An Actor-Based, Application-Aware Access Control
Evaluation Framework

William C. Garrison IlI
Dept. of Computer Science
University of Pittsburgh

bill@cs.pitt.edu

ABSTRACT

To date, most work regarding the formal analysis of access
control schemes has focused on quantifying and comparing
the expressive power of a set of schemes. Although expressive
power is important, it is a property that exists in an absolute
sense, detached from the application context within which
an access control scheme will ultimately be deployed. By
contrast, we formalize the access control suitability analy-
sis problem, which seeks to evaluate the degree to which a
set of candidate access control schemes can meet the needs
of an application-specific workload. This process involves
both reductions to assess whether a scheme is capable of
implementing a workload (qualitative analysis), as well as
cost analysis using ordered measures to quantify the over-
heads of using each candidate scheme to service the workload
(quantitative analysis). We formalize the two-facet suitability
analysis problem, which formally describes this task. We then
develop a mathematical framework for this type of analysis,
and evaluate this framework both formally, by quantifying
its efficiency and accuracy properties, and practically, by
exploring an academic program committee workload.

Categories and Subject Descriptors

D.4.6 [Operating Systems]|: Security and Protection—Ac-
cess controls; K.6.5 [Management of Computing and
Information Systems]|: Security and Protection

Keywords

Access control; Suitability analysis; Actor-based simulation

1. INTRODUCTION

Access control is one of the most fundamental aspects of
computer security, and has been the subject of much formal
study. However, existing work on the formal analysis of
access control systems has focused largely on comparing
the relative expressive power of two access control systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SACMAT ’14, June 25-27 2014, London, Ontario, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2939-2/14/06 $15.00.

http://dx.doi.org/10.1145/2613087.2613099

Adam J. Lee
Dept. of Computer Science
University of Pittsburgh

adamlee@cs.pitt.edu

Timothy L. Hinrichs
VMware, Inc.
thinrichs@vmware.com

(e.g., |LL3LTOLTOL21L[122241|25]). Although expressive power is
a meaningful basis for comparing access control systems, it
exists only as a comparison made in absolute terms. That
is, the knowledge that a system) is more expressive than
another system Z provides no assurance that) is the best
access control system for use within the context of a particular
real-world application. It could be the case, for instance,
that Z is expressive enough for a particular application and
also has lower administrative overheads than) would in
the same situation. As was noted in a recent NIST report,
access control is not an area with “one size fits all” solutions
and, as such, systems should be evaluated and compared
relative to application-specific metrics |13]. This position is
supported by the recent introduction of application-specific
access control analysis techniques [9,[11].

Considering the wide availability of many diverse access
control systems and the relative difficulty of designing and
building new secure systems from the ground up, an inter-
esting topic for exploration is that of suitability analysis.
Informally, this problem can be stated as follows: Given a
description of an application’s access control needs and a col-
lection of candidate access control systems, which system best
meets the needs of the application? Instances of this question
can arise in many different scenarios, encompassing both
the deployment of new applications and the reexamination
of existing applications as assumptions and requirements
evolve. A variant of this question was tackled by parameter-
ized expressiveness [11], which evaluates an access control
system’s qualitative suitability to an application by assessing
the strength of the security guarantees that it can satisfy
while operating within that application. However, this type
of suitability analysis provides no quantitative guidance in
choosing the best access control solution for an applications.

In this paper, we identify and formalize the two-facet access
control suitability problem, which considers both qualitative
and quantitative metrics. We then propose techniques to fa-
cilitate this type of suitability analysis. As in parameterized
expressiveness |11], we first formalize the notion of an access
control workload to abstract the application’s access control
needs and the expected uses of these functionalities. Analysis
then consists of two orthogonal tasks: (i) demonstrating that
each candidate access control system can safely implement
the workload, and (ii) quantifying the costs associated with
using each candidate system. Toward carrying out such
an evaluation, we develop techniques for representatively
sampling from the workload’s functionality, guidelines for
formally specifying access control cost metrics, and a simu-

lation framework for carrying out Monte Carlo-based cost

analysis. In doing so, we make the following contributions:

e We formalize the two-facet access control suitability analy-
sis problem, and articulate a set of requirements that should
be satisfied by two-phase suitability analysis frameworks.

