
SCAR - Scattering, Concealing and Recovering data within a DHT

Bryan N. Mills† and Taieb F. Znati†,‖

†Department of Computer Science,
‖Telecommunications Program

University of Pittsburgh, Pittsburgh, PA 15260

(bmills, znati)@cs.pitt.edu

Abstract

This paper describes a secure and reliable method for
storing data in a distributed hash table (DHT) leverag-
ing the inherent properties of the DHT to provide a secure
storage substrate. The framework presented is referred to
as “Scatter, Conceal, and Recover” (SCAR). The standard
method of securing data in a DHT is to encrypt the data
using symmetrical encryption before storing it in the net-
work. SCAR provides this level of security, but also prevents
any known cryptoanalysis from being performed. It does
this by breaking the data into smaller blocks and scattering
these blocks throughout the DHT. Hence, SCAR prevents
any unauthorized user from obtaining the entire encrypted
data block. SCAR uses hash chains to determine the stor-
age locations for these blocks within the DHT. To ensure
storage availability, SCAR uses an erasure coding scheme
to provide full data recovery given only partial block recov-
ery.

This paper first presents the SCAR framework and its as-
sociated protocols and mechanisms. The paper then dis-
cusses a prototype implementation of SCAR, and presents a
simulation-based experimental study. The results show that
in order for the erasure coding techniques used by SCAR to
be effective, P2P nodes must sufficiently available.

1 Introduction

Computer users continue to accumulate increasing amounts
of data sparking the need for highly available and secure
storage. To this end, users typically store their data on lap-
tops or compact flash drives which are less resilient to disas-
ters and vulnerable to theft. The loss of data from theft fur-
ther results in a breach in privacy that can potentially cause
more damage to the owner of the data. These issues often
lead users to rely upon a central service provider to store,
access, and secure their data. Any solution that is central-
ized, however, requires the users to implicitly trust the ser-
vice providers. This illustrates the need for a solution that

is fully distributed. Furthermore, the solution must achieve
high availability, accessibility and privacy.

Peer-to-peer distributed hash tables (DHTs) provide an
attractive solution to this problem. DHTs provide a dis-
tributed storage system that is decentralized yet provides
a logically centralized hash table abstraction [14, 9, 12].
However to satisfy the storage requirements, DHTs must
have the ability to securely store private data. Applications
ranging from medical record storage to family photo shar-
ing expose the need for such a solution.

Research on DHT security has focused on the mainte-
nance and stability of the DHT structure itself and has not
adequately addressed the issue of data privacy within the
network [1, 13, 6]. Systems requiring data privacy have re-
lied upon data encryption or centralized services. Another
solution relies on a centralized service that acts as the gate-
keeper granting or denying access. This centralized service
creates a single point of attack thereby compromising both
the privacy and availability constraints.

In this paper we present SCAR, a fully distributed DHT
based scheme for providing highly available privacy pre-
serving storage. The main tenet of SCAR is based on
the observation that it is harder to break encrypted infor-
mation if the attacker can not obtain the encrypted data.
SCAR achieves this by using a simple, yet powerful con-
cept of concealment through random distribution. The goal
is to break data into pieces and randomly distribute the data
throughout the network so that only authorized users can
locate the pieces and recover the original data.

SCAR faces several crucial design challenges. First, how
can one randomly distribute data so that the attacker can
not find it, yet make the data easily accessible to authorized
users? Can such a solution be used within the context of a
DHT? Can the system ensure high availability in the face
of node failures? Finally, how can a system provide a sim-
ple interface that enables the user to scatter, conceal, and
recover data?

