Evaluating Energy Savings for Checkpoint/Restart

*
Bryan Mills
University of Pittsburgh
Department of Computer
. Science
bmills@cs.pitt.edu

Ryan E. Grant

and Kurt B. FerreiraT
Sandia National Laboratories
Scalable System Software

Rolf Riesen
IBM Research - Ireland
rolf.riesen@ie.ibm.com

Department
{regrant|kbferre}@sandia.gov

ABSTRACT

The U. S. Department of Energy has identified resilience and
energy consumption as key challenges for future extreme-
scale systems. All checkpoint/restart methods require 1/0
to local or remote storage. Efforts are under way to mini-
mize the amount of data movement and increase scalability.
Nevertheless, the energy consumed by fault resilience meth-
ods will increase with system size. It is therefore important
to understand the performance overhead in conjunction with
the energy consumption of each fault resilience method. In
this paper we explore throttling CPU power consumption
during I/0 intensive checkpoint operations of real applica-
tions. We find that 10% total energy savings are possible
with little impact on application time to solution.

Categories and Subject Descriptors

C.4 [Computer Systems Organization|: Fault Toler-
ance; D.2.8 [Software Engineering]: Metrics—performance
measures

General Terms

Measurement, Performance, Reliability, Power, Energy, Power

Saving, Energy Saving, Checkpointing, Fault Tolerance

1. INTRODUCTION

In large capability computing systems, the number of sock-
ets will continue to grow, resulting in decreased reliabil-
ity and increased energy consumption. These two factors
have repeatedly been identified as major challenges along

*This work is supported in part by NSF grants CNS12-53218
and CNS12-52306

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

(c) 2013 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States Gov-
ernment retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
E2SC ’13 November 17 - 21 2013, Denver, CO, USA

Copyright 2013 ACM 978-1-4503-2504-2/13/11 ...$15.00.

the road to exascale-class systems [35, 28]. With socket-
counts on the rise and increased system failure rates [40],
future systems will encounter more reliability events. For
checkpoint /restore methods, this means more overhead and
higher system energy consumption. This makes it impera-
tive to understand the impact fault tolerance methods have
on energy consumption.

Fault tolerance in today’s large scale production systems
relies almost exclusively on coordinated checkpoint/restart.
During normal operation, checkpoint/restart (or rollback re-
covery) protocols [9], periodically record the state of all ap-
plication processes to stable storage (the checkpoint stage).
When a process fails, a new incarnation of the failed process
is recovered from the most recent checkpoint (the restart
phase). This limits the amount of lost work to only that
since the last checkpoint (the rework stage).

The prevalence of checkpoint/restart is due to a number of
factors: failures have, until now, been relatively rare events,
applications are generally self-synchronizing, and applica-
tion state can be saved and restored much more quickly
than a given system’s mean time to interrupt (MTTI). All
of these factors have kept the overheads of traditional check-
point/restart on current systems limited to a modest portion
(currently perhaps 10-25%) of an applications total time
to solution. For future extreme-scale systems, a number
of these assumptions may change such that the overheads
of traditional checkpoint/restart could become prohibitively
expensive [29, 10, 39].

Unreliable systems are nothing new. For example, ASCI
White originally had a Mean Time Between Failure (MTBF)
of only 5 hours [41]. This was later improved to ~50 hours,
but exascale-class systems will observe failure rates signifi-
cantly higher than even poorly behaving HPC systems of the
past. Worse than that, the methods to alleviate the impact
of failures on system performance, not only add overhead,
but also increase power consumption. Figure 1 exemplifies
the problem: The time to checkpoint and restart increases
exponentially with system size. These are high-power oper-
ations and, therefore, energy consumption will also increase
at a much higher rate than the increase in number of sockets
would suggest.

A number of recent studies show that general power con-
sumption can be reduced during writing of a checkpoint to
stable storage [36, 25]. The CPU is the largest consumer
of power on an HPC node, but its power consumption can
be controlled using Dynamic Voltage and Frequency Scaling
(DVFES). The prior work suggests that during the I/O inten-
sive checkpoint and restart operations, throttling the CPU

Overhead of Coordinated Checkpoint

EE Rework
I Restart
B Checkpoint

80

EY
S

»
S

Percent of Execution

20

1k 2k 4k 8k 16k 32k 64k 128k 256k
Number of Sockets

Figure 1: Percent of wall-clock time spent in each
coordinated checkpointing component using a vali-
dated simulator [33]. Checkpoint commit time is 15
minutes, a value shown seen on many extreme-scale
systems [4, 11]; and a node MTBF of 15 years [39],
using the optimal checkpoint interval from Daly [6].

can save power without impacting checkpoint performance.