e We develop the first two-phase suitability analysis frame-
work. We first establish whether candidate systems are
expressive enough to safely implement the functionality of
the workload via reduction. We then utilize a constrained,
actor-based workload invocation structure to sample work-
load usage patterns and drive a simulation-based cost
analysis that explores the expected costs of deployment.

e We evaluate our framework formally by proving that our
simulation procedure is fixed-parameter tractable, and
practically via a case study demonstrating how our frame-
work can be effectively used to gain insight into a realistic
scenario based on an academic conference management
system.

Outline. In Section [2| we describe prior work in both access
control expressiveness and simulation techniques, and sum-
marize the tools that we use for the first phase of suitability
analysis. In Section 3] we formalize the suitability analysis
problem and articulate a set of requirements for suitability
analysis frameworks. Sections [f] and [5] describe our approach
to the second phase of suitability analysis, cost evaluation.
We describe a case study investigating the use of our frame-
work in Section [} We then discuss the properties upheld
by our framework and areas of future work (Section E[) and
conclude (Section [g).

2. PRIOR WORK AND EXPRESSIVENESS

In this section, we describe related work in expressiveness
analysis, including background details on the most relevant
expressiveness framework, parameterized expressiveness [11].
We then discuss the shortcomings of even this expressiveness
framework to motivate our approach. Finally, we discuss
prior work on simulation techniques that have influenced our
own cost analysis procedures.

2.1 Prior Work: Expressiveness

The formal study of access control systems began with a
seminal paper by Harrison, Ruzzo, and Ullman [10|. This
paper formalized a general access control model and proved
that determining whether a particular access right could
ever be granted to a specific subject—the so-called safety
problem—was undecidable. Lipton and Snyder showed that
in a more restricted system, safety was not only decidable, but
decidable in linear time [19]. These two results introduced the
notion that the most capable system is not always the right
choice—that restricting our system can yield higher efficiency
and greater ease in solving relevant security problems.

This, in turn, led to many results investigating the relative
expressive power of various access control systems (e.g., [1,3}
17,211221/24]). Relative expressiveness analysis frameworks
typically provide analysts with the tools to prove statements
of the form, “System) is at least as expressive as system Z.”
Informally, this means that)} can simulate the behavior of Z,
and assures us that we can use) in any scenario in which Z
can be used. However, without formal justification for their
simulation requirements, many such frameworks proved to
be too relaxed, allowing almost any two reasonable systems

to be shown to be equivalent: using such relaxed notions of
simulation, systems in which safety is trivially decidable have
been shown to simulate others in which it is undecidable [25].
Furthermore, due to various differences between notions of
simulation, there have been conflicting relative expressiveness
results that are difficult to reconcile [24,25]. Thus, none of
this prior work supports the comparison of access control
systems with regards to their ability to perform well within
a particular environment, a lack which was pointed out by
a recent NIST technical report [13]. This has hindered the
adoption of relative expressiveness analysis as a practical
technique that enables analysts to choose the access control
system that best meets their needs.

Parameterized expressiveness (PE) [11], by contrast, makes
use of an access control workload to capture the requirements
of the application. Expressiveness mappings (implementa-
tions) are then constructed between the workload and the
access control systems that are candidates for accomplishing
these requirements. An implementation is evaluated through
the strength of the security requirements that it can preserve
while satisfying the workload. In this way, systems can be
compared by how well they can perform within the specific
environment in which they are to be deployed.