In order to randomly distribute data, SCAR makes use
of a password seeded hash function. This would produce a
single hash location that is impractical to obtain without the

41st Annual Simulation Symposium

1080-241X	/08 $25.00 © 2008 IEEE
DOI 10.1109/ANSS-41.2008.38

35

41st Annual Simulation Symposium

1080-241X	/08 $25.00 © 2008 IEEE
DOI 10.1109/ANSS-41.2008.38

35

41st Annual Simulation Symposium

1080-241X	/08 $25.00 © 2008 IEEE
DOI 10.1109/ANSS-41.2008.38

35

41st Annual Simulation Symposium

1080-241X	/08 $25.00 © 2008 IEEE
DOI 10.1109/ANSS-41.2008.38

35

41st Annual Simulation Symposium

1080-241X	/08 $25.00 © 2008 IEEE
DOI 10.1109/ANSS-41.2008.38

35

password. This approach leads to one secret storage loca-
tion; thus hiding the data in one location. However, this is
not as secure as breaking the data into many pieces and hid-
ing those pieces in multiple locations. To produce multiple
locations using the scheme above, one would have multiple
passwords, one for each storage location. It is not practical
to require a user to remember multiple passwords. There-
fore,to generate multiple secret storage locations, SCAR
uses a given hash value and repeatedly hashes that value
along with the same password to generate multiple random
locations. This prevents the need for multiple passwords
yet produces multiple storage locations that are computa-
tionally infeasible and yet easily determined for authorized
users. This process is based upon the concept of hash chain-
ing [4]. Because SCAR uses hash functions to produce stor-
age locations this is easily implemented within a DHT.

In the rest of this paper we demonstrate the viability of
this approach by building a prototype implementation and
we present the implementation details in Section 2. Data
availablity model is described in Section 3. Then using the
prototype implementation experimental results are explored
in Section 4. In Section 5 this work is put in context to other
related work. We then conclude in Section 6.

2 Design

SCAR assumes a structured peer-to-peer network, and uses
the associated DHT to provide distributed data storage.
Given this storage substrate SCAR builds a framework for
providing secure, fully distributed and highly available stor-
age of private data. The framework presented is not depen-
dent upon any particular DHT implementation, but assumes
that a put/get interface is available. With these assumptions,
SCAR was then designed to meet the following goals:

• Provide a higher level of security than that provided by
data encryption.

• Provide data availability that is at least as good as that
provided by the underlying DHT implementation.

• Maintain independence with respect to the underlying
distributed storage system.

• Provide a simple interface for users and application de-
velopers.

The process of storing data starts with the user providing
three pieces of information: the data to be stored, a name for
that data, and a password that will be used to grant access
to that data. Given these pieces of information SCAR then
stores the data ensuring that the availability and security re-
quirements are met. The storage process can be broken into
3 logical steps: pre-processing the data, splitting the data
into pieces, and storing the pieces. These steps are repre-
sented in Figure ??.

In order for SCAR to retrieve the stored data the user
must provide the name of the data and a password. The
process of retrieving data has 3 steps: finding the pieces, re-
assembling the data, and verifying the data. This process is

depicted in Figure ??. The rest of this section will describe
the details of each step in the storage and retrieval process.

2.1 Data Pre-processing

As with most storage systems, there are no assumptions
made about the data being stored. The first step in SCAR
is to pre-process the data making it ready for storage. This
pre-processing is used to ensure that the data is ready for
storage and provide mechanisms for data verification after
retrieving the data from storage.

First, the pre-processing step must ensure the data is
large enough. One of SCAR’s design principles is to use
randomness as a means to make it hard for an attacker to re-
assemble the original data. SCAR divides the data it pieces;
the size of these pieces is proportional to the size of the in-
put data. Therefore, small input data size results in small
pieces. These small sized pieces make it much easier for
an attacker to reassemble the stored data. Furthermore, the
data being split has to be at least as larger as the number
of pieces to be generated. For example, the splitting pro-
cess cannot generate 20 pieces given only 15 bytes of data.
Therefore, this calls for the need to “augment” the original
data with padding.

The security of SCAR is based upon the requirement that
data is scattered such that an attacker would need to locate
all required pieces to retrieve the data. This means that
SCAR can not simply pad the data with null data but in-
stead must add padding such that all the data, including the
padding, is required for data retrieval. To obtain this prop-
erty, SCAR uses secret sharing techniques to generate the
padding.