In this work, we use a previously published [18] frame-
work for examining component-level power consumption to
measure the energy cost of checkpoint operations to local
SSD’s and remote storage. For remote operations we com-
pare the power consumption of IP and RDMA, both over an
InfiniBand network. With these baselines in place, we then
use DVFS to throttle CPU speed during checkpoint writes
to measure the energy savings and performance impact. We
find that overall energy savings of 10% are possible with ac-
tual HPC workloads. Furthermore, the choice of network
protocol and local versus remote storage have important en-
ergy consumption impacts that needs to be considered when
designing fault tolerance protocols that make use of hierar-
chical storage.

2. EXPERIMENTAL RESULTS

Before we present results, we explain our experimental
methodology and the framework we used. We then mea-
sure the effect of lowering the frequency and voltage of the
CPU during a checkpoint write operation to local and re-
mote storage. For remote I/O over InfiniBand, we switch
between the IP and the RDMA protocol and evaluate each.
We then repeat these three experiments for two applications
and analyze the results.

2.1 Methodology

We used DVFS to vary the CPU frequency and voltage
during a checkpoint write to determine the potential en-
ergy savings available. Using DVFS, several different dis-
crete “gears” are available for CPU frequency; we explored
all those available on the testbed hardware. We gathered
component-level power consumption data from several nodes,
and did this while checkpointing to local and remote stor-
age. For remote access, we used two NFS solutions: one
using the kernel network stack and the other using the IB
RDMA interface.

2.2 Experimental Framework

We measured power consumption on a cluster with 104

nodes, each equipped with an AMD Llano Fusion APU,
which is a 4-core AMD K10 x86 paired with a 400-core
Radeon HD 6550D. For our experiments we only used the
x86 cores, ignoring the available GPU. The CPU frequency
and voltage are modified using the powernow_ k8 kernel
module. There are six available gears ranging from a fre-
quency of 3.8 GHz down to 1.4 GHz.

Component level power measurements of the CPU, mem-
ory, on-node SSD device, motherboard and the Qlogic QDR
InfiniBand HCA were performed using a custom designed
power measurement system. More detail about the system
is available in [18].

We used LAMMPS [32], a molecular dynamics code, and
HPCCG, a conjugate gradient solver from Sandia’s man-
tevo suite [38] as the MPI applications for our experiments.
Both are important as they represent a range of compu-
tational techniques. LAMMPS is a production level code
that is frequently run at very large scales on U. S. Depart-
ment of Energy leadership class systems, while HPCCG is a
mini-app that is representative of a real, finite element code.
Both used Open MPI and the built-in BLCR [14] support
for checkpointing.

2.3 Local Checkpoint Power Profile

Checkpointing is an I/O intensive operation and previous
work has indicated that CPU utilization is low during a local
checkpoint [36]. This section explores what energy savings
may be possible when checkpointing to a local SSD. Fig-
ure 2(a) shows the component level power profile of 4 nodes
running at full processor speed performing a local coordi-
nated checkpoint. As the processes pause their execution
there is a drop in the amount of power consumed by the
CPU, even without modifying the operating voltage or fre-
quency of the processor. This initial result indicates that
there is an opportunity to save energy by reducing the clock
frequency and voltage of the processor.

Observe in Figure 2(a) that even though CPU power con-
sumption drops during a checkpoint, the CPU is still the
dominant consumer of power. All other components con-
sume less than half the power consumed by the CPU. This
makes CPU power an excellent candidate for energy savings
during checkpoints. SSD power consumption does increase
during the checkpoint, but it is not as promising a candidate
for energy savings as the CPU as the percentage of energy
consumed by the SSD is far less than that of the CPU.

Figure 2(b) shows the result of checkpointing with the
processor frequency set to 1.4 GHz, the lowest possible gear.
Reducing the CPU frequency (and voltage) reduces total
energy consumption and smooths out power consumption
during the checkpoint time. During the I/O operation, there
are times that the CPU is blocked in a busy loop waiting for
the I/O to complete. This polling for I/O completion can
lead to small power spikes. By reducing the CPU frequency,
these spikes occur less frequently because the CPU is less
likely to block on I/0.

