level-1 Index

The level-1 index is to pre-perform certain operations and specifically to
prefetch image data. For each smart image, only one level-1 index cell can
be activated. The input to this ic is the set of user messages of interest. A
relevant user message regarding a smart image will be sent to this ic. This
user message will (1) cause the ic to activate the appropriate level-2 ic, (2)
post an output message to that level-2 ic, and (3) change state to the
appropriate next state.

For example, if the ic is in sangio and the user message indicates a
Stenosis condition, then the ic will activate the level-2 icmulti-modality, send an
output message Image:Angio, Abnormality:Stenosis to icmulti-modality, and
change state to smuga. The action of this ic in state sangio is to prefetch all
muga images of the patient.

The states in this level-1 index cell are the global states. Once the ic
enters a global state, a selected group of the next level index cells can be
activated. In the above example, the states correspond to the different image
modalities, because when the user is viewing an image of a given modality,
the index cell must be in that state, i.e. such states are observable.

Figure 1. State transitions for the level-1 index.

58 Chapter 5

The state transitions for the level-1 index cell are given in Figure 1. As
illustrated in Figure 1, from the current state, depending upon the user's input
message (the condition), we can prefetch all relevant images of a given
modality. Thus from State 2, if the condition is Stenosis, then we prefetch
all the muga images of a specific patient and go to State 3. Figure 2
illustrates the relationships among images, hotspots and level-1 active index.

Figure 2. Relationships among images, hotspots and level-1 active index.

There may be too many muga images to be prefetched. Can we prefetch
only a subset of these muga images? It depends on the following: (i) the
filtering algorithm, (ii) the way images are organized in the class hierarchy,
and (iii) the index cell construction algorithm.

5. Semantics: The Active Index 59

Since the level-1 index cell is essentially a finite-state machine, there are
effective learning algorithms to construct the cell from the past history of
user messages. In principle, we can record every click made by the user as
well as every text, voice or annotation messages. In practice, we use filters
to extract the appropriate user messages and record them in the history. A
moving window is kept, so that the recent history is used by the learning
algorithm to construct the finite-state machine for the index cell. For
example, the filtering algorithm may only extract user's identification of
abnormality and accessing of image data: (Abnormality=Stenosis,
Retrieve=Muga image taken on date-x), from the following history:

Doctor Name: Douglass A. Young
Patient Name: David Straker
SSN: 152-83-2745
SEX:M
Date of Birth: Sep 15 1953
Angio Image: Ang.Hrt.001, taken on Dec 19 1991, EID#=MHT-00010
CREATE_HS
Abnormality: Stenosis
RETRIEVE_IMAGE
Muga Image: Mug.Hrt.003, taken on Dec 10 1991, EID#=MHT-00030

In the smart image class hierarchy, images are divided into: (a) recent
images (within one month), (b) fairly recent images (within one year), and
(c) archival images (within ten years). The simplest index cell will just
define a next state corresponding to ALL nuclear images. The more
sophisticated index cell will have next states corresponding to (a) (b) and (c).
The index cell construction algorithm will test whether date-x satisfies (a)
(b) or (c) and then constructs the cell's next state(s). With this refined
construction algorithm, only those images that are in (a), (b) or (c) will be
prefetched.

2.1.2 Level-2 Index

The level-2 index is to perform hotspot-triggered actions in multi-
modality study. If the user will make known to the system what study is
being conducted, such as Coronary Artery Disease, Ventricular Function,
and so on, the appropriate level-2 index cells will be activated based on the
particular study.

A hotspot in a smart image, when triggered, may send messages to a
level-2 index cell. For example, the input to an ic icleft_ventricular_study is the set
of hotspot conditions such as abnormality, and quantitative data obtained
from the image processing routine. An appropriate hotspot condition will

60 Chapter 5

(1) cause the ic to activate another ic in level-2 or an ic in level-3, (2) post an
output to that ic, and (3) change to dead state to de-activate itself.

Figure 3. Level-2 active index.

Figure 3 illustrates the level-2 active index. In Figure 3, the active index
is shown as a net of index cells. It should be emphasized that the arcs in this
net are dynamic. Output arcs are specified when a live cell accepts and
processes the input. They can change dynamically.

