
0

Final Deliverable Document

Group 14: Pitt Jungle

Members: Sushruti Bansod, Sherryl Augustine, Luiza

Urazaeva, David Ladeji, Trent Lessig

1

Table of Contents/Checklist

Software configuration is complete.

Document includes

Software Plan …………………………………………..………………………………2

Requirements …………………………………………..………………………………5

Object Oriented Analysis……………………………………………………….……...24

Object Oriented Design………………………………………………………….……..30

Test plan………………..………………..………………..………………..…………...35

Test results………………..………………..………………..………………..…………40

Sample source codes ………………………………………………………………..…..49

User manual…………………………………………………………………...……..…..52

Software Maintenance procedure …………..…………………...……..………………..60

Installation procedure………………..…………………………………………………..59

Report on first iteration/first sprint………………………………………………………65

Appendix: Project Presentation

2

The Software Plan

1.0 Scope

When students are starting college, it is the first time they are on their own. Students tend
to focus their time on academics, which although is important, can be detrimental to their overall
college experience. We hope our product can bridge the gap between academics and leisure by
introducing students to dining options other than university dining halls, as well as other local
events and attractions.

Our team will put together a product called PittJungle. It will mainly be used as a
navigation tool for Pitt students to find local events, eateries, academic recommendations and
activities on and around campus. It will allow students to create groups and communities with
people who have similar interests. This will help new students create a life outside of class which
is vital for a college lifestyle.

 1.1 Functions

● User Authentication
○ Users will be able to create an account and log in

● Event and Food Recommendations
○ Users will be able to leave ratings at restaurants or events.

● Filter Functionality
○ Users will be able to choose and filter types of food based on cuisine and dining

style.
○ This filter will also apply to locations and events by dividing them into subgroups.

● Friend Feature
○ Users will be able to see what other users liked and thus make friends with similar

tastes.
○ Users will be able to friend similar people and add them to their network

Wishlist Features:
● Academic resources

○ Users will be able to recommend courses to their friends on the network
○ Users will be able to host study sessions and get academic help

● Chatbot
○ Users will be able to interact with a chatbot to get recommendations on

food/academic material
● App Development
● Users will be able to write reviews for the restaurants and events.

 1.2 Performance

3

● Website/Web application should be user friendly
● Multiple users should be able to login and use features
● Event/Restaurant ratings should been seen by other users
● Chatbot should have an acceptable rate of response/accuracy
● Users should be able to post an event

 1.3 Limitations

● The user will not be able to alter information about the event or restaurant.
● Users will not be able to change login information.

2.0 Tasks

● User Interface/Graphic Design
● Database/Profile Management
● Deep learning/Recommendation System
● Testing
● Researching restaurants and places in Pittsburgh

3.0 Resources

3.1 Hardware
● Linux Server
● Windows computer

3.2 Software

● User Interface - React or Flask
● Graphic Design - Illustrator or Photoshop
● Databases - SQLite
● Chatbot/ML - Python, Bootstrap, Watson Assistant
● Software Testing Suite
● Chrome
● Visual Studio Code

3.3 People

4

4.0 Cost

5.0 Schedule

Software Requirement Specifications

 Project
Manager

GUI
Designer

Databases/
Backend

Testing Research Chatbot/ML/
Recommender

Sherryl x x x

Sush x x x

Luiza x x

David x x x

Trent x x x

5

1. Product Overview and Summary

College is a time when teens start to make decisions for themselves for the first time.
From their schedule of classes to when to eat. For many, this can be a stressful time
without the right guidance or help. With this newfound independence, students can lead
to students spending too much time in academics which can greatly affect their college
experience and mental health.

Our team hopes to put together an app that acts as a guidance/navigation tool. Directed
towards Pitt students, our app will allow students to find something to invest time in
outside of academics. We plan to implement a netflix like interface to introduce students
to dining options other than Market Central and Perch. We want to provide students
options based on their preferences, therefore we will be implementing a deep learning
aspect that will show suggestions based on previous likes. Similarly, we will implement a
page specified for certain attractions around pittsburgh. Pittsburgh is a very culturally
diverse city, therefore a guide on places to visit such as certain museums, and parks will
be beneficial for students to get to know this city. Lastly, we want to include an events
tab. Which users can edit and add to. This will allow people to see concerts, meet-ups and
different types of local events within the city.

Our concept will be implemented using React, Python and other softwares. By dividing
the team into groups, we hope to speed up the coding and testing process while also
securing quality in our website. Until further discussion, this product will be a website,
however, if time allows it, our team hopes to turn this into an app for easy access. We
decided to call it PittJungle so students can better navigate the concrete jungle that is the
University of Pittsburgh.

2. Information Description
 2.1. User interface

- PittJungle helps the users find restaurant events by preference in the Pittsburgh
area. It allows the Pitt students to create groups with people who have common
preferences and interests. The main function of the website is to find optimal food
and leisure options for students.

- The users can start the website by opening PittJungle website in their browsers. At

the landing page, the news related to the events and food in Pittsburgh will be
shown.

- If the user is visiting PittJungle website the first time, the user must register in

order to access the user-specific area. In order to register, the user must first
provide a full name, email address, Pitt username, cell phone number, a unique

6

username as well as password. Then the website stores the user information. After
that user can login by typing username and a password in a login area.

- The PittJungle website will have the FAQ link at the bottom right corner. In the

FAQ, all user related questions will be addressed. The FAQ section will be
regularly updated based on the questions and feedback from the users. The email
and contact information will be posted in the FAQ. The users will have the ability
to send questions and feedback via email. The popular, important questions and
their answers will be posted in the FAQ. The administrator will need to make sure
that no private information is revealed in the FAQ posts.

- A sample run can be described as simulation of the user searching for a restaurant.

The user logs into the PittJungle. Then the website displays a list of options of
restaurants and events based on the user’s previous queries. If the user is logging
the first time, a short survey will pop up to find out the user’s preferences. The
user can choose the options for food and types of events from drop-down menus.
The AI algorithms process the user’s query and display the result. The user can
select the restaurant from the results and find out information about the restaurant.

- Since the project is going to be a website, the users will be able to choose filters

from the drop-down menus and hyperlinks for filtering restaurants and events.
There will be 3 modes: 1) students, 2) restaurant or event planner partner and 3)
admin or moderator.

- Each mode of operation will have various commands and different levels of
permissions. The user can view, recommend or “like” the restaurants. The
restaurant partners can add or edit the information about their restaurants but they
cannot create their own account. The admins will have all the commands and
permission at their disposal so that they can create users or restaurant partners and
override their actions if necessary.

2.2. High level data flow diagram

7

8

2.3. Data structure (or object) representation
● We will have an object that represents a user.

○ When the user is registering for an account we will ask for their name, major and
their year in school

○ The first and last names, the user’s major and their year in school will all be
stored in their individual user object.

○ Eg. user(first_name, last_name, major, year_in_school)
■ first_name: user
■ last_name: user
■ major: user
■ year_in_school: user

● We will have an object that represents a particular place that users can visit.
○ The name and address of the place will provide the user with basic information

about the place.

○ The type of the place will be used in the filter functionality. For example, The
Carnegie Museum of Art will have a type of “Museum” and “Art”. This way users
can filter out places they want to visit based on these types/tags.

○ Eg. place(name, address, type)
■ name: place
■ address: place
■ type: place

● We will have an object that represents an event that users can post
○ When a user posts an event they will need to enter the name, date, time, address

of the event. They will also be able to classify the event into a type. This
classification will be used in the filter functionality.

○ The type of event will allow users to filter and find events they want to attend. For
example, a user can create an event with the type “Study”. This indicates that the
event that the user is creating is an academic event such as a group study
session.

○ Eg. event(name, date, time, address, type)
■ name: event
■ date: event
■ time: event
■ address: event
■ type: event

● We will have an object that will represent and show the details of a friend request.

9

○ When a user sends a friend request, our application will need to keep track of
who is sending the friend request, who is receiving the friend request and the
status of the request.

○ So, we will keep track of the source and destination of the friend requests.

○ We will also keep track of the status of the friend request. The request could still
be pending or the “destination” user could have accepted it or declined it. So, the
3 possible values for the status are: Pending, Accepted, Declined

■ eg . friendRequest(sourceUser, destinationUser, status)
● sourceUser: friendRequest
● destinationUser: friendRequest
● status: friendRequest

 2.4. Data elements (or objects) dictionary

● Create a list of data objects. We research what kind of data we need. For
example, we will need the user information and user preferences.

