Evaluating Energy Savings for Checkpoint/Restart in Exascale

Bryan Mills, Ryan E. Grant,

Kurt B. Ferreira and Rolf Riesen

Requisite Agenda Slide

- Checkpointing
 - Why is power important here?
- Experimental Setup
- Power Profiles
 - Checkpoint writes
 - Whole Application Execution
- Conclusions
- Future Work

Major Challenges at Exascale

Making the transition to exascale poses numerous unavoidable scientific and technological challenges

Harnessing the Potential of Massive Parallelism

 Effective use of unprecedented levels of concurrency requires new conceptual and programming paradigms

Reducing Power Requirements

 Based on current technology, scaling today's systems to an Exaflop level would consume ~500 Megawatts of power

Resilience to Failure

 An immediate consequence of exascale computing is that the frequency of errors will increase

Checkpointing

- Periodically pause execution and write state to stable storage
- In event of failure restore from saved state
- Two main methods:
 - Coordinated
 - Everyone rollback
 - Uncoordinated
 - Failed nodes rollback

Time Spent in Checkpoint Operations

Research Question

Can we conserve energy during checkpoint operations?

- Checkpoint write is an IO intensive operation, resulting in low CPU usage
- Can we reduce power by reducing the CPU speed without effecting the checkpoint?
 - Use Dynamic Voltage Frequency Scaling (DVFS)

Experimental Setup

- HPC Cluster at Sandia National Labs
 - 104 node cluster
 - AMD Llano Fusion APU
 - 4 core x86 + 400 core Radeon HF 6550D
 - 6 Power Gears 1.4Ghz 3.8Ghz
 - 500Gb SSD in each node
 - Component level power measurement [1]
 - CPU, Memory, Network, SSD, Motherboard, etc.
 - Two networks
 - 1Gb Ethernet
 - Infiniband Qlogic QDR InfiniBand HCA

[1] J. H. L. III, P. Pokorny, and D. DeBonis. Powerinsight - a commodity power measurement capability. In *The Third International Workshop on Power Measurement and Profiling in conjunction with IEEE IGCC 2013*, Arlington Va, 2013.

Software Stack

- Real applications running MPI
 - LAMMPS molecular dynamics code
 - HPCCG conjugate gradient solver

- OpenMPI 1.3.4 with BLCR
 - Berkley Lab Checkpoint/Restart
 - Kernel level module for checkpoint/restart processes
 - Coordinated "stops" communication and checkpoints each process individually

Component Level Power Monitoring

Local Checkpoint

- Write checkpoint to local SSD only
 - 4 nodes running HPCCG

Power vs Energy

- Write checkpoint to local SSD only
 - Average over 10 runs each

Remote Checkpoints

- Checkpoints not useful on a dead node
- Write checkpoint to remote system over NFS
 - IP over Infiniband
 - RDMA over Infiniband

IP Over Infiniband

- Write checkpoint to remote SSD using IP
 - 4 nodes running HPCCG

Power vs Energy

- Write checkpoint to remote SSD using IP
 - Average over 10 runs

RDMA Over Infiniband

- Write checkpoint to remote SSD using RDMA
 - 4 nodes running HPCCG

Power vs Energy

- Write checkpoint to remote SSD using RDMA
 - Average over 10 runs

What does this show us?

 Previous research suggested that one should always reduce CPU frequency during IO operations [1,2]

"In theory, theory and practice are the same. In practice, they are not." - Einstein

- Depends on IO subsystem, especially if network IO is involved as it would be for checkpoints
- There might still be a benefit
 - Next experiment looks at entire application execution

[1] M. Diouri, et.al. Energy considerations in checkpointing and fault tolerance protocols. In *Dependable Systems and Networks Workshops (DSN-W), 2012 IEEE/IFIP 42nd International Conference on*, pages 1–6. IEEE, 2012.

[2] T. Saito, et.al. Energy-aware I/O optimization for checkpoint and restart on a NAND flash memory system. In *Proceedings of the 3rd Workshop on Fault-tolerance for HPC at extreme scale*, pages 41–48. ACM, 2013.

Entire Application Execution

- Write 3 checkpoints local SSD write
 - 4 nodes running LAMMPS

High Power 3.8 Ghz

Low Power 1.4 Ghz

Entire Application Execution

- Write 3 checkpoints remote over IPoIB
 - 4 nodes running LAMMPS

Entire Application Execution

- Write 3 checkpoints remote over RDMA
 - 4 nodes running LAMMPS

BLCR/OpenMPI Variability

- Unable to draw any conclusion from entire application experiments due to variation in time to solution
 - Simple experiment using 10 runs on 4 nodes local checkpoints

Conclusions

- Can save 50-60% of energy during checkpoint write translating to 5-15% of overall application energy savings in exascale systems
- IO operations are sometimes CPU intensive
 - Especially with the Qlogic Infiniband
- BLCR in OpenMPI is problematic
 - Control thread causes lots of variance
- Staged Checkpoints?

Future Work

- Measure power in restart operation
- Fix BLCR control thread
 - Underway but difficult (might just dedicate core)
- Test at larger scale
- Look at fully offloaded Infiniband cards
 - Initial results look very promising
- Parallel Filesystem instead of NFS
- Staged Checkpoints

Staged Checkpoints

- Multi-tiered checkpoint write
 - First write to local SSD, copy to network, etc.
 - Continue working after local SSD write
- Our work implies this might not be beneficial
 - If the network copy consumes CPU cycles then application performance will suffer
 - Implies that you want fully offloaded network operations
 - What about network bandwidth? Do we need a separate network for checkpoint writes?

Questions? Peanuts? Comments?

Bryan Mills bmills@cs.pitt.edu

Exascale Computing

"One or more key attributes of the system achieve a 1,000 times the value of a corresponding attribute of a "Petascale" system" [1]

Three dimensions

- Functional performance
 - Flops per second
- Physical attributes
 - Shrink Petascale down to a desktop
- Application performance
 - Speed of science

Functional Performance

- 1,000 times more powerful than petascale
 - Tianhe is 30x smaller

Computer	Petaflops	Growth				
Exascale	1000					
Exascale GAP						
Tianhe-2	33.86	30x				
Titan	17.59	58x				
Sequoia	16.32	62x				
K Computer	10.51	100x				
Mira	8.16	125x				
JUQUEEN	4.14	250x				

^{*} Top 500 (http://www.top500.org/)

Energy Challenge

- DoE has set an energy target of 20 megawatt for exascale computing
 - Requires a minimum of 23x reduction in energy!

Computer	Energy (MW)	Growth	Projected (MW)				
Exascale	-	-	20				
Exascale GAP							
Tianhe-2	17.80	30x	534.0				
Titan	8.20	58x	475.6				
Sequoia	7.89	62x	489.2				
K Computer	12.65	100x	1265.0				
Mira	3.95	125x	493.8				
JUQUEEN	1.97	250x	492.5				

Resilience Challenge

- Mean time between failure (MTBF) projected to be 5-20 years per node
 - At best we are looking at a node failure every 20 minutes if we simply scale todays technology

Computer	# Nodes	Growth	Projected	MTBF (20yr)
Tianhe-2	16,000	30x	480,000	21.9 minutes
Titan	18,688	58x	1,083,904	9.69 minutes
Sequoia	98,304	62x	6,094,848	1.72 minutes
K Computer	80,000	100x	8,000,000	1.32 minutes
Mira	49,152	125x	6,144,000	1.71 minutes
JUQUEEN	28,672	250x	7,168,000	1.46 minutes