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Abstract—The current response to fault tolerance relies upon
either time or hardware redundancy in order to mask faults.
Time redundancy implies a re-execution of the failed computation
after the failure has been detected, although this can further
be optimized by the use of checkpoints these solutions still
impose a significant delay. In many mission critical systems
hardware redundancy has traditionally deployed in the form of
process replication to provide fault tolerance, avoiding delay and
maintaining tight deadlines. Both approaches have drawbacks,
re-execution requiring additional time and replication requiring
additional resources, especially energy. This forces the systems
engineer to choose between time or hardware redundancy, cloud
computing environments have largely chosen replication because
response time is often critical. In this paper we propose a new
computational model called shadow computing, which provides
goal-based adaptive resilience through the use of dynamic ex-
ecution. Using this general model we develop shadow replica-
tion which enables a parameterized tradeoff between time and
hardware redundancy to provide fault tolerance. Then we build
an analytical model to predict the expected energy savings and
provide an analysis using that model.

I. INTRODUCTION

Power consumption is widely recognized as one of the most

significant challenges facing data centers in both cloud com-

puting and high performance computing (HPC) [5], [1]. Ad-

dressing such a challenge requires building power and energy

awareness into the foundations of future computing models.

New approaches must be developed to achieve efficient energy

management across all hardware and software components of

the system. The increase in energy consumption is a direct

result of an increase in the number of computing nodes,

conversely this has an equally negative effect on the overall

system reliability. Even if the individual node failure rate is

low, the overall system failure rate quickly becomes unaccept-

able as the number of components increases. For example, a

computing system with 200,000 nodes will experience a mean

time between failure (MTBF) of less than one hour, even when

the MTBF of an individual node is 5 years [3]. Future systems

will clearly need to be fault tolerant and at the same time be

energy-aware.
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The common response to faults is to restart the execution

of the application after a failure, including those components

of its software environment that have been affected by the

occurring fault. Re-execution techniques can occur at different

points of the application, possibly involving the complete re-

execution of the task although usually a checkpoint is used to

reduce the amount of rework necessary. In either case the re-

execution will cause a delay. To avoid this delay most cloud

environments have chosen process replication [6], [8], [4] to

mask faults removing the delay of re-execution. It is clear

that while replication provides a method of achieving fault

tolerance it is not energy efficient because, by its very nature,

it costs twice as much as a single process.

The main objective of this paper is to explore a new

computational model called shadow computing by developing

an energy-aware fault-tolerance method called shadow repli-

cation. We show that this method not only provides fault

tolerance but can provide energy savings of 15-30% in existing

systems.

A. Shadow Computing

We are proposing a new computational model, called

shadow computing, which provides goal-based adaptive re-

silience using dynamic execution to meet the requirements

of complex applications in highly parallelized faulty envi-

ronments. Adaptive Resilience is the ability of the system

to dynamically harness all available resources to achieve

the highest level of QoS for a given application. Dynamic

execution is the ability to execute an application while being

able to change the QoS of that application. For example, in this

paper we exploit the ability to execute processes at variable

execution speeds using dynamic voltage and frequency scaling

(DVFS), changing the QoS of application response time. The

challenge is to maintain or exceed the applications QoS while

minimizing the system resources in spite of systems-level

changes, such as failures or the availability of additional

system resources. In order to achieve adaptive resilience, the

shadow computing model associates a set of shadows to

the main execution, which are dynamically instantiated and

adjusted in order to address the current state of the system and

maintain the application’s QoS requirements. The objective

of this paper is to balance the system resource of power

with the QoS of application response time in the presence



of system faults. To this end, we propose shadow replication

which is the ability of the system to adaptively execute either

entirely or partially the original task to overcome failures,

while minimizing system power.

B. Shadow Replication

The basic idea of shadow replication is to associate with

each process a suite of “shadow processes”, whose size de-

pends on the “criticality” and performance requirements of the

underlying application. A shadow process is an exact replica of

the main process. In order to overcome failure, the shadow is

scheduled to execute concurrently with the main process, but at

a different computing node. Furthermore, in order to minimize

energy, shadow processes initially execute at decreasingly

lower processor speeds. The successful completion of the main

process results in the immediate termination of all shadow

processes. If the main process fails, however, the primary

shadow process immediately takes over the role of the main

process and resumes computation, possibly at an increased

speed, in order to complete the task. Moreover, one among

the remaining shadow processes is then promoted to be the

primary shadow process. The main challenge in realizing the

potential of the shadow replication stems from the need to

compute the speed of execution of the main process and the

speed of execution of its associated shadows, both before and

after a failure occurs, so that the target response time is met,

while minimizing energy consumption.