● Set the properties of data elements. We will need to decide what size and what
type each data element will be. We will also need to set which data serves as
indexes to build relationships between tables.

● Classify the data. In this step, we categorize data according to their domains and
relationships

● Build schema for database. After classifying the data, we build a dictionary for
data elements. For example, restaurant hours will be of type Date time and
restaurant names will be strings of maximum 80 characters length. Both data
types will be columns in the restaurant tables. Consequently, the users will have
restaurant IDs of the restaurants they like. We then can match restaurant ID to
the IDs in the restaurant and retrieve all the restaurants the user likes.

● Sample Table:
 Table User

 User id: Integer
 Username: String (20)
 First Name: Sring (80)
 Last Name: String (80)
 Email: String (80)
 Password_Hash: Integer
 City: String (80)

10

3. Functional Description
 3.1. Functions
 The IC cards for our project are as follows :

11

12

13

14

 3.2. Processing narrative

The functions that power the website include user authentication, even and food
recommendation, filter functionality, friend feature and administrative functions.

- User Authentication. This functionality allows to authenticate the users so that the

users have secure accounts. It also keeps the user’s private information
confidential. In order to create an account, the user has to click on the “register”
button, then the user has to provide private information like full name, cell phone
numbers, physical and email addresses. We use tested public authentication
libraries that deploy RSA encryption to implement secure authentication. To
login, the user has to enter username and password in the login page. After
username and password matches with username and password stored in the
database, the website shows the user’s landing page.

15

- Event and Food Recommendations. The PittJungle website will have capability to
recommend based on the users’ ratings. The user will be able to leave ratings at
the restaurant and events. When the user finds a restaurant or event that matches
to their preference, they leave a rating. Overall higher positive ratings will allow
the restaurant to show up higher on the rankings in the search results.

- Filter Functionality. The users will also be able to choose, and filter types of food

based on cuisine and dining style. The users will be able to select the options from
drop-down menus. After the user selects the options to filter, the PittJungle can
show recommendations based on the filter results. This filter will also apply to
locations and events by dividing them into subgroups.

- Friend Feature. The PittJungle will incorporate social network features to improve

the user experience. The user will be able to follow other users and be a fan of the
restaurant or events. They will also be able to see what other users liked.
Consequently, they can make friends with similar tastes. The user can search
specific users by their full name or email address so they can follow a specific
person whom they may have met at the restaurant or event. To give users full
control of their preferences, they will be able unfollow friends. If the restaurant or
event falls out of their favor, the user can also unfollow the restaurants or events
they liked and followed previously.

- Administrative Functions. The administrators of the PittJungle will have
permissions to add, delete users and override their actions if necessary. For
example, if the user needs to be kicked out of the PittJungle, the administrator will
be able to do so. Administrators will also be able to add and delete restaurant
profiles on PittJungle. The restaurant won’t have the ability to self-register their
establishment. Admins need to properly vet the restaurants so that fake restaurants
will not show up on the search result. If the restaurant registered on the PittJungle
network ceases to exist, the admins will have the ability to remove the restaurant
from the listings.

 3.3. Design constraints

3.3.1 Functional Constraints
3.3.1.1 User Likes/Dislikes

Users will only be able to like or dislike a specific place or event once

3.3.1.2 User Authentication

16

Users will be limited, meaning no username or password changes will be
accepted

3.3.1.3 Friend Requesting
Users will be able to send requests to other users for acceptance. If denied,
another request can be sent

3.3.1.4 Filter Functionality
Users will only be able to sort by the provided sorting tags

3.3.1.5 Event Posting

A user who posts an event will not be able to change the event. A
comment within the event could clear up misunderstanding.

3.3.1.6 Recommendation System Data Collection
The recommender system will be limited to the amount of data stored for
each user. Data will be added to user ‘log’ based on likes/dislikes.

3.3.1.7 Help Mode
This aspect will not be interactive. It will be a user manual and/or video.

3.3.2 Other design constraints

3.3.2.1 Data
As the team is not surveying/polling the places and activities of what we
are including, the data is constrained to what is actively available to us
over the internet. Regarding student posted events, this is responsible to
them to post legitimate material

3.3.2.2 Geolocation
Since obtaining locations of various access points is no easy task, the team
has decided to manually enter distances from a fixed point (i.e. Pitt’s
address)

17

3.4 Diagrams

18

19

20

4. Performance requirements

● The System should be able to handle
○ 50 concurrent users
○ 200 user-profiles
○ Review and event posting under 10 seconds

5. Exception conditions/exception handling

● If System crashes, the team works until it can go live again
● If overload happens, reviews older than 3 months will automatically be deleted
● New and non-chain restaurants and attractions will be given priority
● Database constantly updated

6. Implementation Priorities

● Due time constraints, we will prioritize the important functions of the website's
functionality.

· User Registration
· User Login
· Event Registration
· Restaurant Registration
· Like Functionality
· Filtering Functionality
· Recommender systems

● Wish List
· AI chat
· Mobile app

21

7. Foreseeable modifications and enhancements
● Upgrade of the recommendation system algorithm
● Make all pages user friendly
● Enable users to modify and delete only the events and activities they created.

8. Acceptance criteria
Documents that will be delivered:

● Software plan
● User manual
● Test plan
● Requirements
● Sample source code
● Software design
● Test results

Tests to accept product are as follows:

● Ensure a new user can be registered
● Ensure users can create events
● Ensure admin can manage users and events on the site
● Ensure users can log into their accounts
● Ensure events and locations can be filtered
● Ensure users can befriend other users
● Ensure users can comment on and like locations/events.
● Ensure multiple concurrent users are supported
● Ensure account details and other requested information are supplied quickly

9. Sources of information

9.1 Software Vendor Resources
9.1.1 Flask

Welcome to Flask — Flask 0.10.1 documentation

9.1.2 React
Getting Started – React

9.1.3 Python and Database Resources
Our Documentation
Databases
Do You Know Python Has A Built-In Database?
Python - MySQL Database Access

9.2 Student Activity / Food Vendor / Pitt ID Resources

9.2.1 Activities On and Around Campus and Pittsburgh
9.2.1.1 Recreation and Sporting Facility Information

Facility Information

22

9.2.1.2 Sporting Event Discounted Activities
GNC Student Rush | Pittsburgh Penguins
Student Ticket Information - Pitt Panthers #H2P
Student Discount | Pittsburgh Pirates

9.2.1.3 Hiking and Outdoors
Hiking Trails in Laurel Highlands | Tours, Map & Information
Explore Ohiopyle State Park
Best Trails in Schenley Park - Pennsylvania
Coopers Rock State Forest - West Virginia State Parks
Mount Davis : Climbing, Hiking & Mountaineering
Hiking at McConnells Mill State Park
Exploring The Abandoned Pennsylvania Turnpike

9.2.1.4 Entertainment
The Stage AE | Pittsburgh, PA | Latest Events and Information
Petersen Events Center
Heinz Field in Pittsburgh, PA - Home of the Steelers and Panthers
Escape Room Pittsburgh - A real life immersive experience
AMC Waterfront 22 - West Homestead, Pennsylvania 15120
Pittsburgh Paintball Park - PA's Ranked #1 Newest Theme Park
Kennywood: Best Amusement Park for Kids & Families
Sports Bar - Homestead - Restaurants
Skydive Rick's
Kayak Pittsburgh
Pittsburgh International Race Complex
Randyland
All The Pittsburgh Haunted Houses, Hayrides + Fright Farms

9.2.2 Free with Pitt ID

Free Museum Visits
Home | Soldiers & Sailors Memorial Hall & Museum Trust, Inc.
The Andy Warhol Museum
Official site of the Duquesne Incline
Carnegie Museum of Natural History
Carnegie Museum of Art Connects People to Art, Ideas, and One Another
Phipps Conservatory
Welcome to Mattress Factory | Mattress Factory
Senator John Heinz History Center
Software Download Service at My Pitt
FAQ: Buses and Shuttles
Carnegie Science Center: Home

23

9.2.3 Food Vendor Resources
A comprehensive list containing hundreds of dining options throughout
the city of Pittsburgh as well as grocery and farmers market options. Go a
step further and check out the 30+ breweries/distilleries/wineries
Pittsburgh has to offer.

