
CS1530A-G06
Max Dudek
Jacob Diecidue
Jared Ranalli
Gurmail Mathon
John Fessler

1.0 Scope

A text-based social media site where users can create text posts and links on either (1)
their personal page, or (2) a community page based on a specific topic (e.g. hockey,
technology, music, etc). Posts on community pages can be voted up or down (through likes or
dislikes), to determine how high it appears in the feeds of people who follow that community
(similar to a web forum like Reddit).

1.1 Functions
1. Account Creation

a. Users are able to register and create a secure account on the website
(Devise API) with a unique name and password.

2. Account Pages
a. Each user will have a page linked to their account. This page displays the

user’s posts and public information (name, bio, links).
3. Feed Pages

a. This is the user home page after sign-in where all posts from people and
communities followed will appear. This will implement the Recommended
Content (6) function below.

4. Text Posts
a. Users will be able to upload text which will be stored in our database

(postgresql). These posts will appear on their profile pages and any
community pages associated with the content (by hashtags).

5. Likes/Dislikes
a. Users will be able to like/dislike a post.
b. The post will move up or down in the feed based on how many

likes/dislikes it accumulates over a certain period of time
6. Recommended Content

a. Each user will have a recommended content page based on their
likes/dislikes

b. Recommended content will be similar to tags the user has already
liked/posted

7. Content Driven Communities
a. Communities are pages specifically made for certain content. This will

appear like a user account page, but it is public and anyone is able to
post to the page.

b. Community pages receive their own unique hashtags, which when
someone posts using the hashtag, the post is automatically displayed on
the community page.

c. Anyone is able to create a community, and the community creator is
considered its “owner”

d. The owner is able to edit the pages bio and descriptions
8. Search

a. The user has the ability to search for user/community pages, topics, and
other posts.

b. A feed is produced of matching users, pages, and posts.

 1.2 Performance
- Every user will be able to post a maximum of 65536 (216) total posts to their page

or to a community page
- Posts are limited to 10,000 characters
- Usernames can be up to 20 characters long

 1.3 Limitations

- Media like photos/audio/video can not be uploaded directly. However, links can

be posted to this type of content hosted elsewhere
- There is no option to privately message other users
- All posts are public, there is no way to hide your page from certain people
- Users can not leave comments on posts. However, it is possible to create a new

post in response to an existing post by linking to the original post

2.0 Tasks

1. Set up the Ruby development environment for each member of the team, so that they
can spin up a locally hosted “Hello World” site

2. Prepare the Postgres database to store user account information: usernames, and
securely stored passwords

3. Create a bare-bones interface for creating accounts/logging in, and connect it to the
database

4. Create user and community pages, and allow users to post on them
5. Allow users to follow user and community pages, and have those posts appear in their

feed
6. Implement like/dislike system, which affects how high posts are in the feed
7. Recommend the user posts, based on the tags of posts that they like
8. Create a more aesthetic user interface design

3.0 Resources
3.1 Hardware

- We will all use our own machines to develop the web app. For the purposes of
testing and demonstration, the website will be hosted locally, and not on an
external server.

3.2 Software

- Ruby on Rails web application
- PostgreSQL for the database
- Languages: Ruby, HTML/CSS, SQL, Javascript

3.3 People

 Leader Project Manager Backend Frontend (GUI) Testers Documentation Sales

Jake X X X

Max X X X X

Jared X X

John X X

Gurmail X X

Jake is the Manager/backend dev because he has experience with Ruby on Rails. Max is the
other backend dev because he has a bit of experience with JavaScript/HTML.