Since the failure of an individual component is much lower

than the aggregate system failure, it is very likely that most

of the time the main processes complete their execution

successfully. Successful completion of a main process auto-

matically results in the immediate halting of its associated

shadow processes, providing a significant savings in energy

consumption. Furthermore, the number of shadow processes

to be instantiated in order to achieve the desired level of fault-

tolerance must be determined based on the likelihood that

more than one process fails within the execution time interval

of the main task. The completion of a main or its shadow

results in the successful execution of the underlying task.

The main contributions of this paper are threefold. First, we

present an optimization framework to explore the applicability

of the shadow replication to provide fault-tolerance in an

energy efficient manner. Second, using the optimization frame-

work, we propose and study two implementation methods

of the shadow replication model. The first method, referred

to as “stretched” replication, takes the trivial approach to

minimizing energy by reducing the speed of execution of both

the main and the replica such that the task deadline is main-

tained. Although simple to implement, stretched replication is

oblivious to the dynamics of the failure, potentially resulting in

sub-optimal energy performance. The second method, referred

to as energy efficient replication, computes energy efficient

execution speeds which maintain the expected response time

regardless of failure rates. Third, we conduct a performance

evaluation to assess the performance of shadow replication,

comparing the energy consumption of shadow replication to

that of traditional replication.

II. ENERGY OPTIMIZATION MODEL

In this section, we define a framework for evaluating shadow

replication and then use this to derive a model for representing

the expected energy consumed by the system.

A. Shadow Replication Framework

We consider a distributed computing environment executing

an application carried out by a large number of collaborative

tasks. The successful execution of the application depends

on the successful completion of all of these tasks. Therefore

the failure of a single process delays the entire application,

increasing the need for fault tolerance. In this paper we focus

on the execution of one single task knowing that one task

impacts the entire system, both in total time of execution

and energy consumption. Each task must complete a specified

amount of work, W , expressed in terms of the number of

cycles required to complete the task. Each task also has a

targeted response time, tr. Each computing node has a variable

speed, σ, given in cycles per second and bounded such that

0 ≤ σ ≤ σmax. Therefore the minimum response time for a

given task is tmin = W
σmax

.

In order to achieve our desired fault tolerance a shadow

process executes in parallel with the main process on a

different computing node. Depending on the occurrence of

failure during execution, four scenarios are possible. The first

scenario, depicted in Figure 1(a), takes place when no failure

occurs1. The second scenario, depicted in Figure 1(b), takes

place when failure of the main process occurs. Upon failure

detection, the shadow process increases its processor speed

and executes until completion of the task. The third case is if

the main process completes successfully and the shadow fails,

not depicted due to space constraints. The last case is both

processes fail, however this is very unlikely because failure of

the nodes are assumed to be independent events.

The main process executes at a single execution speed

denoted as σm. In contrast the shadow process executes at

two different speeds, a speed before failure detection, σb, and

a speed after failure detection, σa. This is depicted in Figure

2.

Based upon this framework we define some specific time

points signaling system events. The time at which the main

process completes a task, tc, is given as tc =
W
σm

. Additionally,

we define the time point tf as the time at which a failure in

the main process is detected.

B. Power Model

In the preceding section we have defined shadow repli-

cation, now we will derive an analytical model to describe

the expected energy consumption of shadow replication. We

begin by defining a power model used to describe the power

consumed by a single node. It is known that by varying

1For the purpose of this discussion, only a single shadow is considered.
The discussion can be easily extended to address multiple shadow processes
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Fig. 2. Overview of Shadow Replication

the execution speed of the computing nodes one can reduce

the dynamic CPU power consumption at least quadratically

by reducing the execution speed linearly. The dynamic CPU

power consumption of a computing node executing at speed

σ is given by the function p(σ), represented by a polynomial

of at least second degree, p(σ) = σn where n ≥ 2. In the

remainder of this paper we assume that the power function is

the cubic, P (σ) = σ3.

We also consider the amount of “static” power which is

consumed regardless of the speed of the processor. This

consumption of power is made up of both CPU leakage

and all other components consuming energy during execution

(memory, network, etc.). In this paper we define static power

to be a fixed factor of the power consumed when the CPU

when operating at full speed, referred to as ρ. The percentage

of static power in a system is thus defined as ρ
ρ+1

. For example

by letting ρ be 4.0, when the CPU is executing at maximum

speed it will consume 20% of the total power, with static power

consuming the remaining 80%.

The energy consumed by a computing node executing at

speed σ during an interval [t1, t2] is given by E(σ, [t1, t2]) =∫ t2

t=t1
p(σ)dt. Thus the energy function is defined as the

following:

E(σ, [t1, t2]) =

∫ t2

t=t1

(σ3 + ρσ3
max)dt

=(σ3 + ρσ3
max)(t2 − t1)

(1)

C. Failure Model

The failure can occur at any point during the execution of

the main or shadow task and the completed work is unre-

coverable. Because the processes are executing on different

computing nodes we assume failures are independent events.