For example, the hotspot condition: LV_enlargement_abnormality, and
heart volume quantitative data in nuclear image and the hotspot condition:
Stenosis_abnormality, and low ejection fraction quantitative data in angio
image, when triggered, will (1) cause the ic to activate the level-3 ic, (2) post
the appropriate output message to the level-3 ic, and (3) de-activate
icleft_ventricular_study. Another hotspot may cause the ic to activate different
output cells.

By using the technique of abstraction, we can combine the simpler cells
into more complex cells with multiple input such as for multi-modality
study. Similarly, some image processing functions may require multiple
images as input. The detection of LV Enlargement and Stenosis in two
different images may require two separate image processing functions. The
two functions may be disjoint, and no image fusion is required. We will just
test the logical predicates in the above example. On the other hand, for some
cases image fusion will be required, and we must register the images,
perform nonlinear transformations to correlate images, etc.

5. Semantics: The Active Index 61

2.1.3 Level-3 Index

The level-3 index is to perform automatic linking and the retrieval of
related and sometimes unanticipated information. When the user requests
information (by clicking on some button), a message is sent to the ic. The
input to an ic is therefore the set of retrieval requests. An appropriate
retrieval request will (1) cause the ic to activate another (possibly remote) ic,
(2) post an output message to that ic, and (3) change to initial state. The
action is to send information to the original requester.

For example, the ictumor, with the initial input message tumor_found, may
initiate a retrieval request, to retrieve all related information on that patient,
and present it to the original requester (the physician who is interacting with
the Smart Image System).

Figure 4. Annotation

Annotation as illustrated in Figure 4 could be considered unanticipated
information. When an active index automatically performs linking and
prefetching operations, unanticipated information can be included or not
included. When the physician is making a decision, he needs the right
amount of unanticipated information, but certainly he does not want every
single new case in the medical journals. Thus, the active index with the
appropriate action sequence determines what links to be established, and

62 Chapter 5

what amount of information to be prefetched. Such flexibility makes the
Smart Image System responsive to users' needs.

The function of the level-3 index is quite similar to that of the active
index for information retrieval in hyperspace, which will be explained in the
following section.

3. THE ACTIVE INDEX FOR INFORMATION
RETRIEVAL IN HYPERSPACE

To retrieve information in the hyperspace, which is represented by a
hyperstructure, we can associate an index cell with every recently accessed
node in this hyperstructure. Thus the ICB corresponds to the set of all nodes
in the hyperstructure, and IX a finite set of recently accessed nodes.

In a recent experiment, two months of tracing Mosaic usage in a
university department show that about 40-45% of Mosaic files are accessed
with high frequency. A relevant subset of the Mosaic objects transferred
from remote servers are often used by other NCSA Mosaic clients. (In the
university environment, the often looked-for information items are call-for-
papers, books or technical announcements, new computer systems, etc.)

Therefore, to improve the system performance, frequently accessed
information items should be prefetched and kept in the local cache.

The index cell can be constructed as follows:
It accepts a query qk if k > 0, and activates the adjacent index cells, and

posts qk-1 to them. The action performed is to prefetch information items
satisfying the query.

A further refinement is to prefetch information items above a certain size.
The justification is that we need only prefetch large information items, and
small information items need not be prefetched.

As an example, if the original query is q3, only cells within a distance of
two links may be activated. Since we are posting a query to all the adjacent
cells, if one of them accepts the query, the rest will no longer be able to
process this query. Therefore, only three ic's on the following single path
will be activated:

icq3 -
icq2 -

icq1

If we post queries individually to the adjacent cells, the result is to
activate all ic's where the distance from any ic to icq3 is no more than two
links. Consequently, more information items will be prefetched.

Both the viewer and the designer of a hyperstructure can add knowledge
to the index cell as follows.

5. Semantics: The Active Index 63

The viewer of the hyperstructure can send messages to the active index.
For example, a clicking on a document indicates the invocation of a
hyperlink. Certain index cell can then be activated.

We may also allow the viewer to add annotation to certain objects. In
this case, the viewer can modify (a part of) g to activate the cell
corresponding to the annotation object.

The designer of the hyperstructure can of course modify the g function to
decide what new cells to activate. Thus, g contains the designer's
knowledge. Therefore, the g function is central in capturing both the
viewer's knowledge and the designer's knowledge.

The function g allows us to either add new cells to the system, or to stay
with a predefined set of cells. We can set tmax to infinity, and exclude from g
the dead state, so that index cells always remain live. We can further
stipulate that g maps only to cells in IX. Thus the system can become a
static index system.