Reducing the CPU frequency during checkpoint causes the
operation to take slightly longer. In Figure 2(c) we compare
the consumed energy during the checkpoint time and the
total execution time for the operation. We show the results
for all 6 available voltage and frequency gears in our envi-
ronment. To compare both time and energy in the same
figure, we normalized the values to the highest measured.
This figure confirms that during extended local 1/O opera-

CPU

Power for system (watts)
Power for system (watts)

E
3
£

20 15 20 2
Seconds Seconds

(a) 3.8 GHz (b) 1.4 GHz (c) Time vs Energy

1.4Ghz 1.9Ghz 2.4Ghz 2.9Ghz 3.4Ghz 3.8Ghz

Figure 2: Local SSD. Component level power profile during a coordinated checkpoint of HPCCG in a 4-node
cluster using 16 processes, each process checkpoint was approximately 1.5GB. The Time versus Energy plot
shows the energy and time to complete the checkpoint operation over 10 separate runs. Error bars are the
standard deviation.

Memor Enert
Motherboar) e i
oo Time
Miscellancous
S50

Power for system (watts)
Power for system (watts)
Normalized Average

15 20 25 15 20 2
Seconds Seconds.

(a) 3.8 GHz (b) 1.4 GHz (¢) Time vs Energy

1.4Ghz 1.9Ghz 2.4Ghz 2.9Ghz 3.4Ghz 3.8Ghz

Figure 3: Remote SSD wusing IP over InfiniBand. Component level power profile during a coordinated
checkpoint of HPCCG in a 4-node cluster using 16 processes, each process checkpoint was approximately
1.5GB. The Time versus Energy plot shows the energy and time to complete the checkpoint operation over
10 separate runs. Error bars are the standard deviation.

Power for system (walts)
Power for system (watts)
Normalized Average

20
Seconds Seconds

(a) 3.8 GHz (b) 1.4 GHz (¢) Time vs Energy

1.4Ghz 1.9Ghz 2.4Ghz 2.9Ghz 3.4Ghz 3.8Ghz

Figure 4: Remote SSD using RDMA over InfiniBand. Component level power profile during a coordinated
checkpoint of HPCCG in a 4-node cluster using 16 processes, each process checkpoint was approximately
1.5GB. The Time versus Energy plot shows the energy and time to complete the checkpoint operation over
10 separate runs, error bars are the standard deviation.

tions, reducing the CPU power has little effect on the time
to completion, but can save up to 25% of the total energy.
These results are very encouraging, but for a checkpoint
to be usable it must be stored on a device that is failure
independent of the node performing the computation. In
practice this means that writing a checkpoint also includes
a network operation, to copy or stream the checkpoint data
to a network storage device. The next section will explore
the power profile of writing a checkpoint to a network device.

2.4 Power Consumption by Network Type

Checkpoints are clearly I/O bound operations, and check-
pointing to a remote location will therefore be network inten-
sive. CPU involvement in the network operations is highly
dependent upon both the software and hardware being uti-
lized. If network operations require significant CPU re-
sources, reducing processor frequency can have a significant
effect on the time necessary to write a checkpoint. This
will impact the potential energy savings for checkpointing
over a network. In order to study the effect of distributing
checkpoints across a network we chose to store checkpoints
in neighboring compute nodes. Because this is a coordi-
nated checkpoint there should be no interference with the
MPT application being checkpointed. We tested two differ-
ent network configurations using NFS: IP over InfiniBand
and RDMA over InfiniBand.

Both of the network configurations tested use InfiniBand
network hardware. InfiniBand networks can be implemented
as an offloaded or onloaded, or partially onloaded and of-
floaded solution. This paper examines the energy consump-
tion of a system with a partially onloaded InfiniBand Qlogic
host channel adapter (HCA). With a fully offloaded Infini-
Band HCA, such as those from Mellanox, the CPU utiliza-
tion during the checkpoint could reasonably be expected to
be lower, and therefore greater savings may be possible.

2.4.1 IP over InfiniBand

IP over InfiniBand (IPoIB) is a protocol that allows en-
capsulating IP packets for their transmission over Infini-
Band network hardware [5]. This requires mapping IP ad-
dresses to InfiniBand subnets that support IPoIB. The un-
derlying network driver/hardware is an InfiniBand HCA,
which transmits the encapsulated packets inside of native
InfiniBand messages. IPolIB utilizes portions of the kernel
IP networking stack, and associated upper layer transports
(e.g. TCP/UDP). Therefore, the performance benefits of
OS bypass is not available to IPoIB applications and CPU
load is increased over native IB. IPolB therefore provides
the convenience of a socket interface to an application but
with the drawback of a performance penalty.