We also assume that only a single failure can occur during

the execution of a task. If the main task fails it is therefore

implied that the shadow will complete without failure. We can

make this assumption because we know the failure of any one

node is a rare event thus the failure of any two specific nodes

is very unlikely.

We assume that two probability density functions, fm(t)
and fs(t), exists which expresses the probability of the main

or shadow task failing at time t. The model does not assume a

specific distribution however in the remainder of this paper we

use an exponential probability density function, thus fm(t) =
fs(t) = λe−λt.

D. Energy Model

We define the expected system energy for shadow repli-

cation given the power model and the failure distributions.

First consider the energy consumed by the main and shadow

processes if failure does not occur before reaching tc.

(1−

∫ tc

t=0

fm(t)dt)× (1−

∫ tc

t=0

fs(t)dt)

× (E(σm, [0, tc]) + E(σb, [0, tc]))

(2)

This first part of this equation is expressing the probabilities

that neither process fails during the execution interval of the

main task, tc. The second part is the energy consumed by both

the main and shadow processes at their respective processor

speeds over the same interval, tc.

Next, let’s consider what happens in the event that the

main process completes correctly but the shadow process fails

before reaching tc.

(1−

∫ tc

t=0

fm(t)dt)×

[E(σm, [0, tc]) +

∫ tc

t=0

E(σb, [0, t])fs(t)dt]

(3)

The first part is the probability that the main process doesn’t

fail. The second part is the amount of energy the main process

will consume if it completes the execution. The last part is the

amount of energy consumed by the shadow if it fails before

the main task is completed.

Because we are assuming only one failure there is one

remaining case to consider, that the main process fails and



the shadow takes over the execution.

(1−

∫ tr

t=0

fs(t)dt)×

∫ tc

t=0

[E(σm, [0, t]) + E(σb, [0, t]) + E(σa, [t, tr])]fm(t)dt

(4)

Again the first part of this equation is the probability that

the shadow process doesn’t fail during the response time. The

second half is the energy consumed by the main and shadow

process before it fails and then the energy consumed by the

shadow taking over the execution. Esystem is therefore the

summation of Equations 2, 3 and 4 which is the total expected

system energy consumed by shadow replication assuming only

one of the two nodes fails.

E. Optimization Problem

Using this model we formalize our objective as the follow-

ing minimization problem.

minimize Esystem(tr, λ, ρ,W, σm, σb, σa)

subject to tc ≤ tr

σmtc ≥ W

σbtc + σa(tr − tf ) ≥ W

(5)

It is assumed that node failure model properties and task

properties are unchangeable system parameters, tr, λ, ρ and

W . Therefore the optimization problem is to find the execution

speeds of the processes, σm, σb and σa. This results in one

formula and three unknowns ad in the next sections we will

make use of non-linear optimization techniques to find the

energy efficient execution speeds. Recall that tc is the time

that the main will complete the task given no failure, therefore

tc = W
σm

. The time of failure of the main process is defined

to be tf and therefore tf ≤ tc.

III. DETERMINING EXECUTION SPEEDS

One of the primary goals of cloud computing is to achieve

the maximum possible throughput. Thus, when we apply the

shadow replication model we must consider the impact failures

will have upon the speed and efficiency of the system. Shadow

replication gains its energy conserving property by making

the assumption that if a failure occurs there is some degree

of laxity as to when the work will be completed. Similarly,

re-execution techniques assume that if a failure occurs one is

willing to endure a time delay to the rollback and re-execute.

Because of this we defined targeted response time, tr, allowing

us to bound the laxity. We represent the targeted response time

as the laxity factor, α, of the minimum response time, tmin.

For example if the minimum response time is 100 seconds and

the targeted response time is 125 seconds, the laxity factor is

1.25. In contrast, a re-execution technique assumes that if a

failure occurs the system will have enough time to re-compute,

this results in α = 2.0 2

2This assumes a single failure, if multiple failures occur re-execution has
the potential to have α > 2.0.

Shadow replication and re-execution techniques both exploit

time redundancy to provide fault tolerance, the difference

is that shadow replication provides a model to balance the

tradeoff between hardware and time redundancy. If one lets

α = 1.0, this implies there is no laxity, therefore shadow

replication will be equivalent to traditional replication. As

we increase α shadow replication can begin trading hardware

redundancy for time redundancy. We propose two different

methods for applying shadow replication.

• Stretched Replication - Based upon the classic approach

of slowing down to the minimum execution speeds such

that the targeted response time is still achieved. This

results in σm = σb = σa = W/tr.

• Energy Efficient Replication - Execute at the energy

efficient speeds for both the main process and the shadow

process. This requires us to find σm, σb and σa that

minimize the expected energy.