Let the required data size be S, this value is depen-
dent upon the implementation but it must be greater than
or equal to the number of pieces to be generated. To pro-
duce padding the lowest multiple of the original data size
that results in a number greater than or equal the required
data size is chosen, let this value be m. The value of m is
determined by dividing the original data size by the required
data size then taking the ceiling value of that result. Then
m − 1 random data blocks are generated. To produce the
mth data block all the random data blocks and the original
data block are combined using XOR. This produces m data
blocks that when combined together using XOR produces
the original data block. This process will always result in a
data size greater than or equal to the required data size but
less than 2 times the required data size.

The second pre-processing step constructs a fixed size
header. This header serves two functions: first it provides
the retrieving process the ability to restore data that has been
padded. This is done by adding the padding multiple, m, to
the raw data header. The header includes a hash digest of
the original raw data being stored, this allows the retrieving
process to verify the recovered data.

The last pre-processing step is to encrypt the entire pre-
processed data using symmetrical encryption. This en-
cryption provides additional security preventing an attacker
from viewing the header information and guaranteeing that

3636363636

SCAR is just as secure as the chosen encryption mecha-
nism.

2.2 Splitting Data

Once the data is ready for storage, SCAR must split the data
into multiple pieces. The obvious way to do this is to sim-
ply divide the data into equally sized blocks such that all
the pieces are required for data recovery. Because storage
nodes join and then leave the network SCAR can not guar-
antee the availability of all the data pieces. SCAR addresses
this problem by encoding the data during the splitting pro-
cess. SCAR implements Rabin’s Information Dispersal Al-
gorithm (IDA) [8], This process not only splits data into
multiple pieces but also encodes the data to increase avail-
ability.

The main concept behind IDA is to split a given data
object into f different pieces such that only k pieces are re-
quired for retrieving the original data, where k ≤ f . To
achieve this property, IDA uses principles of matrix mul-
tiplication to build a transform function from k original
pieces of data into f encoded pieces of data. Then given
any k pieces of the encoded data, it is possible to regenerate
the original data using the inverse of the transform func-
tion. The inverse of the transform is guaranteed to exist
because the transform is built using a linearly independent
matrix thus the inverse of that transform exists. Algorithms
for producing linearly independent matrixes can be found in
[7].

Values of f and k are dependent upon the availability
requirements for the data being encoded. Once values of
f and k are chosen, SCAR divides the data into k pieces
using a simple split function then executes IDA generating
f encoded pieces. Each generated piece is unique and of
the same size, these pieces are referred to as storage units.

Information dispersal algorithm (IDA) was chosen be-
cause of its ability to produce f distinct pieces of data from
a data block of any size. In contrast, other erasure codes
such as Reed-Solomon only produce a small set of frag-
ments for a given block size. Other codes, such as Tornado,
are focused on reducing computation speed and do not guar-
antee distinct pieces. Because IDA produces distinct pieces
SCAR can guarantee that if any k pieces are retrieved the
original data can be re-constructed.

2.2.1 Storage Unit Header The user retrieving data is
only required to provide SCAR with the data name and the
password. SCAR must know how to reassemble the data
given this information. In section 2.3 it is shown how the
storage units can be found in the DHT, but for the data to be
reassembled the values of f and k need to be known. This
requires that each storage unit have additional header infor-
mation. Adding headers to each storage unit enabled the re-
trieval process to determine f and k values after retrieving a
single storage unit. In addition to providing required infor-
mation, the header also enables verification of each storage
unit before reassembly and the detection of hash collisions.

The header contains three values, the f and k values, a
unit signature, and a checksum. The f and k values are just

added to the header. The unit signature is a hash value of the
previous and next storage location, the unit sequence num-
ber, and the user’s password. By including the password in
the unit signature, it is assured that an attacker could not de-
termine the encoded information. The unit signature is used
by the retrieval process to verify that the unit is part of the
data being retrieved, detailed in section 2.4. A checksum is
computed for the entire storage unit, including the f and k
values and the unit signature previously computed.