2.4.2 RDMA over InfiniBand

Remote Direct Memory Access (RDMA) is a key feature
of InfiniBand networks. It allows for a source node to trans-
mit data directly into a target node’s memory. There are
two methods for performing RDMA. The send/recv method
uses target side “recv” queue (RQ) entries that are matched
to incoming messages. These RQ entries indicate where a
given message should be placed in memory, which can be an
application’s buffer, avoiding any intermediary copies that
would otherwise be performed in a typical kernel network
transport communication.

The other method of performing RDMA is the Write/Read

approach, which has the source node include all of the infor-
mation on where the data is to be placed in the target node’s
memory. This requires that the source node has knowledge
of the target node’s memory, including what areas are des-
ignated for that source node’s messages. This is typically
accomplished through an exchange of data prior to RDMA
communication, or through buffer advertisement while com-
munication is ongoing.

RDMA can provide very low latency networking, and small
message RDMA operations can have sub-microsecond laten-
cies, while large messages can have very high throughput.

2.4.3 Remote Checkpoint Power Profile

Figure 3 shows the power profile of writing a checkpoint
over a network using IP over InfiniBand. When execut-
ing the checkpoint at full speed there is significantly more
CPU activity than that observed for local SSD checkpoints
(Figure 2). This increased CPU utilization is due to the
network stack processing required by our onloaded Infini-
Band hardware. Reducing the CPU speed reduces the en-
ergy consumption significantly while even potentially in-
creasing checkpoint performance. This result is encourag-
ing and shows that reducing CPU power can result in en-
ergy savings with little additional overhead, and in the case
where resource contention was causing slowdown, actually
increase checkpoint efficiency.

It would be reasonable to expect that a local SSD check-
point would be faster than a network operation, however we
consistently saw full speed IP over InfiniBand and RDMA
outperform local SSD writes, albeit only by a small amount.
The reason for this unexpected result is the buffering be-
havior of NFS. Due to it’s write buffers, NF'S reports to the
client that the write operation is complete as soon as the
entire message has been buffered at the server. The actual
write to disk then finishes, allowing the client to proceed
with computation. This results in the network copy appear-
ing to be slightly faster than the local SSD write, as local
SSD write-caching is not available in the Linux kernel we
used for testing. As can be observed in 3(c), reducing the
CPU power during checkpoint operation can save 50% of
the consumed energy. Further research is necessary to de-
termine the impact that the NFS buffered writes might have
upon energy and time to solution.

In contrast, Figure 4(a) shows a near constant use of the
CPU during the RDMA network transfer. Although, in
principle, RDMA is OS bypass and can be offloaded, our
interface cards make heavy use of the CPU during RDMA
transmission. With an un-throttled CPU, the transmission
is slightly faster than IPoIB. Reducing the CPU speed we
observe that RDMA takes significantly longer than it did at
3.8 GHz. Figure 4(c) shows that while we can save 15% of
the energy, this causes the checkpoint time to nearly double.

2.5 Checkpoint Energy over Application Exe-
cution

In the previous sections we examined the power profile of
a single checkpoint event during the execution of HPCCG.
In this section, we look at the power profile over three check-
points taken during a run of LAMMPS using the Lennard-
Jones workload.

Figure 6(a) shows the power profile of LAMMPS when
the three checkpoints go to the local SSD. During the local
checkpoints, the CPU power consumption is considerably

B Energy
. Time

Normalized Average

0
3 Checkpoints
BLCR Enabled

0 Checkpoints

0 Checkpoints
BLCR Enabled i

BLCR Disabled

Figure 5: Time to solution and energy consumed
for LAMMPS using different configurations. These
experiments were ran using Open MPI 1.3.4.

reduced. However, when writing remote checkpoints, shown
in Figure 7(a) and 8(a), the CPU power is much higher dur-
ing these times. With reduced CPU frequency shown in
Figures 6(b), 7(b) and 8(b), we see a drop in power con-
sumption and an increase in execution time, particularly for
the off-node operations.

By focusing on the checkpoint event itself in previous ex-
periments, we were able to draw some conclusions regarding
the use of DVFS during those events. However, when eval-
uating the energy and time to solution we found that the
variance of the application runtime was too high to draw
any conclusions. This was unexpected as LAMMPS typ-
ically has very little variance in execution time. Further
investigation determined that the variance was introduced
by a helper thread for Open MPI’s BLCR support. Fig-
ure 5 shows the effect BLCR support in Open MPI has on
LAMMPS runtimes even when no checkpoints are taken.