Food (and Drink) for Thought

24

Object Oriented Analysis for Online Testing System

1. System Overview

2. The Class Model

2.1. The Classes
● Users(name, ratings, reviews, likes and dislikes)
● Restaurants(name, costs, location, ratings)
● Attractions and Events(name, costs, location, ratings)

2.2. The Class Diagram

25

3. The Dynamic Model

3.1. The Scenarios

 3.1.1 User-side scenarios

● User logs in
● The user password is wrong
● The user’s username is wrong
● The user registers an account
● The user confirms their email address by clicking the link from email.
● The user cannot confirm their email address by clicking the link from

email.
● The user likes a restaurant or an event.
● The user changes personal information.
● The user filters events or restaurants by their preferences.
● The user becomes friends with another user.

 3.1.2 Partner-side scenarios. Partners are restaurant managers or event organizers.

● The partner logs in
● The partner’s password is wrong
● The partner’s username is wrong
● The partner registers an account
● The partner confirms their email address by clicking the link from email

26

● The partner cannot confirm their email address by clicking the link from
email

● The partner updates information of the restaurant or the event

3.2. The State Diagrams

3.2.1 User-side scenarios state diagram

27

3.2.2 Partner-side scenarios state diagram

4. The Functional Model

Our functional model shows the different functions within our application and how the different
functions connect to each other.

28

29

Object-Oriented Design for Online Testing System

 1.
Module Name: create_event
Module Type: Method
Return Type: Boolean
Input arguments: Event Name, Event Date, Occupancy Limitation
Output arguments: Boolean if Event Created Successfully
Error messages: Message if Event could not be posted
Files accessed: None
Files changed: None
Modules called: User Database, Event Database
Narrative: Method used by users to create/post their own event. The Module will add event link
to respective user in user database as well as adding it to the event database

2.
Module Name: add_friend
Module Type: Method
Return Type: Boolean
Input arguments: User id
Output arguments: Boolean stating whether two users are friends
Error messages: Message if Friend could not be added or if already friends
Files accessed: None
Files changed: None
Modules called: User Database
Narrative: A user will be able to click an “add friend” button which will pass/fetch information
from the User database. This will confirm if a link has been set up between two users or not, thus
verifying friend status.

3.
Module Name: Event Database
Module Type: Object
Return Type: void
Input arguments: None
Output arguments: None
Error messages: None
Files accessed: None
Files changed: None
Modules called: None
Narrative: This is the database that contains all events

30

4.
Module Name: register_account
Module Type: Method
Return Type: Boolean
Input arguments: New User Information
Output arguments: Boolean indicating registration success/failure
Error messages: Message if invalid registration occurs
Files accessed: None
Files changed: None
Modules called: User Database
Narrative: This method will check the “New_User” information within the user database to
make sure an account does not already exist with the provided information and create the
necessary user if information does not already exist

5.
Module Name: login
Module Type: Method
Return Type: Boolean
Input arguments: User Credentials [Username, Password]
Output arguments: Boolean Indicating Valid/Failed Login
Error messages: Message if username/password do not exist
Files accessed: None
Files changed: None
Modules called: User Database
Narrative: Valid Username and Password must be entered to login to the system

6.
Module Name: Watcher
Module Type: Object
Return Type: void
Input arguments: None
Output arguments: User activity
Error messages: None
Files accessed: None
Files changed: None
Modules called: Prefetcher, User Database
Narrative: Monitors the activity of users and interacts with the prefetcher in the
recommendation system

31

7.
Module Name: filter
Module Type: Method
Return Type: Ordered List of items
Input arguments: Specified tags to filter by (Food, Hiking, Events, etc)
Output arguments: None
Error messages: None
Files accessed: Food/Event/Activity Databases
Files changed: None
Modules called: None
Narrative: A user can select tags to filter by which will sort a page based on the requested
filtering tags and display the most relevant to the user

8.
Module Name: leave_ratings
Module Type: Method
Return Type: void
Input arguments: Numbered rating for the given object of interest
Output arguments: None
Error messages: None
Files accessed: Event/Activity/Food/User Database
Files changed: Event/Activity/Food/User Database
Modules called: None
Narrative: A user will be able to choose whether or not to leave a numbered or starred rating for
the given object of interest. This will update the databases to reflect ratings and user
interests/disinterests

9.
Module Name: Admin_login
Module Type: Method
Return Type: Boolean
Input arguments: Name, Password, Pin
Output arguments: Boolean indicating successful/failed admin login
Error messages: Message if invalid admin
Files accessed: User Database
Files changed: None
Modules called: Returning_User
Narrative: Admin logins will be slightly different to better verify if admin is logging in. The
fields that will be compared to in the user database will be name, password and pin

32

10.
Module Name: User_Display_Recommendations
Module Type: Method
Return Type: Object/List
Input arguments: User interests and/or page views/visits
Output arguments: Object/List of probability calculated likelihood of user interests
Error messages: None
Files accessed: User Database
Files changed: None
Modules called: None
Narrative: This method will calculate a recommendation page based on what the user has stated
for interests and/or what the user visits more likely than other pages. This will be part of the
recommender system and will use probabilistic analysis to gauge what to show

11.
Module Name: User_Update_Recommendations
Module Type: Method
Return Type: None
Input arguments: Tags from items view
Output arguments: None
Error messages: None
Files accessed: None
Files changed: None
Modules called: User Database
Narrative: This method will add additional interests to a specific user's entry in the user
database. This will allow a more continuous feedback loop to have a more real-time
recommendation system and therefore a less biased recommendation (with more more “interests”
being added for the user)

12.
Module Name: User Database
Module Type: Object
Return Type: void
Input arguments: User id [Identification]
Output arguments: Users data
Error messages: None
Files accessed: None
Files changed: None
Modules called: None

33

Narrative: This is the database for all users. Gets accessed by different modules to supply
specific user data.
13.
Module Name: User
Module Type: Object
Return Type: void
Input arguments: None
Output arguments: None
Error messages: None
Files accessed: None
Files changed: None
Modules called: create_event, add_friend, Prefetcher, Watcher
Narrative: Sends interests to prefetcher, post events and sends friend requests.

14.
Module Name: Prefetcher
Module Type: Object
Return Type: void
Input arguments: None
Output arguments: Recommendation documents
Error messages: None
Files accessed: None
Files changed: None
Modules called: Remote_server, User, Watcher
Narrative: Prefetches documents for users and interacts with the server and watcher to do so.
These documents are the recommendations.

34

Test Plan
1. Purpose

1.1. This test plan applies to the application PittJungle. It will test the functions and
usability.

2. Unit Testing
2.1. User Module: This module maintains the user’s account information

2.1.1. Equivalence classes for the user module:
2.1.1.1. Equivalence classes for item “name”:

2.1.1.1.1. String with the user’s name - acceptable
2.1.1.1.2. anything else (int, boolean, float, etc.) - error

2.1.1.2. The equivalence classes for item "age":
2.1.1.2.1. Integer with 2 digits maximum - acceptable
2.1.1.2.2. Anything else (String, boolean, integer with more than 2

digits) - error
2.1.1.3. The equivalence classes for item "college":

2.1.1.3.1. String with user’s college - acceptable
2.1.1.3.2. anything else (int, boolean, float, etc.) - error

2.1.2. Checklist: The following black-box tests will be performed.
2.1.2.1. (✔) Create a new user account

2.1.2.2. (✔) Users can log in with their account information

2.2. Place Module: This module maintains the different places that users’ can view
2.2.1. Equivalence classes for the place module:

2.2.1.1. Equivalence classes for item “name”
2.2.1.1.1. String with the name of the place - acceptable
2.2.1.1.2. Anything else (int, boolean, float, etc.) - error

2.2.1.2. The equivalence classes for item “location”
2.2.1.2.1. String with the location of the place - acceptable
2.2.1.2.2. anything else (int, boolean, float, etc.) - error

2.2.1.3. The equivalence classes for item “tags”
2.2.1.3.1. Must be a String within the predefined tags list (eg.

“Nature”, “Science”, “Art”) - acceptable
2.2.1.3.2. Any other String, int, boolean, etc. - error

2.2.2. Checklist: The following black-box tests will be performed
2.2.2.1. (✔) Users can view and filter out places based on tags

2.3. Rating Module: This module maintains the rating user can give for a place

2.3.1. Equivalence classes for the rating module

35

2.3.1.1. Equivalence classes for item “score”
2.3.1.1.1. An integer from 0-10 - acceptable
2.3.1.1.2. Anything else (String, boolean, etc.) - error

2.3.1.2. Equivalence classes for item “comment”
2.3.1.2.1. String with a length that is less than or equal to a length of

250 - acceptable
2.3.1.2.2. Anything else (String with a length greater than 250, int,

boolean etc.) - error
2.3.2. Checklist: The following black-box tests will be performed

2.3.2.1. (X) Users can rate a place or an event
This has been removed from our features
Deemed unnecessary and no added benefit

2.4. Event Module: This module maintains and contains the information/details of a
specific event

2.4.1. Equivalence classes for the event module
2.4.1.1. Equivalence classes for item “Title”

2.4.1.1.1. String - acceptable
2.4.1.1.2. Anything else (int, double, boolean etc.) - error

2.4.1.2. Equivalence classes for item “Location”
2.4.1.2.1. String - acceptable
2.4.1.2.2. Anything else (int, boolean etc.) - error

2.4.1.3. Equivalence classes for item “Date”
2.4.1.3.1. MM/DD/YYYY String in this format - acceptable
2.4.1.3.2. Anything else (int, boolean, string with a different format) -

error
2.4.2. Checklist: The following black-box tests will be performed

2.4.2.1. (✔) Users can post events

2.4.2.2. (✔) Users can view events posted by other users

2.5. Testing will be done by Sherryl Augustine, Sushrati Bansod, Luiza Urazaeva,
David Ladeji, Trent Lessig

3. Integration Testing

3.1. Purpose

When each module is added or when any module is changed, the test plan ensures
all the modules work.