2.2 Parameterized Expressiveness

Conducting expressiveness evaluation within PE begins
by formalizing the requirements of the application and the
access control systems that are candidates for accomplishing
these requirements. Candidate systems are specified as state
machines belonging to a particular access control model.
Intuitively, an access control model is (i) a collection of
data structures that store information pertinent to access
control and (ii) a collection of procedures that expose only
certain kinds of information about those data structures to
an external observer. Each snapshot of the data structures
in the model is an access control state. Each method that
exposes information about the state is a query. An access
control model differs from an arbitrary data structure because
every state supports a special set of queries, the authorization
queries, that define the access control policy to be enforced
in that state. The access control policy for a state dictates
which of all possible access control requests are granted.The
authorization queries are denoted auth(r), where r is one of
the access control requests, e.g., a subject-object-right triple.
Definition 1 (Access Control Model) An access control
model M has fields (S, R, Q,F), where:

e S is a set of states

e R is a set of access control requests

e Q is a set of queries including auth(r) for everyr € R

e His a subset of S X Q (the entailment relation)

If M = (S,R,0Q,t), we use States(M) to denote S and
Queries(M) to denote Q. We use the term theory to denote
a truth assignment for all the queries in Q. For state s € S,
we use Th(s) (a subset of Q) to denote the set of all ¢ € Q
such that s - q (a convenient representation of the theory that
holds at s). We use Auth(s) (a subset of Th(s)) to denote
the set of all auth(r) € Q such that s F auth(r). O

Definition 2 (Access Control System) An access con-
trol system Y has fields (M, L, next), where:

e M is an access control model

e L is a set of labels (also called commands)

o next : States(M) x L — States(M), the transition function

If Y = (M, L, next), we use Labels(Y) to denote Labels(M),
States(Y) to denote States(M), and Queries(Y) to denote
Queries(M). The theories of Y are all the theories of M. For
a finite sequence of labels ly0- - -oly,, we use terminal(s,lio- -0
ln) to denote the final state produced by repeatedly applying
next to the labels l1,- -+ , 1, starting from state s. %

The access control demands of an application are captured
in an access control workload. The workload includes a state
machine similar to an access control system that formalizes
the application’s required protection state, commands and
queries. In addition, the workload contains a specification of
the valid utilization patterns of this functionality, encoded
as a set of traces through the system. Each trace defines an
initial state and a sequence of labels that are executed.
Definition 3 (Workload) An access control workload is
defined by (A, T), where:

o A = (M,L, next) is the operational component: an ab-
stract access control system
e T s the invocational component: a set of pairs (so,T)

where so € States(A) and T =lioly0... is a sequence
where Yi.l; € Labels(A). 0

The representational similarity between the workload’s op-
erational description and access control systems enables us to
construct implementations of the workload: mapping states,
labels, and queries in the workload to states, (sequences of)
labels, and (procedures over) queries in the systems.

Definition 4 (Implementation) Given a workload W and
a system Y, an implementation of W in Y is defined by
(a, 0,), where:

e o : States(W) — States()) is the state mapping

o o : States(Y) x Labels(W) — Labels(Y)*, the label mapping

o m = {m4|q € QueriesWV)}, where my is a function from
theories for) to {TRUE, FALSE}, the query mapping O

Security properties that an implementation must uphold
can be expressed as constraints on these mappings, and
proofs are manually constructed to ensure their preservation.
While most prior works propose fixed sets of security prop-
erties defining their particular notion of expressive power,
PE describes a set of properties that can be “mixed and
matched,” and implementations are evaluated qualitatively
by which properties they satisfy. For example, implementa-
tions can be restricted to mapping each workload label to a
single system label (label atomicity), or string manipulation
can be restricted to prevent the implementation from pack-
ing arbitrary data into string constants such as usernames
(homomorphism).

Unfortunately, although PE evaluates access control sys-
tems in a way that takes into account the specific application
and qualitatively evaluates suitability to that application, it
does not enable analysts to quantitatively evaluate suitability
(i.e., by considering efficiency/costs). In this work we develop
a cost analysis framework which complements PE to allow
both qualitative and quantitative suitability analysis.