2.3 Scattering Storage Units

SCAR relies upon a hash chain seeded with the user’s pass-
word to determine where the storage units will be placed
within the DHT. Let the storage locations be called L0, L1,
L2, ..., Ln. Where L1 is the location of the first unit, L2

is the location of the second unit, and Ln is the location
of nth unit. The first location in the sequence, L0, is used
as a base for the hash generation and does not represent an
actual storage location. This process is depicted in Figure
1.

L0 = hash(password, data name)

L1 = hash(L0, password, data name)

L2 = hash(L1, password, data name)
...

Ln = hash(Ln−1, password, data name)

Figure 1: Storage Location Generation. Each argument to hash is
to be concatenated together.

The chain is seeded with two pieces of information: a
name identifying the data name and a secret password. This
information is hashed, and the resulting value is then hashed
again with the same seeding information (data name and
password), to produce the first storage location (see Figure
1). The result of the previous hash, combined with the orig-
inal seeding value is then used to generate the next storage
location. This hash chaining is continued until all the units
have been assigned a storage location. Once storage loca-
tions are determined, put requests can be issued to the DHT
for each storage unit. This process can be done in parallel,
and therefore the storage time bounded by the slowest time
to insert one of the storage units.

A closer look at the above process reveals that the loca-
tion procedure may result in storage location collisions. In
order to handle collisions, a request is made to determine if
another unit has been previously stored at that location be-
fore inserting the storage unit. If so, the algorithm skips that
value in the hash chain and attempts to use the next value in
the chain. This process is continued until a vacant location
in the DHT is found. During the recovery process, the stor-
age unit header is used to determine when such a collision
has occurred. As a result, the value of n depicted in Figure
1, is dependent upon the number of pieces generated, f , but
is not directly correlated. This is because hash collisions

3737373737

may require additional storage locations.
If a collision occurs while trying to store the first storage

bin, SCAR checks to make sure that the unit signature does
does not match that of the block currently stored at that lo-
cation. If it does, then the recovery process would not be
able to detect the error and might retrieve the wrong data.
In this case, an error must returned asking the user to select
a different data name or password. If the unit signatures are
different then the storage process can skip to the next stor-
age location and being the data storage at that location. To
limit the search space for the retrieval process if at any point
f storage locations are skipped then storage process returns
an error, see section 2.4 for details.

2.4 Data Retrieval

To retrieve data in SCAR, the user must provide the name
of the requested data and a password. SCAR then gener-
ates the storage locations for each storage unit. SCAR can
then issue get requests against the DHT to start retrieving
the storage units. Each retrieved storage unit is verified us-
ing both the checksum and the unit signature. Once k units
have been retrieved and verified the data is reconstructed
using IDA. The retrieved data is then verified and any extra
padding is removed as described in section 2.1. The output
from this process will be the original stored data.

2.4.1 Retrieving Storage Units Once a storage unit
is retrieved it must verified that the retrieved unit is not
corrupted and that unit is part of the requested data. The
checksum inside the storage unit header is first verified, if
this fails then the unit has been corrupted and therefore the
unit stored at that location is assumed to be missing. By
verifying the unit signature the retrieval process can verify
that the unit is part of the requested data.

For the retrieval process to verify the unit signature the
next and previous storage locations, the user’s password,
and the unit sequence must be known. The next and previ-
ous storage locations and user’s passwordd are fixed values
with respect to this unit and therefore are known. However,
the unit sequence can be a range of values. The range of
unit sequence numbers that need to checked is equal to the
number DHT locations skipped, if one location is skipped
then there are 2 possible piece numbers, if two are skipped
there are 3 possibilities, etc. For example assume the unit
stored at the first storage location can not be verified. While
verifying the unit stored in the second storage location there
are two possible values for the unit sequence, 1 or 2. This
is because the first unit might not have verified because of
data corruption, making the second unit’s sequence number
2. However, the first unit might not have verified because
the storage process detected a hash collision and skipped
that location, making the second unit’s sequence number of
1.

Once any storage unit has been verified the retrieval pro-
cess the f and k values are known. The retrieval process
proceeds to retrieve and verify k out of the f storage units.
There are two possible failures that can occur while recov-
ering any of the f storage units.