The amount of variance is further magnified when check-
points are actually written. This is because the time to
coordinate the checkpoint is dependent upon how far into
the application execution it is requested. The variance in-
troduced by Open MPI BLCR support moves this request
from run to run and obscures conclusions. Therefore, we do
not show energy graphs for the overall application run.

We can, however, conclude from the power profiles that
the behavior during the checkpoint event is the same even
when executing multiple checkpoints over the execution of
the application. Because these profiles show the similar be-
havior to that found in the HPCCG experiments, this should
translate to energy savings in the overall application execu-
tion. Future work will need to address the variance intro-
duced by the checkpointing support in Open MPI to be able
to confirm this conclusion.

3. RELATED WORK

DVFS is a mechanism by which the frequency and volt-
age of a processor can be scaled during CPU operation.
Power can be approximated by P = aCV?2f, where « is
the activity factor of the CPU, C is the capacitance, V' the
voltage and f the frequency. The reduction in both the fre-
quency and voltage of a processor has a cubic relation to the
amount of power (instantaneous energy consumption) of a
CPU. DVFS [30] and clock throttling [26] are leveraged by
energy saving techniques since CPU power currently domi-

nates overall system power consumption [15].

Power awareness is a mature research area and several en-
ergy saving runtime techniques [13, 15, 16, 22, 23, 24, 34,
43] have been proposed, mostly concentrating on portions
of execution that exhibit enough slack to take advantage of
a lower CPU operating frequency. These are runtime meth-
ods and use whole system activity via performance moni-
toring counters (PMCs) or specific communication middle-
ware (e.g. MPI) calls to identify periods of slack. While
these methods may be able to adapt to I/O phases during
resilience events, they are not specifically designed to take
advantage of the explicit notification that such an event is
starting or ending. For adaptive methods, this leads to de-
lays between the event occurring and its identification. This
leads to energy inefficiency at the beginning of a checkpoint
operation and computational inefficiency at the end of a
checkpoint.

The energy consumption of systems during checkpoints
was studied in [7] for a variety of checkpointing methods.
Models have been developed [25] for coordinated, uncoor-
dinated (message logging) and parallel recovery methods.
However, none of the assessments of the energy consump-
tion of checkpoints to remote storage have considered CPU
frequency scaling during checkpoints. Therefore, while the
power profile of several systems is understood during check-
pointing, the potential energy savings of DVFS and the cor-
responding performance penalties are unknown.

The energy efficiency of local 1/O for checkpoint oper-
ations has been assessed, and a scheme for saving energy
during local I/O operations using DVFS has been proposed
in [36]. The energy efficiency and the corresponding impact
on performance shown in [36] is encouraging and confirmed
in this paper. We go one step further and also evaluate
DVFS power throttling during remote 1/O operations.

Prior work has only provided whole system energy/power
measurement, while this paper explores the energy/power
characteristics of individual system components during the
checkpoint. This allows for a more comprehensive analysis
of the system behavior during checkpointing. In addition, all
of the work on checkpoint energy to date has used sampling
equipment with a 1 second sampling period. This paper uses
a higher sampling rate, and the samples were taken from the
output side of the power supply (not between the power sup-
ply and the wall plug). The in-system measurement demon-
strates the energy/power profile without the variation that
may be caused due to different power supply efficiencies.

There has been a great effort in the community to opti-
mize rollback/recovery protocols. These optimizations take
a number of forms: from committing checkpoints to high-
bandwidth stable storage (e.g. NVRAM [21, §8]), methods
which decrease the time to write each individual checkpoint
(e.g. incremental checkpointing [3, 37, 1, 12], multi-level
checkpointing [44, 31, 27], remote checkpointing [42, 45],
and checkpoint compression [17]), and methods that de-
crease the number of checkpoints that must be taken per
unit time (e.g. replication [10]). With these advances, there
is a strong belief that that checkpoint/restart methods will
continue to be viable for future extreme-class platforms.
Consequently, saving energy during rollback/recovery op-
erations is of great interest to the research community.

In addition to coordinated checkpoint/restart, uncoordi-
nated or asynchronous checkpointing [2, 19, 20] has been
suggested as an alternative resilience mechanism. Unco-

CPU mmm

Memory
400 Motherboard s
Network s
ellaneous
SSD
350

300

250

Power for system (watts)

150
100

50

0 - P
0 100 200 300 400 500 600 700
Seconds

(a) 3.8 Ghz

Power for system (watts)

CPU mmmm

Memory
Motherboard s
Network

300 400 500 600 700
Seconds

(b) 1.4 Ghz

Figure 6: Local SSD. Component level power profile during three coordinated checkpoints of a LAMMPS
application run within a 4-node cluster using 16 processes, each process checkpoint was approximately 700MB.