2.3 Prior Work: Simulation Techniques

Our cost analysis procedure will need to efficiently sample
representative traces of actions from the full description of
allowed behavior within an application. For inspiration in
generating access control traces, we turn to trace generation
work in other domains. In the field of disk benchmarking,
Ganger [6] observed that interleaved workloads provided the

most accurate approximation of recorded traces. Thus, mech-
anisms for representing access control workloads must be ca-
pable of simulating the interleaved actions of multiple actors.
This view is reinforced by the design of IBM’s SWORD work-
load generator for stream processing systems [2]. This work
also points out that synthetic workloads need to replicate
both volumetric and contextual properties of an execution
environment in order to provide an accurate indication of
a system’s performance within that environment. Thus, we
conjecture that access control workloads as well may need
to be capable of expressing not only volumetric statistics
such as number of documents created, but also contextual
statistics such as the type of content in created documents.

When formalizing the ways in which users of a system
work together, it is important that one user does not execute
an action which will render another user’s work impossible to
complete. Thus, during simulation, we must solve instances
of the workflow satisfiability problem (WSP), a problem whose
runtime complexity has been studied in the past and found
to be NP-complete [26] but fixed-parameter tractable [4].

Our work is not the first to utilize Monte Carlo analysis
when evaluating access control systems. For instance, Molloy
et al. use Monte Carlo analysis to explore cost/benefit trade-
offs in the context of risk-based access control systems [20].
Our framework, on the other hand, uses this analysis tech-
nique to explore an arbitrary array of analyst-specified costs
associated with the use of particular access control systems
in the context of a given workload.

3. SUITABILITY ANALYSIS

In this section, we identify the access control suitability
analysis problem and develop a set of practical requirements
that solutions to this problem must satistfy.

3.1 Problem Definition

Given an access control workload, i.e., a formalization of an
application’s access control requirements, we postulate that
assessing the suitability of an access control system for that
application will involve two classes of measures: expressive-
ness (qualitative measures of the system’s ability to securely
satisfy the requirements) and cost (quantitative measures of
the system’s ability to efficiently satisfy the requirements).
As such, suitability analysis is done in two phases. In the first
phase, the analyst must ensure that the candidate systems
are expressive enough to safely meet the needs of their appli-
cation. This phase includes formalizing the candidate access
control systems and the capabilities required by the applica-
tion (the workload), followed by constructing—and proving
security properties of—implementations that describe how
the systems can safely satisfy the workload. Upon comple-
tion of this phase, the analyst will have narrowed down the
list of systems to those that are expressive enough to safely
operate within the application and described each system’s
qualitative suitability to the application. One approach to
this process is presented in |11].

The notion of costs, on the other hand, requires examin-
ing ordered measures of suitability such as administrative
overheads, workflow throughput, and additional storage that
result from the choice of a particular candidate access control
system. In the cost analysis phase, the analyst formalizes the
cost measures of interest, structures used for sampling from
the expected usage of the access control system, and the
expected costs of actions within each system. These are then

T Access Control Workload
2%
Operational Invocation
Component | | Mechanism Traces

Workload Sys:tem

=]

Traces

[o3]

Figure 1: Overview of an application-aware analysis framework for access control

used to determine a partial order over the candidate systems
describing their relative suitability to the application. More
formally, these two phases describe the following problem:

Problem (Suitability Analysis) Given an access control

workload W, a set of candidate access control systems 2,

a set of security guarantees G, and a set of ordered cost

measures € = {C1,...,Cm}, determine:

(i) the subset)’ C Q) of systems that admit implementations
of W satisfying mazimal subsets of G

(i) the subset 9" C ' of systems that admit cost-optimal
implementations of W relative to the lattice C1 X - -+ X Cp,

3.2 Solution Requirements

We now explore requirements for suitability analysis frame-
works. First, we consider requirements in how representative
traces through an access control workload (W) are generated
for exploration in cost analysis. Recall from Definition [3]
that the workload specifies a (possibly infinite) set of traces.
Exploring all possible traces during cost analysis will likely
be impractical. Thus, in cost analysis, we must sample from
this set in a way that selects traces that are representative
of the expected behavior. Our first two requirements en-
sure that the framework can generate traces that accurately
model the tasks carried out within an organization, and the
interactions required to support and process these tasks.