On the other hand, if no query is posed, with finite tmax 's after a while all
index cells will become dead. In other words, the active index is active, only
as long as there are messages sent to the cells (or, to put it simply, only as
long as there are users interested in certain information nodes of the
hyperstructure).

From the above two examples, it can be seen that the major difference
between an active index and a static index is that the active index is a
dynamic collection of live index cells. The active index will change with
time, as new index cells are activated and current index cells are de-
activated.

4. THE COMPUTATION POWER OF THE ACTIVE
INDEX

The active index is a powerful computing device. Its interconnections
are dynamic, which makes it different from many other computing devices.
By suitable restrictions, it can be used to realize Petri nets, the previously
defined active index structure, conventional index structure such as the B-
tree and a generalized Petri net called the G-net.

However, it is more general than all of the above, because in the active
index the arcs are not fixed and static and may change dynamically.

64 Chapter 5

4.1 It can realize the Petri net

Suppose the Petri Net is specified by (P,T,I,O) where P is the set of
places, T is the set of transitions, I is the input function for the transition, and
O is the output function for the transition.

We can construct an active index as follows: in the index cell base ICB,
there are cells icpi corresponding to the places pi , and cells ictj corresponding
to the transitions tj . The active index IX consists of ic0 and these cells icpi

and ictj. Furthermore, they are perennial. The cell ic0 is used to initialize the
active index.

For each index cell icpi corresponding to the place pi,
icpi will accept any

input x, because input can only come from transitions. After acceptance of
input, the cell icpi activates the output index cells in Trpi, where ictj is in Trpi if
tj is the output transition of pi. The cell icpi then posts (Trpi,

xpi) to the output
list.

For each index cell ictj corresponding to the transition tj, it will accept the
input set { xp1,

xp2,...,
xpm } where each pi is the input place of transition tj.

After acceptance of input, the cell ictj activates the output index cells in P1tj,
where icpi is in P1tj if pi is the output place of tj. The cell ictj then posts
({icpi}, xtj) to the output list, for each icpi in P1tj.In other words, by
Observation 1 of Section 1, the transition tj can send messages individually
to each output place pi.

4.2 It can realize the previously defined active index
structure

An active index structure can be defined to be a set of active index cells
connected by arcs. Each cell has a number of input slots and output slots.
Each input slot is connected to the output slot of another cell, and each
output slot is connected to an input slot of another cell. The connected pair
of input and output slots must have the same predicate. A cell R is enabled if
tokens satisfying the input predicate flow into the cell. When the cell R is
fired, one token each will flow to the input slot of another cell provided that
the token satisfies the output predicate. When several input slots have
identical predicates, they must all have tokens satisfying the predicate,
before R is enabled.

The active index structure can be transformed to the equivalent Petri net
where input slots with identical predicates are converted to input places for
the same transitions, and output slots are converted to transitions leading to
output places. But the current formulation of an active index is more natural
and can be used directly to describe the originally conceived active index
structure.

5. Semantics: The Active Index 65

Basically, f({x1, x2, x3},s) is 1, if x1, x2 and x3 are inputs to the cell, and
pred(x1, x2, x3) is true. We can then post the output message to the output
slot(s).

The current formulation is more general than the previously defined
active index structure. The restriction of fixed input/out relationships has
been removed. Index cells can be added/deleted dynamically, so that the
active index varies in time.

4.3 It can realize conventional index structures

For example, the B-tree can be described by an active index. The
technique is to provide different input to the index cell for the B-tree (called
a B-cell). One input to B-cell indicates the insertion mode, and the other
indicates the search mode. Other conventional index structures (index
sequential, index direct, etc.) can also be described using similar techniques.

4.4 It can realize the G-Net

The active index system is conceptually derived from the G-Net system
where each G-Net may invoke another G-Net. Therefore, each G-Net
corresponds to an active index cell. When a G-Net is invoked, it accepts the
input message. When it completes its computation, it sends messages back
to the invoking G-net, and then de-activates itself. Furthermore, if we
introduce the various levels of abstractions into G-net, we can also describe
class hierarchies and other abstraction structures. This leads to
methodological considerations in specifying the active index cell, the input
message space X and output message space Y.