36

3.2. Checklist

- add Permissions module and run all test cases for Permissions.

- add Role module and run all test cases for Permissions and Role module.

- add User module and run all test cases for the Login and User modules.

- add Follow module and repeat all test cases for the Login, User, Role and
Follow modules

- add Comment module and repeat all test cases for the Login, User, Role and
Comment modules.

- add the Filter module and repeat all test cases for the Login, User, Role, and
Filter modules.

- add Partner module and repeat all test cases for the Login, Partner, Role,
modules.

- add Restaurant Profile Module and repeat all test cases for the Login, Partner,
Role, and Restaurant Profile Module.

- add Event Profile Module and repeat all test cases for the Login, the Role,
Partner, and Event Profile Modules.

- add the Anonymous User module and repeat all test cases for the Permissions,
Role, Filter, and Anonymous User modules.

- add Admin module and repeat all test cases for the Login, User, Role,
Permissions, Follow, Comment, Filter, Partner, Restaurant Profile, Event Profile,
Anonymous User, and Admin modules.

3.3. Who will perform the tests: Sherryl Augustine, Sushrati Bansod, Luiza Urazaeva,
David Ladeji, Trent Lessig

4. System Testing
 4.1. Purpose - The following tests are designed to ensure the system functions as a whole in the
manner dictated by the specifications. They are to be performed in a top-down fashion with the
intent of replicating a typical user's experience with the entire system upon release.

 4.2. System Testing Checklist

✔ Enter the product's URL in a web browser and test that the login page displays
properly

37

 4.3. Who will perform the tests: Sherryl Augustine, Sushrati Bansod, Luiza Urazaeva, David
Ladeji, Trent Lessig

5. Acceptance Testing

5.1. Purpose
The purpose of the acceptance testing portion of our test plan is meant to verify
the functionality of the system in the sense that it meets the requirements laid out

✔ Click the “Sign Up Now” link to load the register new account screen

✔ On the create new account screen, enter a valid email address and password

✔ Provide all specified information in the proper fields and click “Sign Up” which
directs you to the login page to log into the new account

✔ Enter valid email and password for a registered user and click “Log In” which directs
you to the homepage of the application

✔ Click on the “Attractions” link in the navigation bar which directs you to the
Attractions page

✔ Click on the “Events” link in the navigation bar which directs you to the Events page

✔ Select any event object to be directed to its page which displays more information on
the event

✔ Select the event’s author’s username to be directed to their account page

✔ Click on the “Follow” button to start following this user

✔ Click on the “Restaurants” link in the navigation bar which directs you to the
Restaurants page

✔ Click on “My Account” which directs you to your account’s profile page

✔ Click on “Update Account Info” to change account information

✔ Provide all specified information in the proper fields and click “Update” which
directs you to your account page

✔ On the navigation bar, click on “PittJungle” to be directed to the home page

✔ Click “Log out” to return to the home page

38

throughout the semester. All acceptance tests that are run should be achieved
within an adequate level

 5.2. Acceptance Testing Checklist

 5.3. Who will perform the tests: Sherryl Augustine, Sushrati Bansod, Luiza Urazaeva,
David Ladeji, Trent Lessig

Test Cases Performed/Conducted

 Unit, Integration and System Checklists are complete

 Ensure upwards of 300 users can be created/stored in the database

 Ensure upwards of 300 places/events/activities/food options can be created and
stored in a database

✔ Test speed of the pages and make sure no page takes more than 7 seconds to load

 Ensure that at least 40 users can be logged in at once

✔ Ensure recommender system can pull tags from individual user clicks to update
probability of recommending something

✔ Ensure recommender system stores “click” info with individual user in the database

 Ensure a variety of initial places/activities/food venues to allow variety (at least 15
per classifying tag)

✔ Ensure recommendations are placed on the home screen (Once data is collected,
show top recommendation and when enough data is collected, increase the amount
of shown recommendations to no more than 5 recommendations)

Login

Test # Description Input Expected
Output

Date
Tested

Problem Solution

Test 1
Black box

Unit Test -
Test email

Empty $email Show error
message

11/08/2020

✔
None Prints out

“Please fill out
this field”

39

Test 2
White box

Unit Test -
Test email

Non format
$email

Show error
message

11/08/2020

✔
None States Invalid

email

Test 3
Black box

Unit Test -
Test email

Unregistered
$email

Show error
message

11/06/2020

✔
None Screen

waiting for
confirmation

Test 4
Black box

Unit Test -
Test email

Registered
$email

success 11/06/2020

✔
None Full access to

site

Test 5
Black box

Unit Test -
Test password

Empty $pw Show error
message

11/08/2020

✔
None Invalid

password or
email

Test 6
Black box

Unit Test -
Test password

Invalid $email
& $pw

Show error
message

11/08/2020

✔
None Invalid entries

Test 7
Black box

Unit Test -
Test password

Valid $email
& $pw

success 11/06/2020

✔
None Logs in

Test 8
Black box

System Test -
Sign up

Click link Direct to
register page

11/08/2020

✔
None Redirects

Register new user

Test # Description Input Expected
Output

Date
Tested

Problem Solution

Test 9
Black box

Unit Test -
Test username

Empty
$username

Show error
message

11/08/2020

✔
None Asks to fill

out the field

Test 10
White box

Unit Test -
Test username

$username less
than 2 chars

Show error
message

11/08/2020

X
Sent

confirmation
email

TBD

Test 11
White box

Unit Test -
Test username

$username of 2
chars

success 11/08/2020

✔
None Registers and

sends
confirm

email

Test 12
White box

Unit Test -
Test username

$username of
20 chars

success 11/08/2020

✔
None Registers and

sends
confirm

email

Test 13
White box

Unit Test -
Test username

$username
more than 20

Show error
message

11/08/2020

✔
None “Usernames

must be
letters,

40

chars numbers,
characters of

length x”

Test 14
Black box

Unit Test -
Test email

Empty $email Show error
message

11/08/2020

✔
None “Please fill

out field”