Domain exploration Large applications are complex sys-
tems with subtle interactions, the emergent behaviors of
which may not be captured during workload specification. It
must be possible to efficiently explore many initial conditions
(e.g., types of actors, operations supported, organization size,
and operation distributions) to examine the effects of various
levels of concurrency and resource limitation.

Cooperative interaction Tasks within large organizations
typically require the interaction of many individuals. As such,
suitability analysis frameworks should support operational
workflows and constraints on their execution.

Next, we must ensure that the suitability analysis frame-
work can be tuned to meet the specific needs of an application
via choosing the metrics used to assess the suitability of an ac-
cess control system for a given workload. This includes both
the security guarantees used in expressiveness evaluation (G)
and the cost metrics used in cost evaluation (€).

Tunable safety There may be many different ways for some
system to implement a given workload. Without enforcing
structure on the implementation mapping, even the most
under-expressive systems can appear to implement a work-
load [25]. It must be possible for an analyst to specify the
security guarantees for implementations of their workload.

Tunable cost There is no single notion of cost that is sensi-
ble for use in every access control analysis |[13|. A suitability

analysis framework must be capable of representing many
types of costs (e.g., computational, communication, and ad-
ministrative), and examining multiple costs simultaneously.

Finally, we consider requirements that ensure that the
suitability analysis framework remains practical to use, even
for large-scale application workloads.

Tractability Steps of the analysis process that can be au-
tomated should be done so using tractable (e.g., polynomial
time or fixed-parameter tractable) algorithms that remain
feasible to use even for large systems.

Accuracy Since exploring all possible traces is impractical,
it must be possible to approximate the expected error of
costs obtained by exploring only a specific subset of traces.

These requirements guided the development of our suitabil-
ity analysis framework; we will discuss our ability to achieve
these requirements in Section IE

3.3 Approach Overview

Figure [1| depicts an overview of our approach to solving
the suitability analysis problem. First, we carry out expres-
siveness analysis as described in Section |2] This consists of
constructing a workload, systems, and implementations, and
then proving that the implementations satisfy the desired
security guarantees. Then, we augment the operational com-
ponent of the workload (the set of all valid traces) with a
mechanism for generating representative traces that satisfy
desired properties. We then formalize the cost measures,
which represent the quantitative metrics our application is
sensitive to, and label the actions within each system with
their respective costs. Finally, we use Monte Carlo simula-
tion to repeatedly generate workload traces, translate them
into equivalent system traces using the mappings constructed
during expressiveness analysis, and execute the system traces
while recording the costs of each action.

Cost analysis imposes minimal requirements on the expres-
siveness components that precede it in the analysis pipeline.
Although we utilize PE for its flexibility, if an analyst de-
sires some particular fixed set of security properties, other
formalisms for expressiveness mappings can easily be used
within our cost analysis framework. Although such an analy-
sis will not have the benefit of PE’s ability to qualitatively
evaluate access control suitability, our cost analysis tech-
niques for quantitative evaluation will work with any notion
of expressiveness that satisfies several general properties:

State equivalence The expressiveness mapping includes a
function that determines, given any workload state w, the
equivalent system state s.

Action construction The expressiveness mapping includes
a function that determines, given any system state s and
workload action (label I or query ¢), a procedure in system

Administrators Approve
Declassify
Create

e -
2d.71 0.1 mo.!
00 1d.7!

Co-
approve
Declassify

Request
Document
Declassify

A: Create

Document

Constraints:

{(+C.D)}
(b) Workflow

Figure 2: Example invocational structures

labels and/or queries for effecting results equivalent to those
caused by [or q.

Determinism Regardless of what labels or queries will be
executed in the future, each workload state w always maps
to the same system state s, and each (system state, workload
action) pair maps to the same procedure in system actions.