5. THE REVERSIBLE INDEX FOR FEATURE-
BASED INDEXING

The level-2 active index shown in Figure 3 can be used for feature-based
indexing. When a feature is detected in an image, a hotspot is triggered to
send a message to an index cell, which in turn may send output messages to
other cells.

Conversely, if we want to retrieve images having that feature, we need to
reverse the flow in the index structure. In this section, we describe how to
construct such a reversible index.

66 Chapter 5

Suppose ici posts output message xi to ic, 1 ≤ i ≤ m. If we want to
make ic accept these m messages as input, then f({x1, ..., xm}, 1) = 1.We can
tag every input message as (ici, xi), so that the input message also indicates
where it comes from. Thus we have the following modified f function,

f({(ic1 , x1), ..., (icm, xm)}, 1) = 1.

Similarly, we can also tag the output message of this ic as follows,
g({(ic1, x1), ..., (icm, xm)}, 1) = (Ic', (ic,y), s', a) if one output message y is
posted to all the ic' in Ic'; or (Ic', {(ic'1 ,y / 1), ... , (ic'n ,y / n)}, s', a) if the
output y / j is posted individually to each ic'j in Ic', 1 ≤ j ≤ n.

For notational convenience, let Ic = { ic1,..., icm), V = { x1,..., xm}, IcV =
{(ic1, x1),..., (icm, xm)},Ic' = { ic'1,...,ic'n), W = { y1,..., yn}, and Ic'W = {(
ic'1, y1),..., (ic'n, yn)}.

We can now describe the reversible index cell as follows.
Case 1: One output is posted to n output cells. For the original index cell,

input f(IcV,s) = 1, and output g(IcV,s) = (Ic, (ic,y), s', a). For the reversible
index cell, we modify f and g as follows: input f({(ic'j, y)}, r) = 1 for 1 ≤ j
≤ n, and output g({(ic'j, y)}, r) = (Ic', IcV, r', b),where r, r' are new states
corresponding to s, s', respectively. In other words, the reversed ic will
accept y as the input, and posts xi to ici individually as the output.

Case 2: An individual output for each output cell. For the original index
cell, input f(IcV,s) = 1, and output g(IcV,s) = (Ic', Ic'W, s', a). For the
reversible index cell, we modify f and g as follows: input f(Ic'W,r) = 1, and
output g(Ic'W,r) = (Ic, IcV, r', b), where r, r' are new states corresponding to
s, s', respectively. In other words, the reversed ic will accept {y1 ,..., yn} as
the input, and posts xi to ici individually as the output.

In both cases, the action sequence b is left to be designed. If we first
apply forward index to detect certain feature in an image, and then apply
reverse index to find images having this feature, we can find images that are
similar to the said image - similar in the sense of having the same features.
Likewise, we can use forward index and then reverse index to find
documents similar to a given document in the World-Wide-Web.

6. AN EXPERIMENTAL ACTIVE INDEX SYSTEM

The active index is a conceptual model. In actual implementation, the
active index can be incorporated into almost any application system. For the
Smart Image System, for example, the hotspot lends itself to a natural
coupling with the active index, in the sense that once a hotspot is triggered, a

5. Semantics: The Active Index 67

message is posted and the corresponding index cell is activated. For the
Mosaic application, the clicking on a hotword has similar effects.

We have built an experimental active index system. The heart of the
active index system is the IC_Manager, which performs the functions of
receiving incoming messages, activating index cells, performing actions, and
handling outgoing messages.

As illustrated in Figure 5, although in theory ic1 can directly send
message m1 to ic2, and ic2 can directly send message m2 to ic3 residing in
another machine, in practice every message must go through the
IC_Manager.

Figure 5. The IC Manager.

Another implementation approach is to realize each cell as a separate
process, but that will result in costly interprocess communication overheads.
Since efficiency is a major concern, that approach was not adopted.

The core of the IC_Manager is described as follows:

IC_Manager(message)
begin
 if message contains ic_id
 begin /*the message is for a specific ic that should already exist*/
 locate ic_id in IX;
 add message to input_list; end ;
 if message contains ic_type
 begin /*the message is for an ic to be created*/
 locate ic_type in ICB;
 create a new ic_id;
 add a new ic instance to IX;
 add message to input_list of this ic;
 add ic_id to the output_list of the output ic; end ;
 while there is next ic_id in IX

68 Chapter 5

 begin check whether message should be accepted;
 if message should be accepted
 if message has not been accepted by another ic
 begin accept this message and remove it from output_list;
 process this ic; end
 end
 end

In theory, the index cell base ICB can be infinite. In practice, it is
necessary to maintain a library ICB of a fairly small number of generic ic's,
so that the user can create customized cells with ease.