CS 1530 g06 Second Milestone

Software Plan

4.0 Cost (based upon tasks from 2.0)

Step 1. LOC Cost Table

Function Optimistic Most Pessimistic Expected Deviation

Dev. Environment 300 400 600 350 100

Postgres database 100 200 400 150 50

User and community 500 650 800 575 150

pages

Following and feed 350 450 600 400 100

works

Like/dislike system 125 225 300 200 50

Recommendations 700 900 1200 850 200

Fix interface 150 250 350 200 75

Expected LOC (Lines of Code) = 2725

Deviation = 725

67% range = 2000 to 3450

99% range = 550 to 4900

($/LOC) = $14

Cost = $14 * 2725 = $46,325

16

http://people.cs.pitt.edu/~chang/153/c03manage/cost.htm
http://people.cs.pitt.edu/~chang/153/c03manage/cost.htm

CS 1530 g06 Second Milestone

Step 2. Labor Cost / Task Technique

Function Requirements Design Coding Test Subtotal

Dev. Environment 0.5 2.0 1.0 0.5 4.0

Postgres database 0.5 2.0 1.0 0.5 4.0

User and community 2.0 4.5 4.0 3.0 13.5

pages

Following and feed 2.0 5.0 4.0 3.5 14.5

works

Like/dislike system 1.0 3.0 2.0 1.0 7.0

Recommendations 3.0 5.0 4.0 3.0 15.0

Fix interface 0.5 1.5 1.0 0.5 3.5

Total 9.5 23.0 17.0 12.0 61.5

(man-weeks)

Rate $250 $450 $400 $350

($/man-weeks)

Cost $2375 $10350 $6800 $4200 $23,725

Step 3. Avg. Cost (estimated cost) = (46,325 + 23,725) / 2 = $35,025

17

CS 1530 g06 Second Milestone

5.0 Schedule (based upon tasks from 2.0)

 1 2 3 4 5 6 7 8 9

createAccount

- requirements 0 x

- design 0 x

- code 0 x

- test 0 x

readHashtags

- requirements 0 x

- design 0 x

- code 0 x

- test 0 x

makePost

- requirements 0 x

- design 0 x

- code 0 x

- test 0 x

createCommunity

- requirements 0 x

- design 0 x

- code 0 x

- test 0 x

deletePost

- requirements 0 x

- design 0 x

- code 0 x

- test 0 x

18

http://people.cs.pitt.edu/~chang/153/c03manage/sched.htm
http://people.cs.pitt.edu/~chang/153/c03manage/sched.htm

CS 1530 g06 Second Milestone

 1 2 3 4 5 6 7 8 9

showUserPage

- requirements 0 x

- design 0 x

- code 0 x

- test 0 x

likePost/dislikePost

- requirements 0 x

- design 0 x

- code 0 x

- test 0 x

showCommunityPage

- requirements 0 x

- design 0 x

- code 0 x

- test 0 x

showFeed

- requirements 0 x

- design 0 x

- code 0 x

- test 0 x

followUser

- requirements 0 x

- design 0 x

- code 0 x

- test 0 x

19

Quartz
Group 6 Social Media Project

Created By:
Jacob Diecidue, Max Dudek, Jared Ranalli, Gurmail Mathon, John Fessler

The premise
Two types of feeds on websites:

- Follow individual users
- Instagram, Twitter

- Follow communities / specific interests
- Facebook communities, Reddit

Quartz lets you follow both users and interests,
in a chronologically ordered feed

Functionality of
Quartz

● User Accounts - Secure Creation/Login
○ User Feeds - “Timelines”

● Content Driven Communities - #Content
○ Community Pages - Where all posts are visible

● Text Posts - Posted by Registered Users
○ Like/Dislike System - On all posts

● Recommended Content - Seen on user feeds
● Search - For topics or posts

What Are Our
Limitations?

● Media can’t be uploaded

directly. Links will instead be

used

● No private message

functionality

● All posts are public

● No comments. Instead a new

post can be created linking to

the original post

How Are We
Creating Quartz?

(Software)

● Quartz is a Web Application
○ Ruby on Rails (Framework)
○ Postgresql (Database)
○ Languages:

■ Ruby, Javascript, HTML,
CSS, SQL

Tasks
1. Setup development environment
2. Prepare the Postgres database
3. Create bare bones interface for

creating accounts/logging in
4. Create user and community

pages, allow users to post on
them

5. Allow users to follow pages,
have posts appear in feed

6. Implement like/dislike system
7. Implement recommendations
8. Make interface look better

Team Roles

Leader
Project

Manager Backend
Frontend

(GUI) Testers Documentation Sales

Jake X X X

Max X X X X

Jared X X

John X X

Gurmail X X