Parameterized expressiveness clearly satisfies these proper-
ties by definition. Many other notions of expressiveness in
the literature can also be rephrased to meet these require-
ments (i.e., by using them to construct mappings between a
workload and a system, rather than between two systems).
Notable examples include the state matching reduction [25],
as well as the simulations defined by Chander et al. |3] and
Ammann et al. [1].

4. TRACE GENERATION

The invocation mechanism of an access control workload
describes valid usage of the access control system within the
application being described. This is represented as a set of
traces through the system’s actions (labels and queries). In
cost analysis, we need to sample from this set of traces in
a way that is representative of the expected usage. We also
need to do so in a way that satisfies the requirements set forth
in Section For example, [Domain Exploration| requires
that we are able to alter input parameters. Implicitly in this
requirement is the assumption that the trace reacts to these
initial state parameters (e.g., more users typically means
more frequent execution of labels and queries).

To this end, we define an extension of the invocation mech-
anism that utilizes the concepts of actors carrying out actions
within the system. Actors are human users, daemons, and
other entities that act on the access control system in ways
that are described by actor machines. We express the vari-
ous ways in which actors cooperate to complete a task using
constrained workflows. This structure specifies dependencies
between related actions, and utilizes constraints to restrict
which user can execute each action. Together, these struc-
tures enable the modeling and simulation of complex and
concurrent behaviors of the entities in a workload.

We now formalize actions, the basic units of work executed
by an actor in the system. An action is a parameterized

generalization of queries and labels. This allows us to specify
the generic description of the action (e.g., check an access,
assign a role) and separately assign the precise parameters
(e.g., the specific users, documents, and roles involved). These
can be assigned statically by the executing actor’s behavior
machine or dynamically during execution.

Definition 5 (Action) Given an access control system,),

an access control action for Y is a function from a set of

parameter spaces (derived from States())) to the system’s

set of operations, and is defined as A : Py X --- X P; —

Labels(Y) U Queries(Y) U {@}, where:

e P =(P1,...,P;) is the set of parameter spaces from which
the actions’s j parameters are drawn (e.g., the set of sub-
jects, objects, roles)ﬂ We denote Py X --- X Pj as P*.

o A: Py x---x P; — Labels(Y) U Queries()) U{@} maps
each parameterization to a label or query in Y, or to @,
which designates no label or query is to be erecuted O

To describe the behavior of actors, we employ state ma-
chines that we call actor machines. Each state is labeled
with an action and a (possibly incomplete) parameterization.
Transitions in this state machine are labeled with rates akin
to those used in continuous-time Markov processes (e.g., [18]).
We generate representative traces of actor behavior by prob-
abilistically walking this machine, following transitions with
probabilities proportional to their rates.

Definition 6 (Actor Machine) Let Y be an access con-
trol system, A a set of actions from Y, and U a set of vari-
able symbols. An actor machine for) is the state machine
(S, @, R), where:

e S is the set of actor machine states

e d: S5 5 Ax (PLUY) X ...x (P;UD) labels each state
with an action and a partial parameterization of that action
(i.e., parameters can be assigned a static value or a variable
to be assigned dynamically during execution)

e R:S xS — R is the set of transition rates %

The semantics of the execution of an actor machine are
as follows. R describes the rates of transitioning from one
state to another. To achieve the Markov property, the time
spent waiting to exit a state is exponentially distributed, with
rate parameter proportional to the sum of the rates of all
exiting transitions. An actor carries out a state’s action upon
entering the state (possibly after a pause, e.g., an action to
submit a comment to a forum may pause for several minutes
while the message is composed).

Example actor machines are demonstrated in Fig. 2a] In
this example, we classify actors into administrators and
users. Users generate documents and occasionally request
a document be declassified for public consumption, while
administrators approve declassification requests. Due to the
labeled rates on this machine, an administrator is expected to
approve a declassification request on average in one day, and
roughly 10% of users request a declassification each month.
Transitions labeled with co occur immediately.