The first failure that can occur if the checksum or unit
signature fails to verify. This mismatch would indicate that
there was data corruption within the DHT or a hash colli-
sion occurred during the storage process. In either case the
retrieval process would skip that location and proceed to the
next storage location specified by the hash chain. This is the
the congruent with what the storage process does if a hash
collision occurs. If at any point a maxf blocks are skipped
the process assumes failure.

The second failure occurs if the storage location contains
no data. This occurs when a node fails, removing all of it’s
data from the network thereby creating a void in the DHT.
When this occurs there are two possibilities: the storage bin
that used to be stored at this now vacant spot was a stor-
age unit for the requested data; or the storage unit that was
stored there was for different data, meaning a collision oc-
curred. The retrieving process is able to check for this be-
cause the unit sequence number is part of the unit signature.

2.4.2 Reconstructing the Original Data The re-
trieval process needs to find k storage units in order to re-
trieve the original data. Once these units are recovered, they
are assembled and decoded using the information dispersal
algorithm (IDA). The decoding matrix is known because the
values of f and k are known. After IDA decoding occurs,
the data can be decrypted using the symmetrical encryption
performed during the storage process. The data header is
then used to verify the entire data object. Once verified any
padding is removed, as described in section 2.1. The origi-
nal data has now been retrieved and is provided to the user.

3 Data Availability Model

Availability of data within the DHT is expressed as a proba-
bility that the data stored in the DHT will be available when
requested. This is dependent upon the availability of at least
k out of the f nodes storing the data. This model assumes
that the availability of any node is independent of the avail-
ability of any other node. Given the average network node
availability (Ā) the data availability in SCAR is described
by the following formula [11]:

Pa(k, f, Ā) =

f∑
i=k

(
f

i

)
(Ā)i(1− Ā)f−i

Looking at Figure 2, it is apparent that if the node’s avail-
ability is less than 80%, then replication exhibits higher
data availability than erasure coding based schemes. This
is an important observation because it provides operational
bounds upon the SCAR framework. The reason this bound
exists is that erasure coding relies upon a quorum of nodes
to be available, and as the nodes in the network become
unavailable, achieving the necessary quorum becomes less
likely. The advantages of erasure coding, however, is that
it uses less storage and increases security; but if the node’s
availability is low, its effectiveness in enhancing data avail-
ability is significantly decreased.

3838383838

Figure 2: Comparison between replication and SCAR as the net-
work nodes become increasingly unavailable.

4 Experiments and Implementation

SCAR was implemented as an application outside the DHT,
and therefore is not bound to any specific DHT implemen-
tation. To accomplish this, there is an interface layer be-
tween the generation of the storage bins and the actual data
accesses. Currently there is only two storage interfaces de-
fined. One makes use of OpenDHT’s web services API [10]
and the other is a file system interface used for development.

SCAR was implemented using the Python programming
language, and contains a command line interface. This
command line utility allows the user to specify a file to
store in the DHT. Here, the user is prompted for a password,
which is used to store the data in the DHT. In addition, val-
ues for f and k can be specified on the command line, the
default values are k = 8 and f = 11. The same command
line can also be used to retrieve data from the DHT by spec-
ifying a filename, again prompting for a password.

4.1 Simulator

The simulator was built to allow stochastic evaluation of
the SCAR system. It simulates the behavior of a DHT then
executes SCAR’s storage and retrieval processes. The DHT
is simulated by creating nodes that are assigned a unique
key using a randomly generated hash value. This emulates
the way nodes are created in a DHT. A data object can then
be stored within the DHT, the data object is also assigned
a unique key using a hash function and stored on the node
assigned the closest numerically matching key.

To simulate nodes ON and OFF behavior, nodes alternate
between exiting and entering the network based on their
node type. This ON or OFF probability is based upon a
specified distribution, or can be set to fixed probability. At
each simulation step, all nodes are given the opportunity to
change their current state. Each node in the simulator is
created as an independent object thus allowing the speci-
fication of the node properties independently of the other
nodes. This can be used to simulate a network composed of
different types of nodes.