Test 15
Black box

Unit Test -
Test email

Non format
$email

Show error
message

11/08/2020

✔
None Invalid Email

message

Test 16
Black box

Unit Test -
Test email

Unregistered
$email

Show error
message

11/08/2020

✔
None Says to

confirm
email to
continue

Test 17
Black box

Unit Test -
Test email

Registered
$email

success 11/08/2020

✔
None Email

already exists

Test 18
Black box

Unit Test -
Test password

Empty $pw Show error
message

11/08/2020

✔
None Please fill out

field

Test 19
Black box

Unit Test -
Test confirm

password

Empty $pw2 Show error
message

11/08/2020

✔
None Please fill out

field

Test 20
Black box

Unit Test -
Test

passwords

Same $pw and
$pw2

success 11/08/2020

✔
None Registers

user

Test 21
Black box

Unit Test -
Test

passwords

$pw different
from $pw2

Show error
message

11/08/2020

✔
None

Message
stating

Passwords
must
match

Test 22
Black box

Unit Test -
Test username

$username not
unique

Show error
message

11/08/2020

✔
None Username

exists
already in

the
database

Test 23
Black box

Unit Test -
Test username

Valid
$username

success 11/08/2020

✔
None Registers

user if
unique

Test 24 Unit Test - $email not Show error 11/08/2020 None Email

41

Black box Test email unique message ✔ exists
message

Test 25
White box

Unit Test -
Test age

$age more than
99

Show error
message

-- -- --

Test 26
Black box

Unit Test -
Test age

String value
for $age

Show error
message

-- -- --

Test 27
White box

Unit Test -
Test age

$age of 0 Show error
message

-- -- --

Test 28
Black box

Unit Test -
Test age

Valid $age success -- -- --

Test 29
Black box

System Test -
Sign In

Click Link Direct to
login page

11/08/2020

✔
None Login form

appears

Update Account Info

Test # Description Input Expected
Output

Date
Tested

Problem Solution

Test 30
Black box

Unit Test -
Test username

No change on
$username

success 11/08/2020

✔
None No error

Test 31
Black box

Unit Test -
Test username

Non unique
$username

Show error
message

11/09/2020

✔
None Username

Already Exists

Test 32
Black box

Unit Test -
Test username

Empty
$username

Show error
message

11/08/2020

✔
None Field needs to

be filled out
message

Test 33
White box

Unit Test -
Test username

$username
less than 2

chars

Show error
message

11/08/2020

X
Username

under
profile

updated

TBD

Test 34
White box

Unit Test -
Test username

$username of
2 chars

success 11/08/2020

✔
None Account

updated

Test 35
White box

Unit Test -
Test username

$username of
20 chars

success 11/08/2020

✔
None Account

updated

42

Test 36
White box

Unit Test -
Test username

$username
more than 20

chars

Show error
message

11/08/2020

✔
None Account not

updated

Test 37
Black box

 Unit Test -
Test username

New unique
$username

success 11/08/2020

✔
None Username

updated

Test 38
Black box

Unit Test -
Test email

No change on
$email

success 11/08/2020

✔
None No change

Test 39
Black box

Unit Test -
Test email

Non unique
$email

Show error
message

11/08/2020

✔
None Exists in

database

Test 40
Black box

Unit Test -
Test email

Non format
$email

Show error
message

11/08/2020

✔
None Invalid format

for email
message

Test 41
Black box

Unit Test -
Test email

Unregistered
$email

Show error
message

11/09/2020

✔
None Invalid Email

Test 42
Black box

Unit Test -
Upload picture

No change to
$picture

Show error
message

TBD TBD TBD

Test 43
White box

Unit Test -
Upload picture

$picture not a
jpg or png

Show error
message

TBD TBD TBD

Test 44
Black box

Unit Test -
Upload picture

Valid
$picture

Success

TBD TBD TBD

Test 45
Black box

System Test -
Delete account

Click the
Delete button

Modal
opens up

TBD TBD TBD

Test 46
Black box

System Test -
Delete account

Click the
Cancel
button

Modal closes TBD TBD TBD

Test 47
Black box

System Test -
Delete account

Click the
Delete button

Account gets
deleted.

Redirects to
login page

TBD TBD TBD

43

Comment

Test # Description Input Expected
Output

Date
Tested

Problem Solution

Test 48
Black box

Unit Test -
Add Comment

Empty
textfield

Show error
message

11/09/2020

✔
None Textfield

needs to be
filled out to

submit
comment

Test 49
White box

Unit Test -
Add Comment

More than
500 chars

Show error
message

11/09/2020

X
Comment

Posted
TBD

Test 50
White box

Unit Test -
Add Comment

Exactly 500
chars

success 11/09/2020

✔
None Comment

Posted

Test 51
White box

Unit Test -
Add Comment

Less than 2
chars

Show error
message

11/09/2020

X
Comment

Posted
TBD

Test 52
White box

Unit Test -
Add Comment

Exactly 2
chars

success 11/09/2020

✔
None Comment

Posted

Test 53
Black box

Unit Test -
Edit Comment

Empty
textfield

Show error
message

11/09/2020

✔
None Asks to fill

out comment
field if
nothing

Test 54
White box

Unit Test -
Edit Comment

More than
500 chars

Show error
message

11/09/2020

X
Allows

Edit
TBD

Test 55
White box

Unit Test -
Edit Comment

Exactly 500
chars

success 11/09/2020

✔
None Comment

Posted

Test 56
White box

Unit Test -
Edit Comment

Less than 2
chars

Show error
message

11/09/2020

X
Allows

Edit
TBD

Test 57
White box

Unit Test -
Edit Comment

Exactly 2
chars

success 11/09/2020

✔
None Comment

Posted

Test 58
Black box

System Test -
Delete

comment

Click the
Delete button

Modal
opens up

11/09/2020

✔
None “Disabled

by admin”

Test 59
Black box

System Test -
Delete

comment

Click the
Delete button

Comment
deleted

11/09/2020

✔
None “Disabled

by admin”

44

Test 60
Black box

System Test -
Delete

comment

Click the
Cancel
button

Modal closes 11/09/2020

✔
None “Disabled

by admin”

Recommendation System

Test

Description Input Expected
Output

Date
Tested

Problem Solution

Test
61

Unit Test - Food
Probability

User’s food
tags

Success:
Probability

associated with
each food

classification

11/09/2020

✔
None Can be

viewed on
screen

Test
62

Unit Test -
Activity

Probability

User’s
Activity Tags

Success:
Probability

associated with
each activity
classification

11/09/2020

✔
None Can be

viewed on
screen

Test
63

Unit Test - New
Clicks

Tags obtained
from click

Success: An
updated

probability
distribution

11/09/2020
50/50

Not all
pages

done to
fully test

individual
tags

Pages need
to be

completed

Test
64

Unit Test -
Add User ID

Integer Success: An
integer

associated with
each user

X - is not
necessary

None Has been
added to

User
database
model

Test
65

Unit Test -
Add User ID

String Error X - no
longer
needed

None Has been
added to

User
Database
Model

45

Test
66

Unit Test -
Display

Recommendation

Highest
Individual

user
probability

Success 11/09/2020

✔
None Distribution

shown on
screen

Test
67

Unit Test -
Display

Recommendations

Top 3
Probabilities

Success TBD TBD TBD

Test
68

Unit Test -
Display

Recommendation

None Success 11/09/2020

✔
None Distribution

shown on
screen

Test
69

Unit Test -
Probability
Distribution

Probabilities Success:
Written to file

to verify

11/09/2020

✔
None File shows

up in project
folder

Test
70

Unit Test - New
Clicks Added to

User

Tags
associated
with clicks

Success:
Updated

individual
user’s database

11/09/2020

✔
None Tags update

by specified
value

User Event

Test # Description Input Expected
Output

Date
Tested

Problem Solution

Test 71 Unit test - Enter
Title

String Success 11/09/2020

✔
None Submission

allowed

Test 72 Unit Test - Enter
Title

Non-string Error
Message

11/09/2020

X
Resolved

11/09/2020

✔

Numbers
worked

Made input
location convert
to string so this
issue is resolved

Test 73 Unit Test -
Location

String Success 11/09/2020

✔
None Submits

with no
error

46

Test 74 Unit Test -
Location

Non-String Error
Message

11/09/2020

X
Resolved

11/09/2020

✔

Same
issue
with test
72

Resolved by
making input
fields convert
everything to
string (Test
case now
obsolete)

Test 75 Unit Test - Date YYYY-MM-DD
String Format

Success 11/08/2020

✔
none Submits

date

Test 76 Unit Test - Date Anything else Error
Message

11/09/2020

✔
None Error

Message
given

Test 77 Unit Test - Click
Post

Button Click No Error 11/09/2020

✔
None Event Posted,

Can be seen
upon return to
event page

Rating

Test # Description Input Expected
Output

Date
Tested

Problem Solution

Test 78 Unit Test - Give
Rating

Integer
between

0-10

Success TBD TBD TBD

Test 79 Unit Test - Give
Rating

Integer <0 or
> 10

Error: invalid
rating

TBD TBD TBD

Test 80 Unit Test - Give
Rating

Non-Integer Error: invalid
format

TBD TBD TBD

Place

Test # Description Input Expected
Output

Date
Tested

Problem Solution

Test 81 Unit Test -
Place Name

String Length
>0 & <150

Success 11/09/2020

✔
None Gets posted to

restaurant
page

47

Test 82 Unit Test -
Place Name

String <0 | >
150

Error
Message:
Invalid
length

11/09/2020

✔
None Gives max

length user
can submit as
place name

Test 83 Unit Test -
Place Name

Integer,
boolean,

double, etc

Error:
Invalid
format

11/09/2020

X
Resolved

11/09/2020

✔

Numbers
allowed

Input fields now
convert

everything to
string during
submission

Test 84 Unit Test -
Place

Location

String Length
>0 & <200

Success 11/09/2020

✔
None Submits with

form

Test 85 Unit Test -
Place

Location

String Length
<0 | >200

Error:
Invalid
Length

11/09/2020

✔
None Gives max

length location
can be for the

place

Test 86 Unit Test -
Place

Integer, Float,
Double,

boolean, etc

Error:
invalid
format

11/09/2020

X
Resolved

11/09/2020

✔

Numbers
allowed

Input fields now
convert

everything to
string during
submission

Test 87 Unit Test -
Item Tag

String from
Predefined list

Success 11/09/2020

✔
None Gets added to

tag list on
place

Test 88* Unit Test -
Item Tag

Anything
outside of

predefined list

Error: Tag is
invalid

11/09/2020

X
Any tag
name is
added

TBD

User

Test # Description Input Expected
Output

Date
Tested

Problem Solution

Test 89 Unit Test -
Name

String Success 11/09/2020

✔
None Name

shows to
screen

Test 90 Unit Test -
Name

Integer,
Boolean, Float,

Error: Must
be of format

11/09/2020

✔
None Name

must be

48

Explanation for test cases not tested and some limitations:

Test cases 25 through 28 were originally thought to be necessary, but for functional and further

developmental operations, this was chosen to be eliminated. If, by the final demo, this is

decided to be added as an additional layer, it will be done, but the team has decided that these

test cases would not hinder a final working product by removing them. Test cases 42 through 47

are wishlist tests, so they have not yet been tested. It is an item the team would like to add by

the end of the project submission because it would add further user functionality (adding a

picture to the users profile and/or deleting their account). Test cases 58 to 60 are limited to an

admin user (where the tests have been performed logged in under an admin user). The team

understands that this would also be suited for a regular user to be able to delete their own

comments, so it has been added to the wishlist to expand this feature to regular users as well.

But for now, it is a constraint placed on the user that they cannot delete their comments unless

an admin disables/enables them.

Test case 67 regarding the recommender system was unable to be tested at this time. Clicks for

general pages/tags were updating within the users model, but advanced testing of seeing if one

specific value based on a specific click has yet to be tested. The recommender does, however,

print out the recommendation in words as well as the weight that choice has compared to the

others. The probability distribution of all related items are printed along with it, as well as written

to a file every time a user accesses the recommendation page, to show updates are occuring.

Test cases 78 to 80 were also unable to be tested at this time for the rating feature. This is still

being worked on and integrated into the restaurants, attractions and events pages. Test case 88

may be changed so that any tag can be added as long as a predefined tag is included. This

way, a better description can be provided to the user without limiting functionality. Lastly, test

cases 91 and 92 are wishlist tests as well. It will be included if the team can get to adding in the

academic information feature to the website. If unable to reach by the deadline, these items are

Double, etc string letters

Test 91 Unit Test -
College

String Success TBD TBD TBD

Test 92 Unit Test -
College

Integer,
Boolean, Float,

Double

Error: Must
be of format

string

TBD TBD TBD

49

a good future implementation to have to broaden the scope of the website and be even more

pertinent to newer college students.
Source Code

from flask_wtf import FlaskForm

from wtforms import StringField, TextAreaField, BooleanField,

SelectField,\

 SubmitField, DateField

from flask_wtf.file import FileField

from wtforms.validators import DataRequired, Length, Email, Regexp

from wtforms import ValidationError

from flask_pagedown.fields import PageDownField

from ..models import Role, User

from datetime import date

class NameForm(FlaskForm):

 name = StringField('What is your name?', validators=[DataRequired()])

 submit = SubmitField('Submit')

class EditProfileForm(FlaskForm):

 name = StringField('Real name', validators=[Length(0, 64)])

 location = StringField('Location', validators=[Length(0, 64)])

 about_me = TextAreaField('About me')

 submit = SubmitField('Submit')

class EditProfileAdminForm(FlaskForm):

 email = StringField('Email', validators=[DataRequired(), Length(1,

64),

 Email()])

 username = StringField('Username', validators=[

 DataRequired(), Length(1, 64),

 Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0,

 'Usernames must have only letters, numbers, dots or '

 'underscores')])

 confirmed = BooleanField('Confirmed')

 role = SelectField('Role', coerce=int)

 name = StringField('Real name', validators=[Length(0, 64)])

 location = StringField('Location', validators=[Length(0, 64)])

 about_me = TextAreaField('About me')

 submit = SubmitField('Submit')

 def __init__(self, user, *args, **kwargs):

 super(EditProfileAdminForm, self).__init__(*args, **kwargs)

50

 self.role.choices = [(role.id, role.name)

 for role in

Role.query.order_by(Role.name).all()]

 self.user = user

 def validate_email(self, field):

 if field.data != self.user.email and \

 User.query.filter_by(email=field.data).first():

 raise ValidationError('Email already registered.')

 def validate_username(self, field):

 if field.data != self.user.username and \

 User.query.filter_by(username=field.data).first():

 raise ValidationError('Username already in use.')

class PostForm(FlaskForm):

 body = PageDownField("What's on your mind?",

validators=[DataRequired()])

 submit = SubmitField('Submit')

class CommentForm(FlaskForm):

 body = StringField('Enter your comment', validators=[DataRequired()])

 submit = SubmitField('Submit')

class RestaurantForm(FlaskForm):

 name = StringField('Restaurant Name', validators=[

 DataRequired(), Length(1, 64)])

 phone = StringField('Telephone', validators=[DataRequired(), Length(1,

12)])

 address = StringField('Address', validators=[

 DataRequired(), Length(1, 100)])

 tags = StringField('Tags', validators=[Length(0,64)])

 about_me = TextAreaField('About this restaurant')

 file=FileField('Image')

 submit = SubmitField('Submit')

class EventForm(FlaskForm):

 title = StringField('Title', validators=[

 DataRequired(), Length(1, 64)])

 start_date = DateField('Start date ',

validators=[DataRequired()],default=date.today)

 end_date = DateField('End date: ',

validators=[DataRequired()],default=date.today)

 tags = StringField('Tags', validators=[Length(0,64)])

51

 about_me = TextAreaField('Description')

 file=FileField('Image')

 submit = SubmitField('Submit')

class AttractionForm(FlaskForm):

 attraction_name = StringField('Attraction Name', validators=[

 DataRequired(), Length(1, 64)])

 phone = StringField('Telephone', validators=[DataRequired(), Length(1,

12)])

 address = StringField('Address', validators=[

 DataRequired(), Length(1, 100)])

 tags = StringField('Tags', validators=[Length(0,64)])

 about_me = TextAreaField('About this attraction')

 file=FileField('Image')

 submit = SubmitField('Submit')

class HikeForm(FlaskForm):

 hike_name = StringField('Resource Name', validators=[

 DataRequired(), Length(1, 64)])

 address = StringField('Location', validators=[

 DataRequired(), Length(1, 100)])

 tags = StringField('Tags', validators=[Length(0,64)])

 about_me = TextAreaField('About this academic resource')

 file=FileField('Image')

 submit = SubmitField('Submit')

class FilterRestaurant(FlaskForm):

 filterRestaurant = SelectField(u'Filter By: ', choices=[('Show All',

'Show All'),

 ('Dining', 'Dining'), ('Dessert', 'Dessert'),

('Pizza', 'Pizza'), ('Chinese', 'Chinese'),

 ('Healthy', 'Healthy'), ('Bars', 'Bars'),

('OutsideCampus', 'OutsideCampus'), ('FastFood', 'FastFood')])

 submit = SubmitField('Filter Food')

class FilterAttraction(FlaskForm):

 filterActivity = SelectField(u'Filter By: ', choices=[('Show All',

'Show All'),

 ('Nature', 'Nature'), ('Hiking', 'Hiking'),

('Entertainment', 'Entertainment'), ('Extreme', 'Extreme'),

 ('Sports', 'Sports'), ('ArtHistory',

'ArtHistory'), ('ScienceTechnology', 'ScienceTechnology'), ('Sports',

'Sports'),

 ('Movies', 'Movies'), ('Concerts', 'Concerts'),

('Kayaking', 'Kayaking')])

52

 submit = SubmitField('Filter Attractions')

This is an example of our source code. The rest of it can be found at our github
repository link - https://github.com/tlessig8771/CS1530-G14.git

User's Manual
1. Product overview

Our product is a social networking site called PittJungle that is specifically for Pitt
students. It will allow Pitt students to explore the city of Pittsburgh, while building a
community outside of academics. It’s main functions are:

● Users will be able to explore different restaurants/places to visit in Pittsburgh
● Users will be able to comment/rate places they have visited
● Users will be able to friend other users on the site
● Users will be able to view recommendations for new places to explore based on

what they have already visited
● Students will be able to filter out places to explore based on tags such as “nature”,

“art”, “science”
○ This will allow the user to find places that fit very specific criteria

● Users will be able to post an event that others on the site will be able to see

2. Getting started
 2.1. Log in

The user will be able to log into the system via the login link located on the right hand
side of the screen. This is shown in section 2.3 of the user manual. The user will be taken
to a login page where they can enter the necessary information. Extra online help will be
available on the ‘user help’ tab located on the upper right of the navigation bar. This page
will include the user manual and videos to show the user how the site is to be used if
deemed necessary. Provisional sample runs and examples are provided in the sections
below.