To describe dependencies between actions taken by one or
more actors, we present the notion of a constrained access
control workflow, which organizes the execution of actions.
Formally, this structure specifies the partial order describing

'We typically use the first parameter of an action to repre-
sent the executing entity. For queries, this allows different
responses for different queriers. For commands, this allows
restrictions on the entities permitted to execute.

action dependence as well as constraints that restrict the set
of users that can execute various actions.

Definition 7 (Constrained Workflow) Let) be an ac-
cess control system and 2 a set of access control actors within
Y. We say that W = (A, <, C) 1is an constrained access con-
trol workflow over the system), where:

e A is the set of actions from Y

e < C A X A is the partial order describing action dependen-
cies. If a1 < a2, then az depends on a1, and a2 cannot be
executed until after an execution of ai.

e C is the set of constraints, each of the form {(p,a1,az)
(with a1,a2 € A). Here, p is a binary operator of the form
A x A — {TRUE,FALSE}. For ezample, (#,a1,a2) says
that a1 and a2 must be executed by different actors. %
Figure displays a constrained workflow with two tasks

(disjoint subsets of the workflow): document creation and

declassification. The former is a degenerate task containing

a single unconstrained action. Declassifying a document, on

the other hand, requires the approval of two different ad-

ministrators. The workflow allows administrators to approve
declassification only after the request, and the approvals
must be executed by distinct administrators.

Our actor-based invocation mechanism combines these
components; it refines the set of traces included in an access
control workload (Definition [3]) using a constrained workflow,
a set of actor machines, and a method for extracting the
active actor machines from an access control state.
Definition 8 (Actor-Based Invocation) Let) be an ac-
cess control system. We say that IY = (W, 2, M) is an con-
strained, actor-based access control invocation mechanism
over the system), where:

o W is a constrained workflow over)

o 2 is the set of all actor machines

o M : States(Y) — (1) is the actor machine liveness
function (i.e., a function that maps access control states
to the sets of actor machines active in states) O

S. QUANTITATIVE COST ANALYSIS

5.1 Cost Measures

An important part of cost analysis is choosing relevant
cost measures. These measures should be descriptive of what
types of costs are important to the analysis, while also en-
abling the analyst to easily label actions with costs. For
example, while “operational cost per day” may be representa-
tive of evaluation goals in industry, it is hard to assign costs
in this measure to any access control action. A measure such
as “average administrative personnel-hours,” on the other
hand, is more easily quantified and enables the same types
of analyses. In this paper, we do not commit to a particular
cost measure, but rather develop our framework to operate
on any measure satisfying a number of simple properties.
Definition 9 (Cost Measure) A cost measure is defined
by the ordered abelian monoid C = (C, e, =), where C' is the
set of costs, e is the closed, associative, commutative accrual
operator over C with identity Oc, and < is a partial order
over C such thatVa,be C:a<aebANb=<aeb. O

Definition [J] can be used to encode a variety of interesting
access control measures, including several of those noted in
a recent NIST report on the assessment of access control
systems [13]. Costs like “steps required for assigning and

dis-assigning user capabilities” and “number of relationships
required to create an access control policy” can be represented
using the cost measure (N, 4+, <). Our notion of measure is
general enough to represent many other types of costs as
well. Measures for human work such as “personnel-hours
per operation” and “proportion of administrative work to
data-entry work” can be represented using the cost measures
<Z+,+, §> and <Z+ X ZT, +, §>, respectively. Maximum
memory usage can be represented using (N, max, <).

