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Major Challenges at Exascale

Making the transition to exascale poses numerous
unavoidable scientific and technological challenges

* Harnessing the Potential of Massive Parallelism

— Effective use of unprecedented levels of concurrency requires
new conceptual and programming paradigms

 Reducing Power Requirements

— Based on current technology, scaling today’s systems to an
Exaflop level would consume ~500 Megawatts of power

* Resilience to Failure

— An immediate consequence of exascale computing is that the
frequency of errors will increase



Checkpointing

e Periodically pause execution and write state
to stable storage

* |In event of failure restore from saved state

e Two main methods:
— Coordinated

e Everyone rollback

— Uncoordinated

e Failed nodes rollback
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Research Question

Can we conserve energy during checkpoint
operations?

* Checkpoint write is an IO intensive operation,
resulting in low CPU usage

* Can we reduce power by reducing the CPU
speed without effecting the checkpoint?

— Use Dynamic Voltage Frequency Scaling (DVFS)



Experimental Setup

e HPC Cluster at Sandia National Labs ] .
ello My Name is...

— 104 node cluster T@.LL@,T’

— AMD Llano Fusion APU
* 4 core x86 + 400 core Radeon HF 6550D - _‘,,:’ =~
* 6 Power Gears 1.4Ghz — 3.8Ghz ’/ 1| P ’.

— 500Gb SSD in each node

— Component level power measurement .
 CPU, Memory, Network, SSD, Motherboard,
etc.
— Two networks
e 1Gb Ethernet
* Infiniband - Qlogic QDR InfiniBand HCA

[1] J. H. L. Ill, P. Pokorny, and D. DeBonis. Powerinsight - a commodity power measurement capability. In The Third
International Workshop on Power Measurement and Profiling in conjunction with IEEE IGCC 2013, Arlington Va, 2013.



Software Stack

Real applications running MPI e
— LAMMPS - molecular dynamics code R :

. formation

— HPCCG - conjugate gradient solver ==

fffff

e OpenMPI 1.3.4 with BLCR

— Berkley Lab Checkpoint/Restart
» Kernel level module for checkpoint/restart processes

e Coordinated - “stops” communication and checkpoints
each process individually
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Power for system (watts)
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Local Checkpoint

* Write checkpoint to local SSD only
— 4 nodes running HPCCG
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Power vs Energy

* Write checkpoint to local SSD only
— Average over 10 runs each
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Remote Checkpoints

* Checkpoints not useful on a dead node

* Write checkpoint to remote system over NFS

— |P over Infiniband
— RDMA over Infiniband
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* Write checkpoint to remote SSD using IP
— 4 nodes running HPCCG
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Power vs Energy

* Write checkpoint to remote SSD using IP
— Average over 10 runs
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Power for system (watts)

RDMA Over Infiniband

* Write checkpoint to remote SSD using RDMA
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Power vs Energy

* Write checkpoint to remote SSD using RDMA

— Average over 10 runs
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What does this show us?

* Previous research suggested that one should always
reduce CPU frequency during 10 operations (12

“In theory, theory and practice
are the same. In practice, they
are not.” - Einstein

 Depends on 10 subsystem, especially if netork 0 is
involved as it would be for checkpoints

 There might still be a benefit
* Next experiment looks at entire application execution

[1] M. Diouri, et.al. Energy considerations in checkpointing and fault tolerance protocols. In Dependable Systems and Networks Workshops (DSN-W), 2012 IEEE/

IFIP 42nd International Conference on, pages 1-6. IEEE, 2012.
[2] T. Saito, et.al. Energy-aware 1/O optimization for checkpoint and restart on a NAND flash memory system. In Proceedings of the 3rd Workshop on Fault-
tolerance for HPC at extreme scale, pages 41-48. ACM, 2013.
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Entire Application Execution

* Write 3 checkpoints local SSD write

— 4 nodes running LAMM
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Power for system (watts)
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Entire Application Execution

* Write 3 checkpoints remote over IPolB
— 4 nodes running LAMM

100

200 300 400 500

High Power 3.8 Ghz

600

700

Power for system (watts)

PS

450

400

350 |

300

250

200

150

100

50

0

0 100 200 300 400 500 600

Low Power 1.4 Ghz

700



Power for system (watts)
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Entire Application Execution

* Write 3 checkpoints remote over RDMA
— 4 nodes running LAMM
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BLCR/OpenMPI Variability

* Unable to draw any conclusion from entire application
experiments due to variation in time to solution

— Simple experiment using 10 runs on 4 nodes local checkpoints
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Conclusions

Can save 50-60% of energy during checkpoint
write translating to 5-15% of overall

application energy savings in exascale systems
IO operations are sometimes CPU intensive
— Especially with the Qlogic Infiniband

BLCR in OpenMPI is problematic

— Control thread causes lots of variance

Staged Checkpoints?



Future Work

Measure power in restart operation

Fix BLCR control thread
— Underway but difficult (might just dedicate core)

Test at larger scale

Look at fully offloaded Infiniband cards
— Initial results look very promising

Parallel Filesystem instead of NFS
Staged Checkpoints



Staged Checkpoints

* Multi-tiered checkpoint write
— First write to local SSD, copy to network, etc.
— Continue working after local SSD write

* Our work implies this might not be beneficial

— |f the network copy consumes CPU cycles then
application performance will suffer

— Implies that you want fully offloaded network
operations

— What about network bandwidth? Do we need a
separate network for checkpoint writes?



Questions? Peanuts? Comments?

Bryan Mills
bmills@cs.pitt.edu

all
folks!"



Exascale Computing

“One or more key attributes of the system achieve
a 1,000 times the value of a corresponding attribute
of a “Petascale" system” .

Three dimensions
— Functional performance
* Flops per second
— Physical attributes
e Shrink Petascale down to a desktop

— Application performance
* Speed of science

[1] K. Bergman, et.al. Exascale computing study: Technology challenges in achieving exascale systems. 2008



Functional Performance

* 1,000 times more powerful than petascale

— Tianhe is 30x smaller

Exascale

Tianhe-2
Titan
Sequoia

K Computer
Mira
JUQUEEN

1000

Exascale GAP

33.86
17.59
16.32
10.51
8.16
4.14

30x
58x
62X
100x
125x
250x

* Top 500 (http://www.top500.0rg/)



Energy Challenge

* DoE has set an energy target of 20 megawatt
for exascale computing

— Requires a minimum of 23x reduction in energy!

Exascale

Tianhe-2
Titan
Sequoia

K Computer
Mira
JUQUEEN

17.80
8.20
7.89
12.65
3.95
1.97

Exascale GAP
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100x
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20

534.0
475.6
489.2
1265.0
493.8
492.5



Resilience Challenge

e Mean time between failure (MTBF) projected
to be 5-20 years per node

— At best we are looking at a node failure every 20
minutes if we simply scale todays technology

Tianhe-2 16,000 30x 480,000 21.9 minutes
Titan 18,688 58x 1,083,904 9.69 minutes
Sequoia 98,304 62X 6,094,848 1.72 minutes
K Computer 80,000 100x 8,000,000 1.32 minutes
Mira 49,152 125x 6,144,000 1.71 minutes

JUQUEEN 28,672 250x 7,168,000 1.46 minutes