 2.2. Help mode
A help mode is a feature that shows the user how to use the product. This can include the
functionality of certain sections and how to maximize the use. We will implement the
help mode in our website by adding a tab on the navigation bar. This tab will take the
user to a page which has illustrations and videos along with short descriptions on how to
use it. We will include specifics on how to scroll through each

53

 2.3. Provisional Sample Run and Description on How to Use
To use the full functionality of the PittJungle website, a user must complete the following
steps. First, a user would want to log in using the login page. This will be located by the
“Login” section on the home screen upon arrival to the site. An example of where this
would be located is shown in light green in figure 2.3.1. Users that are not logged in will
have a screen such as the one depicted in figure 2.3.2 and are free to use the site regularly
but with limited features given to them (this will be explained further later on). See the
numbered steps below to gain a better understanding of the use of this site.

1. Arrival to the webpage

As previously mentioned, the main home screen to PittJungle will show up upon
access. This page will have a short description of what the site is trying to
accomplish. The page will also have all the tabs of what the site is to contain
shown and able to be accessed by ‘guests.’ In figure 2.3.1, users or ‘guests’ at this
point should see a green backgrounded login link. Click this to login or create an
account to obtain full access to everything PittJungle will provide.

Figure 2.3.1: Provisional home screen with login link

2. Login Page

After clicking the login link, users will be provided with the following page
shown in figure 2.3.2. From here, you should enter a username and password. If
you have already signed up or created an account before, just click ‘login’.
Otherwise, click ‘create account.’ This will add you to the user database. No two
usernames will be allowed. If a username is taken, you will be prompted with an
alert stating this, and will have to enter a new one.

54

Figure 2.3.2: Provisional Login Screen

3. Non-User Screen vs. Logged in User Screen

Figure 2.3.3 shows a non-user provisional screen. It is almost identical in layout
as a logged in user but a few features will have been removed. Figure 2.3.4 shows
a logged in user screen. The key differences between the two figures are as
follows:

1. The filter by option is unavailable for non-users
2. The Campus Events and *Academic Resources tab will be restricted to

logged in users

55

Figure 2.3.4: Provisional Logged in User Screen Example Scenario

The logged in user screen shown above steps through what has been done or what
can be done to alter the page and even database. What is meant by altering the
page and database? First, a logged in user can filter by anything that is provided in
the drop down menu ‘Filter By.’ This will move whatever your selection is to the
top so you can view those first. Secondly, a logged in user will be kept track of in
terms of likes of certain pages/tiles or events. This will help in updating the users
“interests” to better gauge what to recommend to you upon logging in. For
example, if you view various dessert and pizza places pages, you should not log in
the next time being shown vegetables and waffles. You will also be able to like or
dislike places and see the number of likes/dislikes given by other users.

4. Clicking on a Page of Interest

You can view the tiles shown to you by clicking on them. This will prompt you
with another page such as the one shown in figure 2.3.5. From here you will be
provided with an image or images of the chosen place, a description of what it is,
what they have to offer, how far away it is from Pitt’s address, and the address.
This page is nothing more than to provide you with more information to give
better insight if this is what you are looking for.

56

Figure 2.3.5: Provisional Place of Interest Page Description

5. Campus Events

Figure 2.3.6 will show the provisional design of the campus events page. Here
you will be able to see events posted around campus from other students/users, be
able to post an event of your own and comment on these posts to get more details
if interested. For now, once an event is posted it cannot be changed. Therefore,
the comment section may be a good way to update your post if you choose to
create one. Here is where you would be able to add friends as well. This would
allow you to create your own network of people from campus to go and explore
with. This enables you to see their interests and therefore gauge similarities
between the two of you.

57

Figure 2.3.6: Provisional Campus Events Page

6. User Help

Here you will be able to find this manual on how to use the site, what the features
are and how to use them. It will be updated with new figures and examples as new
functionality becomes integrated. This is the go to page if you are ever lost on
what something is or how to use it.

58

Software Maintenance

The maintenance of source codes and other relevant files are managed using the
team’s Github repository. The link can be found in the source code segment above.
Throughout the development process, this repository was utilised for the communication
of ideas, templates, and starter code. All potential updates would eventually get pushed
to this repository to be included in the final product. Future modifications can only be
made by authorized team members. However, anyone can fork this project and
maintain their own version of Pittjungle on their personal system.

Revision history

MS1:
8/30/20 - Sherryl - Software Plan Functions, Scope and Tasks are Started
9/01/20 -

Sushruti - Scope includes more detail; Functions given short descriptions
Trent - Performance Criteria Set

9/03/20 -
Sushruti - Group Members and Roles
Luiza - Hardware and Software Components Listed
David - Grammatical Corrections and extra details applied to roles

9/06/20 - ALL - Proofreading and submission for Tuesday September 8th 2020

MS2:
9/15/20 - Sherryl - Data Flow Diagrams Created
9/18/20 -

Sushruti - Cost/Schedule Tables Created and summary of project
overview given
Trent - Prelim User Manual Created and Design Constraints Posted

9/20/20 -
Sushruti - Help Mode Described
Sherryl - DFD revised and updated and product overview given
Luiza - User Interface Description and Processing Narrative Explained
Trent - Design Constraints Updated
David - Functions described withIC Cards as well as Modes of Operation

9/21/20 -
ALL - Grammatical Corrections and ready for submission on 9/22/20
Trent - Revised LOC Table

MS3:

10/03/20 -

59

Sushruti - Performance Reqs set and Exception Handling specified
10/04/20 -

David - List of future modifications and Acceptance criteria
Luiza - Data Elements/Objects specified in detail
Sherryl - Detailed DFD’s for each function provided
Trent - Sources of information provided and revision history updated

10/05/20 -
ALL - Grammatical corrections made and ready for submission on
10/06/20

MS4:
10/17/20 - David/Trent - OOD section specifying classes/modules in more depth

10/18/20 -

Sushruti - OOA System overview, DFD diagrams and class models
Luiza - OOA Dynamic Model and Scenarios
Sherryl - Functional Models

10/19/20 -
 ALL - Review Document / Finalize Changes / Ready For Submission on
10/20/20

MS5:

MS6:

Web Pages:

9/20/20 - Sherryl and Sushruti - Base Home page layout created

Backend and Databases:
9/21/20 - Luiza - User model database created

Recommender System:

10/04/20 - Trent - Research on Python databases and recommender systems
10/17/20 - Trent - Python Version of rec system using dictionaries and writing to
and reading from files

Functions:

9/22/20 - David and Luiza - User login created (non-integrated to website)
10/01/20 - David - Filter functionality being researched and worked on

60

Installation Procedure

Clone the repository from the Github:
https://github.com/tlessig8771/CS1530-G14/tree/master/thepittjungle

TA is included as a collaborator.

To run in Windows

1. cd thepittjungle
2. py -3 -m venv venv
3. venv\Scripts\activate
4. pip install -r requirements.txt // Do this only once. postgres must be installed
5. set FLASK_APP=pittjungle.py
6. set MAIL_USERNAME=thepittjungle
7. set MAIL_PASSWORD=CS1630Project In order to set admin account: set

FLASKY_ADMIN=email@example.com ==> email of the user to be set as admin it
needs to set before the admin registers as user.

8. flask deploy
9. flask run

To run in MacOS:

1. cd thepittjungle
2. python3 -m venv venv
3. . venv/bin/activate
4. pip install -r requirements.txt // Do this only once. postgres must be installed
5. export FLASK_APP=pittjungle.py
6. export MAIL_USERNAME=thepittjungle
7. export MAIL_PASSWORD=CS1630Project export

FLASKY_ADMIN=email@example.com ==> email of the user to be set as admin it
needs to set before the admin registers as user.

8. flask deploy
9. flask run

3. Modes of operation

61

The user selects their category of choice by clicking on its header. Then users would use

the arrow heads provided to browse through the various posts. Users then click on the post they
are interested in and are directed to the post’s page where its information is provided. This
system does not support any special commands or dialogue.