Nodes are then characterized based on the parameters of
an ON/OFF process, namely the expected duration of the
ON and OFF periods. We consider three different classes of
users which correspond to three types of nodes: infrastruc-

ture, power, and peeper nodes.
Infrastructure nodes represent the core component of a

peer-to-peer network. As such, these nodes are expected
to remain connected to the network, barring physical fail-
ure. Power nodes represent a class of nodes which are
not dedicated resources, but remain connected to the net-
work for extended periods of time. Peepers, on the other
hand, are short-lived visitors of the network who are task
driven. Upon acquiring the needed resource or service,
peeper nodes leave the network.

Simulating the behavior of SCAR is accomplished by
splitting data into f pieces such that k are required and then
storing those within the DHT. The storage locations are de-
termined using hash chains as described in section 2.3. At
any simulation step, a query can be executed for a specific
data object given the current network state. Any values of f
and k can be simulated including replication, done by set-
ting f = 2 and k = 1. During the simulations several
standard network configurations were used, these are listed
in Table 1.

Infrastructure Power Users Peepers Ā

100% 0% 0% 98.39%

80% 10% 10% 86.78%

70% 20% 10% 83.44%

50% 30% 20% 71.66%

40% 30% 30% 63.36%

20% 30% 50% 46.70%

10% 20% 70% 33.41%

Table 1: Simulated values of Ā for network configurations.

4.2 Data Availability

The goal of this experiment was to validate the theoretical
models discussed in section 3. Using the simulator, we cre-
ated a network with homogeneous nodes, all with the same
fixed node availability. Data was inserted into the network
using various values of f , k, n, and Ā. We compared the
simulation results with the results obtained using the ana-
lytical models. As can be seen in Figures 3 and 4, the simu-
lation results show that the analytical models offer accurate
estimates of SCAR’s behavior.

In a few cases the experimentation resulted in two pieces
of data being stored on one node, causing the data avail-
ability to be less than that predicted by the model. In the
next experiment, we look at the likelihood that a single node
might be assigned two pieces of data from the original data
object.

4.3 Node Collision

SCAR’s availability model assumes that each piece of data
is distributed to a unique node location. This property is re-
quired because the metric assumes that data piece failures
are independent from one another; however, if two or more

3939393939

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Data availablity for f=10; k=7

Average Node Unavailablity (U)

D
at

a
A

va
ila

bi
lit

y

Experimental Data
Availability Model

Figure 3: Comparing Model and Experimental Results varying Ū
using f = 10, k = 7, n = 1000. Each experimental point repre-
sents mean recovery rate of 1000 samples.

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Data availablity for f=7; k=5

Average Node Unavailablity (U)

D
at

a
A

va
ila

bi
lit

y

Experimental Data
Availability Model

Figure 4: Comparing Model and Experimental Results varying Ū
using f = 7, k = 10, n = 1000. Each experimental point repre-
sents mean recovery rate of 1000 samples.

pieces of data were stored on the same node, those failures
would no longer be independent. To confirm our assump-
tion, we simulated the storage of a 1000 data objects using
SCAR and monitored the network for node collisions within
the same data object. The obvious observation is that as the
total number of nodes in the network increases, the proba-
bility of node collision decreases. Inversely, as f increases
the probability of a node collision increases. This can be
observed in Figure 5.

As can be observed in Figure 6, the probability of node
collisions are very low when using a reasonably large net-
work. In Figure 6 the value of f was fixed to 11 and the total
number of nodes was varied to determine how many colli-
sions resulted. The simulation was run multiple times for all
1000 data objects using randomly generated network nodes
of the specified size. During each experiment the likelihood
of a node collision was calculated by looking at the number
of actual collisions divided by the total number of pieces
being stored in the network (1000 ∗ 11). To characterize the
worst case behavior, Figure 6 shows the maximum likeli-
hood of collisions observed for a network of the specified
size.