CPU mmm
Memory
Motherboard s

400 Network s
I

350

300

250

200

Power for system (watts)

150

100

50

0 100 200 300 400 500 600 700
Seconds

(a) 3.8 Ghz

Power for system (watts)

T

CPU
Memory s

Motherboard e |
—

lisdeljane:

r il

300 400 500 600 700
Seconds

(b) 1.4 Ghz

Figure 7: Remote SSD using IP over InfiniBand. Component level power profile during three coordinated
checkpoints of a LAMMPS application run within a 4-node cluster using 16 processes, each process checkpoint

was approximately 7T00MB.

éPU —
Memory mmmmm
Motherboard s
Network s
ellaneous
SSD

350

300

250

200

Power for system (watts)

150

100

50

0 100 200 300 400 500 600 700
Seconds

(a) 3.8 Ghz

Power for system (wats)

300 400 500 600 700
Seconds

(b) 1.4 Ghz

Figure 8: Remote SSD using RDMA over InfiniBand. Component level power profile during three coordinated
checkpoints of a LAMMPS application run within a 4-node cluster using 16 processes, each process checkpoint

was approximately 700MB.

ordinated checkpointing allows each process to checkpoint
independently, thereby avoiding synchronization overheads
and reducing I1/O contention. Uncoordinated checkpointing
protocols do not require non-failed nodes to rollback. Meth-
ods used in this work to optimize energy consumption hold

relevance to uncoordinated checkpointing as well.

4. CONCLUSIONS AND FUTURE WORK

This work demonstrates there is potential for realizing
energy reduction during checkpointing events using DVFS —

all while having little to no impact on checkpointing perfor-
mance. More specifically, we show a maximum 50% energy
savings by throttling CPU power consumption during I/0
intensive checkpoint operations. Given that these check-
point operations can consume 20% of an applications total
runtime (see Figure 1), this leads to a possible 10% total
application energy savings from DVFS with checkpointing.
We also show that this potential is highly dependent upon
the network characteristics. For the Qlogic InfiniBand cards
in our test cluster, the opportunity to save energy is small
compared to the benefits seen committing checkpoints to lo-
cal storage due to network onload versus offload issues. The
onloaded interface used showed IPoIB, while slower than
RDMA, has the greater potential to save energy during large
I/O operations. This result is in contrast to general obser-
vations in existing literature, as this is the first of its kind
to explore DVFS techniques using IP over InfiniBand and
RDMA during checkpoint operations.

Understanding the potential energy savings during check-
pointing periods as well as the interplay between CPU per-
formance and checkpoint commit speed provides the build-
ing blocks for future power-aware checkpointing research.
In a broader scope, this work demonstrates that checkpoint
events can involve significant amounts of CPU usage de-
pending on the system configuration. We believe this find-
ing could have potential impact on the performance of re-
cently suggested staged checkpoints, in which checkpoints
are written locally then copied over the network while the
application continues to execute. If one has a system in
which the CPU is heavily involved, the copy operation will
be slower than expected and will likely interfere significantly
with application progress.

Going forward, we will explore energy savings using a
fully offloaded InfiniBand network card. We believe the en-
ergy savings possible will more closely match those found
in the local checkpoint case. We also plan on exploring the
use of more traditional parallel file systems in addition to
our local storage system presented in this paper. Addition-
ally, we are exploring energy optimizations in other parts
of rollback/recovery; for example, the restart and rework
phases. Lastly, we plan to explore different checkpoint meth-
ods, including uncoordinated checkpointing. Our hypothesis
is that uncoordinated checkpointing will benefit from these
techniques. However, due to the lack of coordination, the
performance implications are not clear.

5. REFERENCES

[1] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira.
Adaptive incremental checkpointing for massively
parallel systems. In Proceedings of the 2004
International Conference on Supercomputing, St.
Malo, France, 2004.

[2] J. Ahn. 2-step algorithm for enhancing effectiveness of
sender-based message logging. In SpringSim ’07:
Proceedings of the 2007 spring simulation
multiconference, pages 429-434, 2007.

[3] G. Bronevetsky, D. Marques, K. Pingali, S. McKee,
and R. Rugina. Compiler-enhanced incremental
checkpointing for openmp applications. In IEEFE
International Symposium on ParallelédDistributed
Processing, pages 1-12, 2009.