For the Smart Image System, it is also necessary to have a separate
collection of generic index cells for each level of the three-level index.

The ICB and IX are implemented as linked lists of C structures.
Whenever there is a request to activate (or create) a new index cell, a new
cell is obtained from an available list space. Conversely, a dead cell is
returned to the available list space.

The IC_Manager has a domain-independent part and a domain-specific
part. The domain-specific part contains the specific routines used by the ic's
to perform predefined actions. It also identifies and structures the external
messages to be sent to the IC_Manager.

This clean separation of domain-independent and domain-specific parts
makes it easy to adapt the IC_Manager to a new application system.

The IC_Manager is written in standard C codes and can easily be
compiled together with the intended application system, on workstations as
well as PCs, to produce a customized application system with built-in active
index.

Another important tool is the IC_Builder, which is a visual user interface
enabling the designer to visually design new index cells from scratch, or
customize an ic based upon a generic ic from ICB. This tool was introduced
in Chapter 4 and will be described in detail in Chapter 8.

For a WWW client such as the Mosaic, we can invoke the active index
from Mosaic, so that the user's clicks generate retrieval requests. For
information retrieval in hyperspace, the simplest approach is to use only
level-3 index cells to link and retrieve information. Figure 6 illustrates the
experimental Mosaic-IC at work, where the background window on the right
displays the trace of instantaneous descriptions of the active index, and the
action_icons in the upper-right corner show the actions performed.

5. Semantics: The Active Index 69

Figure 6. The experimental Mosaic-IC system.

For further research, the user can be modeled using level-1 index, the
information abstracted using level-2 index, and information items linked and
selectively presented using level-3 index. Moreover, using the reversible
index, we can find documents similar to a given document. Special generic
cells can be designed, to do range-based retrieval and incremental
knowledge acquisition.

In implementing the experimental active index system, we decided to
provide each cell with an internal memory. Theoretically, the internal
memory and the state together define the true state of the cell. In practice, it
is more convenient to have an internal working memory, so that the cells can
cope with different situations flexibly. The internal memory is a C structure,
so that the user can include special routines in the domain-specific part of the
IC_Manager to manipulate it.

Using the experimental active index system, we quickly produced
customized Smart Image System (SIS-IC), Mosaic (Mosaic-IC), B-Tree
(BT-IC) and Medical Personal Digital Assistant (MPDA-IC). Thus the
experimental active index system serves as a prototyping tool to enhance
application systems with active indexes.

70 Chapter 5

7. DISCUSSION

The active index introduced in this chapter possesses the following
desirable characteristics: (a) The active index can be used to initiate actions
and is active rather than passive. (b) Only a few index cells are activated as
needed, so the index is partial rather than total. (c) The index is dynamic and
can evolve, grow and shrink. (d) The index cell can send messages to the
user in its action sequence and therefore the index can become visible to the
user. (e) Finally, with the reversible index, the active index can be used to
process imprecise queries and perform similarity retrieval.

The following topics require further research: (a) The index cell reversal
technique described in Section 5 enables us to extract features from an image
to construct feature-based index cells, and then retrieve images containing
such features using these index cells. The feature-based index cells, like
other index cells, have a finite lifetime. If they don't receive any messages
for a while, they die. Dead index cells can either be eliminated, or archived
to tertiary storage. Therefore, the system will not be burdened with
excessively large indexes. The algorithms for index cell reversal need to be
carefully designed, so that we can perform feature extraction and feature-
based indexing using the same index structure.

(b) The time bound tmax limits the size of the active index, so that it will
not grow too large. Inactive cells of the active index will be removed or
archived automatically. A research issue is to study the stability of time-
varying active indexes. Under what conditions will an active index become
dead? Moreover, how can we adjust tmax so that the index is always below
the storage constraint?

(c) The knowledge is contained in the two functions f and g. The
function f restricts the inputs to be processed. The function g specifies the
output, what cells to activate, next state and the action sequence. When, for
example, the designer or the viewer of a hyperstructure wants to add
knowledge to the cells, we need algorithms to allow incremental addition of
knowledge by systematically modifying the g function.