Figure 5: Average number of collisions varying number of frag-
ments; n = 1000.

100 1000 10000

Number of Nodes

P
ro

ba
bi

lit
y

of
 N

od
e

C
ol

lis
io

n

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Figure 6: Maximum number of collisions to non-collisions vary-
ing number of nodes; f = 11.

4.4 Network Sensitivity Analysis

In this section, we focus on SCAR’s sensitivity to network
changes. In particular, we focus on the data availability as
the nodes in the network become less available. As men-
tioned in section 3, erasure coding is only effective when
the nodes themselves are fairly reliable (∼ 80%). To vali-
date this assumption, we first define probabilities of nodes
leaving and rejoining the network for various node types.
The simulation was executed using an exponential distribu-
tion with mean probabilities set to the values listed in Table
2. The column labeled average node availability is the mea-
sured average percentage of time the nodes of that type were
available across the lifetime of the network.

The purpose of this experiment is to determine how
SCAR performs as the network becomes unstable. To sim-
ulate this behavior, we start with a network of only Infras-
tructure nodes and begin adding Peepers to the network,
thus decreasing the average available of the DHT nodes.
As can be observed in Figure 7, when the average node
availability is above 80%, SCAR’s data availability is com-
parable with replication; however when availability is be-
low 80%, SCAR’s data availability becomes un-acceptable.
This is identical to the prediction made by our analytical
models, and confirms that SCAR is only effective when the

4040404040

network is made of mostly available nodes.

type poff pon node avail.

Infrastructure 1.0% 95.0% 98.0%

Power Users 20.0% 40.0% 65.0%

Peepers 80.0% 10.0% 15.0%

Table 2: Network Sensitivity Analysis Settings.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data availablity as the network becomes un−available.

Average Node Unavailablity (U)

D
at

a
A

va
ila

bi
lit

y

Replication (2−1)
No replication
10−7
11−8

Figure 7: SCAR Simulation as network becomes unstable. Each
data point represents the mean data availability of 10 objects over
200 simulation runs.

4.5 Recovery Likelihood and Availability

During the analysis and experiments, we have seen that
SCAR does not perform well when the nodes in the net-
work are unreliable. Observe that availability is dependent
upon the user. When the user requests the data it must be
available, but that doesn’t mean the data has to be avail-
able at all time points. This reasoning led us to investigate
the way SCAR performs if data only needs to be available
a fraction of the time. Instead of verifying data availabil-
ity at each time-point, we modified our simulation to check
only a percentage of the time. In Figure 8, it can be seen
that varying the probability of data checking has no effect
upon the data availability. This is explainable because the
overall availability would not be effected by the probability
of accessing data. Therefore, to solve the data availability
problem, one must make the data available at all times in
order to increase the data availability for particular user.

5 Related Work

Research on DHT security has investigated both the main-
tenance of the DHT structure itself and the data storage sys-
tem. A survey of the various routing attacks and other DHT
infrastructure security concerns can be found in [1, 13]. At
the storage level there are two security concerns, privacy of
the user and the privacy of the users data. Privacy of the
user is concerned with anonymity for both in what a user is
viewing and posting within the network, this is addressed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02
Data availablity as the probabilty of checking for data varies.

Probability of Checking

D
at

a
A

va
ila

bi
lit

y

No replication
Replication (2−1)
10−7
11−8

Figure 8: Data Availability as probability of checking for data
varies. Network configuration (80% Infrastructure; 10% Power
Users, 10% Peepers). Each data point represents the mean data
availability for 10 data objects over 200 simulation runs.

in systems such as Freenet [2]. Data privacy and security
is concerned with access control and authorization of the
data being stored within the DHT, which is the problem ad-
dressed in this paper. The typical solution to data privacy is
to encrypt the data before inserting it into the DHT. While
this does secure the data it is not adequate because data en-
cryption could be broken. Other solutions rely upon a cen-
tralized authority to grant access to the stored data there are
also systems that use multiple authorities [3]. SCAR ad-
dresses this problem in a unique way that is completely dis-
tributed and does not rely upon a cryptosystem or central
authorities to provide data privacy.