[4] F. Cappello. Fault tolerance in petascale/ exascale
systems: Current knowledge, challenges and research

opportunities. IJHPCA, 23(3):212-226, 2009.

[5] J. Chu and V. Kashyap. Transmission of ip over
infiniband (ipoib). Technical report, RFC 4391, April,
2006.

[6] J. T. Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future Gener.
Comput. Syst., 22(3):303-312, 2006.

[7] M. Diouri, O. Gluck, L. Lefévre, and F. Cappello.
Energy considerations in checkpointing and fault
tolerance protocols. In Dependable Systems and
Networks Workshops (DSN-W), 2012 IEEE/IFIP
42nd International Conference on, pages 1-6. IEEE,
2012.

[8] X. Dong, N. Muralimanohar, N. Jouppi,

R. Kaufmann, and Y. Xie. Leveraging 3d pcram
technologies to reduce checkpoint overhead for future
exascale systems. In Proceedings of the Conference on
High Performance Computing Networking, Storage
and Analysis, SC ’09, pages 57:1-57:12, New York,
NY, USA, 2009. ACM.

[9] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv.,
34(3):375-408, 2002.

[10] K. Ferreira, R. Riesen, P. Bridges, D. Arnold,

J. Stearley, J. H. L. ITI, R. Oldfield, K. Pedretti, and
R. Brightwell. Evaluating the viability of process
replication reliability for exascale systems. In SC, Nov.
2011.

[11] K. B. Ferreira. Keeping Checkpoint/Restart Viable for
Ezascale Systems. PhD thesis, University of New
Mexico, Department of Computer Science, Dec. 2011.

[12] K. B. Ferreira, R. Riesen, R. Brightwell, P. G.
Bridges, and D. Arnold. Libhashckpt: Hash-based
incremental checkpointing using GPUs. In Proceedings
of the 18th EuroMPI Conference, Santorini, Greece,
September 2011.

[13] R. Ge, X. Feng, W.-c. Feng, and K. W. Cameron.
CPU miser: A performance-directed, run-time system
for power-aware clusters. In International Conference
on Parallel Processing (ICPP), pages 18-18. IEEE,
2007.

[14] P. H. Hargrove and J. C. Duell. Berkeley lab
checkpoint/restart (bler) for linux clusters. In Journal
of Physics: Conference Series, volume 46, page 494.
IOP Publishing, 2006.

[15] C.-h. Hsu and W.-c. Feng. A power-aware run-time
system for high-performance computing. In
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, page 1. IEEE Computer Society,
2005.

[16] S. Huang and W. Feng. Energy-efficient cluster
computing via accurate workload characterization. In
Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, pages
68-75. IEEE Computer Society, 2009.

[17] D. Ibtesham, D. Arnold, P. G. Bridges, K. B. Ferreira,
and R. Brightwell. On the viability of compression for
reducing the overheads of checkpoint/restart-based
fault tolerance. 2012 41st International Conference on
Parallel Processing, 0:148-157, 2012.

[18] J. H. L. III, P. Pokorny, and D. DeBonis. Powerinsight

[19]

[20]

[23]

[24]

[25]

[26]

[27]

[30]

- a commodity power measurement capability. In The
Third International Workshop on Power Measurement
and Profiling in conjunction with IEEE IGCC 2013,
Arlington Va, 2013.

Q. Jiang and D. Manivannan. An optimistic
checkpointing and selective approach for consistent
global checkpoint collection in distributed systems. In
Proceedings of the 2007 IEEE International Parallel
and Distributed Processing Symposium, Mar. 2007.

D. B. Johnson and W. Zwaenepoel. Recovery in
distributed systems using asynchronous and
checkpointing. In Proceedings of the seventh annual
ACM Symposium on Principles of distributed
computing, pages 171-181, 1988.

S. Kannan, A. Gavrilovska, K. Schwan, and

D. Milojicic. Optimizing checkpoints using nvm as
virtual memory. In Proceedings of the nternational
Parallel and Distributed Processing Symposium,
IPDPS ’13, New York, NY,USA, 2013. ACM.

N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just
in time dynamic voltage scaling: Exploiting inter-node
slack to save energy in MPI programs. In Proceedings
of the 2005 ACM/IEEE conference on
Supercomputing, page 33. IEEE Computer Society,
2005.

D. Li, B. de Supinski, M. Schulz, D. Nikolopoulos, and
K. Cameron. Strategies for energy efficient resource
management of hybrid programming models. Parallel
and Distributed Systems, IEEE Transactions on,
24(1):144-157, 2013.