SPG Output

The software model suggested the XP and spiral models from our answers to the parameters. I
was expecting the Waterfall method since that is the one that was emphasized in class. We also
assumed the point of the milestones was to create a waterfall model for our project.

62

In this SPG analysis, the xp model was the one that it suggested. No, I would not have expected
an extreme coding software model to follow. Of the ones listed, I would have expected the
spiral, waterfall or incremental models because I feel those were discussed more and I would
have a better understanding of how to create one compared to an xp model.

63

The Software Process Generator suggested the xp model. I was not expecting this model, as it
is an extreme programming model. I was expecting the waterfall model where there is a linear,
incremental approach to software development and where there is also testing in every phase.

64

SPG tool recommended spiral model. I did expect this model because it suggests to do Risk
Analysis, then follow Requirements. Because we have to mitigate the risks, we may have to do
repeated use of prototypes. Even though it may cause schedule delays, in the long run, spiral
models will assure quality software.

The SPG tool recommended the xp model. However, I was expecting the waterfall model
because of its linear nature. But since the waterfall model’s planning is done before moving to
the next stage of the development process begins and I’m using continuous planning, I
understand how the waterfall isn’t the best design for my project.

65

First Iteration/ First Sprint
1. Introduction

 The features we had included in our initial wishlist were as follows:
➢ Academic Resources

○ Users will be able to recommend courses to their friends on the network
○ Users will be able to host study sessions and get academic help

➢ Chatbot
○ Users will be able to interact with a chatbot to get recommendations on

food/academic material
➢ App Development
➢ Writing Reviews for Restaurants and Events

The team had decided to go with the first item in our wishlist:
➢ Academic Resources

○ Users will be able to create events under the academic resources tab for study
sessions or group study lessons.

○ This could also be a great place for TAs to show their office hours (and provide a
zoom link) as well as study sessions.

○ This wouldn’t be limited to students in the class. Anyone could join for questions
and potentially broaden their knowledge range if they are from another major.

2. How was the function selected

As the team had already implemented a basis for creating events, such as the
Event page where students can create activities/events on and around campus that they
are holding, it would be relatively straightforward to implement the Academic Resource
wishlist feature for creating study sessions. As you will read shortly, the team made a list
of pros and cons for each wishlist feature in order to compare and contrast them in
picking the appropriate function to implement. To briefly summarize the chosen
implementation and its functionality, Teaching Assistants could post their office hour
sessions with their zoom links, students could host study sessions (quite similar to the
event creation, by providing a time, place, date and description), or order to obtain
general help regarding academics at the University of Pittsburgh.

66

2.1. Participating Stakeholders (or their surrogates)

2.2. Summary of the discussion among stakeholders

➢ Pros of implementing
Academic Section

○ Similar layout to the
events sections

○ Quickly integrated
and straightforward

➢ Pros of the Chatbot
○ Attention grabber
○ Resourceful
○ Increased User

Interaction

➢ Pros of App Development
○ Becomes Mobile

Friendly
○ Easier access
○ Broadens reach of our

software

➢ Pros of Writing Reviews
○ Users give feedback

to places on/around
campus

○ Just like leaving
comments

➢ Cons of implementing
Academic section

○ Not very ambitious
○ Could be confused

with the ‘events’
section

➢ Cons of the Chatbot
○ Time Consuming and

Intensive
○ Beyond the teams

experience level

➢ Cons of App Development
○ Also time intensive
○ Limited to Android

deployment
○ Must learn Android

Studio

➢ Cons of Writing Reviews
○ Would it really

impact users' feelings
towards the site?

○ Not ambitious nor
challenging

 Project
Manager

GUI
Designer

Databases/
Backend

Testing Research Recommender

Sherryl x x x

Sush x x x

Luiza x x

David x x x

Trent x x x

67

2.3. Decision and Rationale

We decided to implement the academic resources tab in our app. We chose this because
we had implemented something similar for the Events tab and would just need to modify
the Events implementation to the appropriate design for the academic resources. This
feature implementation was the most feasible for the team. Given our time constraints,
we immediately ruled out Chatbot and App Development. These two features would
require an extensive amount of work and the team felt it would be better to have this be a
future feature addition to ensure it is done correctly. The team also ruled out leaving
reviews because we felt it would not impact a user’s feelings toward the site. Therefore
the academic resources feature would be implemented because the team felt users would
appreciate having an all-in-one access website that could include office hours to study
sessions regarding their topic of interest.

3. Regression Tests Results

Test

Description Input Expected
Output

Date
Tested

Problem Solution

1 New User
Registration

Filled out Form Success: User
receives email
to verify. User

can login

11/11/2020

✔
None Email Received,

Link is clickable
and account

becomes verified

2 User Event
Creation

Filled out Form Success:
Form

submitted and
event shows

on event page

11/11/2020

✔
None Can be viewed

on screen

3 Recommendation
System

Tags obtained
from clicking

Success: An
updated

probability
distribution

and
suggestions
shown on

page

11/11/2020

✔
None

Recommendation
s shown on Rec

page to user

68

4 Commenting Input field Success:
Comment
shows on

main screen

11/11/2020

✔
None Comment seen

on main screen
by any user

5 Admin Comment
Management

Button Input Success:
Admin can

enable/disable
comments if

deemed
necessary

11/10/2020

✔
None Comment shows

up as disabled if
disabled

6 Add Friend Follow/Unfollo
w button option

Success 11/09/2020

✔
None Friend list shows

on main profile
and shows how
many followers
and how many

you follow

7 Logging In Login Form Success 11/09/2020

✔
None User gets logged

in

8 Filtering Drop-Down
menu and

submit button

Success 11/14/2020

✔
None The selection

submitted only
shows

corresponding
items associated
with the filter

9 Update Profile Update profile
form and

submission

Success:
Updated
account

shows on
users main
profile page

11/12/2020

✔
None Users can see

profile of others
user and what
they included

with it

10 Recommendation
Probability
Distribution

Written to file

Rec. Objects Success 11/15/2020

✔
None Written to file

“UserProbs.txt”
*is updated each
time the rec page

is visited

11 View Other
Events

Events Page Success 11/14/2020

✔

None Users can see
events posted by

other users

69

4. Conclusion

If we had more time, we would implement Writing Reviews, Mobile App and Chatbot. These
features would enrich the user experience. Implementing the above-mentioned features would
hinder us from finishing the core features necessary to have a proper functioning website. After
discussing with the team, we decided to implement Academic Resources because we already had
experience of how to implement similar features. We did not have to alter our database
drastically. Of course, we would gain a great deal of experience if we had a chance to develop a
Mobile App for our project. In today’s world, an app companion for a website is a must. A
mobile app for our website would definitely enhance the user experience. Another future
development would be to update and enhance the user interface. Every website and application
go through various design layouts before a team decides on the best one. It would be best to have
a focus group test out a few layouts/interfaces and obtain feedback from them to decide on what
to go with.

PittJungle Key Highlights
Created By: Sushruti Bansod, Sherryl Augustine, Luiza Urazaeva, David Ladeji, Trent Lessig

Appendix: Project Presentation

Key Audience

University of Pittsburgh Students

● Helping to expand students horizon for things to do, places

to eat, people to study with, on and around the campus

Prominent Features
Event Creation -> Students can meet

new people easily by posting about fun

events they are hosting

Recommendation Page -> Each user will

have a unique recommendation page

that will show their top 3 categories from

the Restaurants page and Attractions

page. From here the page will show

results associated with the categories it

has recommended (in order of

occurrence or the probability they would

like this over the other)

Prominent Features

Filtering -> Users can filter the

Restaurants and Attractions

pages to see specific items by

category

Account Verification -> Users

must verify their account by

clicking on a link provided via

email upon successful account

creation (added security

benefit)

Prominent Features

Friend/Commenting -> Users can follow

one another via the comment section of

the home page. Users will be able to see all

posts made by users here and are able to

comment back and forth with one another.

Admin users can disable inappropriate

comments

The Team Members Contributions

Sushruti - Project Manager, UI, Front End Design/Layout, Research, Testing

Sherryl - Research, Front End Design/Layout, UI, Testing

Luiza - Backend (python, html, flask), Database Models, Integration, Chat/Friend, Adding

Items, Email/Login Verification, Forms, Page Templates

David - Filter Functionality, Backend Help, Recommendation help, Testing and

Integration

Trent - Recommendation System, Filter Functionality help, Research, Testing and

Integration