Research is distributed storage has also addressed data
privacy concerns. The work in POTSHARDS [15] makes
use of secret sharing techniques to divide data but unlike
SCAR the locations of these pieces are known, or approx-
imately known. Also related is SafeStore [5] which uses
erasure coding techniques to distribute data among multiple
storage providers in order to increase reliability. SafeStore
assumes that authentication and data privacy is handled by
the storage providers and focused on increasing data avail-
ability.

6 Conclusion

This paper presented a method for using peer-to-peer net-
works to securely and reliably store data using a novel com-
bination of erasure coding and hash chaining. This paper
also provides implementation details based upon the proto-
type that was developed showing the feasibility of SCAR.
Additionaly, a model was developed for describing SCAR’s
availability characteristics. Analysis of this model showed
that the erasure coding techniques used by SCAR were only
effective when the peer node’s availability is sufficiently
high, > 80%. This was a disappointment, however, this
paper has provided the framework for evaluating new avail-
ability schemes.

Peer-to-peer technologies promise to be a solution to the
distributed storage problem, but current research has failed

4141414141

to fully address the problem of distributed data security.
This paper presents a novel and elegant solution that pro-
vides both data security and availability using peer-to-peer
networks. The framework presented combines hash chain-
ing, erasure coding, and distributed hash tables to create a
complete solution to a complex problem. A fully working
implementation was developed thereby validating the proto-
cols and design discussed. In addition, this paper provides
an analysis of the proposed framework.

References

[1] B. Awerbuch and C. Scheideler. Towards a scalable
and robust dht. In SPAA ’06: Proceedings of the eigh-
teenth annual ACM symposium on Parallelism in algo-
rithms and architectures, pages 318–327, New York,
NY, USA, 2006. ACM Press.

[2] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information stor-
age and retrieval system. Lecture Notes in Computer
Science, 2009, 2001.

[3] B. Crispo, S. Sivasubramanian, P. Mazzoleni, and
E. Bertino. P-hera: Scalable fine-grained access con-
trol for p2p infrastructures. icpads, 01:585–591, 2005.

[4] N. M. Haller. The s/key one-time password system. In
In Proceedings of the Internet Society Symposium on
Network and Distributed Systems, 1994.

[5] R. Kotla, M. Dahlin, and L. Alvisi. Safestore: A
durable and practical storage system. In USENIX An-
nual Technical Conference ¡B¿Best paper award¡/B¿,
June 2007.

[6] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An
architecture for global-scale persistent storage. In Pro-
ceedings of ACM ASPLOS. ACM, November 2000.

[7] F. MacWilliams and N. Sloane. The Theory of Error-
Correcting Codes. North-Holland Publishing Com-
pany, 1977.

[8] M. O. Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance. J. ACM,
36(2):335–348, 1989.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network.
In SIGCOMM ’01, pages 161–172, New York, NY,
USA, 2001. ACM Press.

[10] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Rat-
nasamy, S. Shenker, I. Stoica, and H. Yu. Opendht:
a public dht service and its uses. In SIGCOMM ’05,
pages 73–84, New York, NY, USA, 2005. ACM Press.

[11] R. Rodrigues and B. Liskov. High availability in
dhts: Erasure coding vs. replication. In IPTPS ’05:
4th International Workshop on Peer-To-Peer Systems.,
February 2005.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale
peer-to-peer systems. Lecture Notes in Computer Sci-
ence, 2218, 2001.

[13] E. Sit and R. Morris. Security considerations for peer-
to-peer distributed hash table. In IPTPS ’02, 2002.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM
’01, pages 149–160, New York, NY, USA, 2001. ACM
Press.

[15] M. W. Storer, K. M. Greenan, E. L. Miller, and
K. Voruganti. Secure, archival storage with pot-
shards. In FAST’07: Proceedings of the 5th conference
on USENIX Conference on File and Storage Tech-
nologies, pages 11–11, Berkeley, CA, USA, 2007.
USENIX Association.

4242424242