To solve the optimization problem we begin with the

observation that the speed of the shadow after failure, σa, is

dependent upon the speed before failure, σb, and the time of

failure, tf . In this optimization we then let σa be the slowest

possible speed to finish by the targeted response time, tr.

Therefore σa is no longer constant with respect to the time

of failure. From this observation the following value of σa

can be derived.

σa = (W − σb ∗ tf )/(tr − tf ) (6)

This reduces the output of our optimization to two variables,

σm and σb.

To ensure that the shadow process has the ability to

complete all the necessary work and maintain the targeted

response time we must further constrain σb. We can derive this

constraint from Equation 6 by letting tf = tc and σa = σmax.

This assumes failure occurs at the last possible time, tc, which

would force the speed of the shadow after failure to be the

maximum possible execution speed. We can then derive the

following “work constraint”.

tc ∗ σb + (tr − tc) ∗ σmax ≥ W (7)

This constraint implies that the faster the main process exe-

cutes the more time available to recover from failure but the

more energy we consume in the non-failure case. If we execute

the main process slower, the non-failure case can conserve

more energy, however we have less time to recover from a

failure.

Using this model and the defined constraints we use Math-

matica’s non-linear optimization routines to find energy opti-

mal execution speeds, σm and σb. Without loss of generality,

we assume σmax is normalized such that σmax = 1.

IV. ANALYSIS

Many cloud providers are using traditional replication,

therefore we begin our comparison by looking at the potential

energy savings shadow replication can provide over this form

of replication. In traditional replication each process is exe-

cuted simultaneously with at least one replica process and each



process executes at the maximum speed. One would expect

that shadow replication will save energy but the question is

how much energy and under what circumstances. All execution

speeds in this section will be presented as factors of σmax.
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Fig. 3. Energy savings of energy efficient replication when compared to pure
replication as we vary static power. W = 1 hour and MTBF = 5 years.

In Figure 3 we show the energy savings for multiple values

of α, as expected the higher the α value the more energy that

can be saved, demonstrating the tradeoff between time and

hardware redundancy. We choose to plot α values from 1-2

because the amount of savings plateaus after 2, especially for

high static power percentages. We show these results of work

size of 1 hour because our sensitivity analysis of the energy

model shows work size has very little effect on the energy

consumption when the job sizes are much smaller than the

node MTBF, W << MTBF . Given that our node MTBF is

5 years all most reasonable values for work are in this category.

The amount of energy savings is also dependent upon the

static power factor, ρ. We therefore vary the percentage of

static power present in the system in Figure 3. As we increase

the static power the potential energy savings decreases and

eventually matches pure replication. The maximum savings

occurs when the static power is lowest and α is highest, at

this point we can save up to 81% of expected energy for a

given task. As static power approaches 100% the amount of

savings decreases to 0%. There is experimental data to support

a variety of static power values, some studies show that the

CPU accounts 40-50% [2] of the consumed power and more

recent studies show that number to be 15-30% [7]. Therefore

we believe we should be focusing on the acheivable savings

when static power is between 50-85%. In this range energy

efficient replication can save between 15-30% of the energy

consumed by traditional replication.

In Figure 4 we look at the energy savings achievable with

stretched replication when compared to that of traditional

replication. Similar to energy efficient replication, we observe

that as the static power increases the amount of energy savings

decreases. Additionally as static power increases the higher the

α value the less energy one can save with stretched replication.

Because while decreasing the execution speeds saves power at

a given point in time it also increases the execute time thus

causing stretched replication to consume more overall energy.

Comparing Figures 3 and 4 one can see that energy efficient

replication saves more energy for most percentages of static
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power. However, as static power reaches 100% the energy

savings of both stretched and energy efficient replication

converge to zero. This is understandable because both of these

energy-aware replication techniques make the assumption that

slowing down the execution speed will be able to reduce

energy consumption.

V. CONCLUSION

The major contribution of this paper is a new technique,

called shadow replication that provides energy-aware fault

tolerance in large-scale distributed computing environments.

We also develop a general framework for evaluating the energy

consumption of replication-based fault tolerant techniques.

Using this energy model we then compare shadow replication

to current replication techniques.

We show that shadow replication has the potential of

providing energy savings of 15-30% of the energy consumed

by traditional replication assuming a static power is 50-85%,

which is typical of most systems today. We further show

that a simple implementation of stretched replication has the

ability to also save energy but that energy efficient replication

provides additional energy savings of 5-10%.

Most importantly these results show that shadow replication

has the potential to provide fault tolerance while also providing

energy savings over existing fault tolerant techniques. Moti-

vated by these results we have began work on implementing

shadow replication. This implementation will then be used

to measure the actual energy savings achievable by such a

system.
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