M. Y. Lim, V. W. Freeh, and D. K. Lowenthal.
Adaptive, transparent frequency and voltage scaling of
communication phases in MPI programs. In SC 2006
Conference, Proceedings of the ACM/IEEE, pages
14-14. IEEE, 2006.

E. Meneses, O. Sarood, and L. V. Kale. Assessing
energy efficiency of fault tolerance protocols for HPC
systems. In Computer Architecture and High
Performance Computing (SBAC-PAD), 2012 IEEE
2/4th International Symposium on, pages 35—42. IEEE,
2012.

M. Mittal and R. Valentine. Performance throttling to
reduce IC power consumption, Feb. 17 1998. US
Patent 5,719,800.

A. Moody, G. Bronevetsky, K. Mohror, and B. R.

de Supinski. Design, modeling, and evaluation of a
scalable multi-level checkpointing system. In
ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC ’10), pages 1-11, 2010.

U. D. of Energy Office of Science. The opportunities
and challenges of exascale computing, 2010.

R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam,
M. R. Varela, R. Riesen, and P. C. Roth. Modeling
the impact of checkpoints on next-generation systems.
In 24th IEEE Conference on Mass Storage Systems
and Technologies, pages 30—46, Sept. 2007.

T. Pering, T. Burd, and R. Brodersen. Dynamic
voltage scaling and the design of a low-power
microprocessor system. In Power Driven
Microarchitecture Workshop, attached to ISCA9S,
pages 96-101, 1998.

(31]

32]

(33]

34]

[41]

42]

(43]

(44]

(45]

J. Plank, K. Li, and M. Puening. Diskless
checkpointing. Parallel and Distributed Systems, IEEE
Transactions on, 9(10):972-986, oct 1998.

S. J. Plimpton. Fast parallel algorithms for
short-range molecular dynamics. Journal Computation
Physics, 117, 1995.

Rolf Riesen, Kurt Ferreira, Jon Stearley, Ron Oldfield,
James H. Laros III, Kevin Pedretti and Ron
Brightwell. Redundant Computing for Ezascale
Systems. Sandia National Laboratories, December
2010. Sandia Report SAND2010-8709.

B. Rountree, D. K. Lownenthal, B. R. de Supinski,

M. Schulz, V. W. Freeh, and T. Bletsch. Adagio:
making DVS practical for complex HPC applications.
In Proceedings of the 23rd international conference on
Supercomputing, pages 460-469. ACM, 2009.

S. R. Sachs. Tools for exascale computing: Challenges
and strategies, 2011.

T. Saito, K. Sato, H. Sato, and S. Matsuoka.
Energy-aware I/O optimization for checkpoint and
restart on a NAND flash memory system. In
Proceedings of the 3rd Workshop on Fault-tolerance for
HPC at extreme scale, pages 41-48. ACM, 2013.

J. C. Sancho, F. Petrini, G. Johnson, J. Fernandez,
and E. Frachtenberg. On the feasibility of incremental
checkpointing for scientific computing. In Proceedings
of the 2004 International Parallel and Distributed
Processing Symposium, Santa Fe, New Mexico USA,
2004.

Sandia National Laboratory. Mantevo project home
page, 2010.

B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems. In
Proceedings of the International Conference on
Dependable Systems and Networks (DSN2006), June
2006.

B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems.
Dependable and Secure Computing, IEEE
Transactions on, 7(4):337-350, 2010.

M. Seager. Operational machines: ASCI white. In 7th
Workshop on Distributed Supercomputing, Durango,
CO, 2003.

G. Stellner. Cocheck: Checkpointing and process
migration for MPI. In International Parallel
Processing Symposium, pages 526-531, Honolulu, HI,
April 1996. IEEE Computer Society.

A. Tiwari, M. Laurenzano, J. Peraza, L.. Carrington,
and A. Snavely. Green queue: Customized large-scale
clock frequency scaling. In 2012 Second International
Conference on Cloud and Green Computing (CGC),
pages 260-267. IEEE, 2012.

N. H. Vaidya. A case for two-level distributed recovery
schemes. In ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS
'95/PERFORMANCE 95, pages 64-73, New York,
NY, USA, 1995. ACM.

V. C. Zandy, B. P. Miller, and M. Livny. Process
hijacking. In 8th International Symposium on High
Performance Distributed Computing (HPDC' ’99),
pages 177-184, Redondo Beach, CA, August 1999.