In order to calculate the total cost of a particular imple-
mentation, costs of executing the various actions within the
implementing systems must be determined. Sometimes, the
cost of any execution of an action is constant (e.g., creating a
document requires a constant amount of I/0O). In other cases,
the parameters affect the cost (e.g., adding a user is more
expensive for classes of users with greater capabilities). In ad-
dition, some costs depend on the current state (e.g., granting
access to all documents with a certain property may require
inspecting each document, a procedure that grows in cost
with the number of documents in the system). Thus, a cost
function is required to map each (action, parameterization,
state) to an element of the relevant cost measure.
Definition 10 (Cost Function) Let Y be an access con-
trol system, A a set of actions from Y, and C = (C,e, <)
a cost measure. A cost function for C in Y is a function
€Y A x States(Y) — C, which maps each action and state
to the member of the cost measure that best represents the
costs associated with executing that action in that state. ¢

In addition to the cost functions that are of specific interest
to the analyst, our cost analysis simulation process also
requires the specification of each system’s time function.
The time function is a cost function with measure (R, +, <),
describing the duration of time required to complete an access
control action. This time corresponds to the duration that
an actor pauses before completing an action when entering a
state in the actor machine (e.g., the declassification example
from Section .

5.2 Simulation Procedure

Once the analyst has defined the trace generation struc-
tures, a set of cost measures, and cost functions for each
candidate system, she can conduct cost analysis via simula-
tion. Our main simulation procedure, ACCostEvalSim (shown
in Algorithm , conducts a single, randomized run of the
system. First, each system’s initial state is populated by
sampling from a distribution provided by the analyst. An
actor machine is then launched for each actor in these sys-
tems. At each time step, the clock is incremented and each
actor machine is inspected for the next action, as per the
execution semantics of the actor machine (Section [4)). If the
actor machine returns an action, an instance of the workflow
satisfiability problem (WSP) [4]/26] is solved to ensure that
the actor can execute the action without rendering the con-
strained workflow instance unsatisfiable. For independent
actions (i.e., those in {a1 | Baz2.(a2 < a1)}), a new workflow
instance is created and added to the pool of partially-executed
workflows. Otherwise, the action is taken in the context of
an existing workflow instance that is already in progress.
After all actions for a time step are collected (and verified by
WSat), their changes are effected in the state and their costs
are accrued. Finally, the set of actors is adjusted according
to changes in the state. Once the goal time is reached, the
total costs are output.

Algorithm 1 Monte Carlo cost analysis simulation

Input: 2), set of candidate systems

Input: X, set of implementations (VY € 9 : 0y €)
Input: €, set of cost measures (7 = (R, 4, <) € €)
Input: L, set of cost functions (VY € 9,C € € : Z%; € L)
Input: I = (W,, M), invocation mechanism

Input: sg € States(W), start state

Input: Tj, goal time

Input: t, time step

Input: x, number of Monte Carlo runs

procedure ACCostEvalSim(Q), 2, €, L, I, so, Tf, t)

S« {} > Initialize set of running AC systems

T <+ 0 > Initialize master clock

for all Y € 9) do > Initialize state
S +— Su{y}

sy « oy(so) > Current state of system)

for all C € € do
c%} <~ O¢

Ay < M(sy)

for all a € Ay, do

> Total cost of system Y in C

> Set of running actor machines

To < 0 > Per-actor clocks

while T' < Ty do > Main loop
T+ T+t > Increment clock
for all Y € S do > Each AC system

K ={} > Clear action list

> Choose next actions
> Check actor busy state

for all a € Ay, do
if T, < T then
(k, Py) < nextAction(cx)
if k # @ AWSat(k, o, Pr) # @ then
To T + £Y (k)
K+ KU {(k,, Pp)}
for all (k,a, P;) € K do
for all C € ¢ do
c%) — c:g oc Z%} (cfy((k, a, Pk>))
if k is a command then
sy + oy (next(sy, k(Py)))
for all Y’ € 9 do
L ’ y/ y/
°8 <y YCclw"’chL>

> Busy state
> Save action

> Compile costs

> Update state

To address the requirement of [Tractabilityl we present the
following theorem (proved in Appendix[A]), which states that

ACCostEvalSim is fixed-parameter tractable (i.e., has polyno-
mial runtime if a particular parameter is bounded). For an
overview of parameterized complexity, see, e.g., |26].

Theorem 1 Assuming that workflow constraints are restricted
to {=,#} (i.e., binding and separation of duty), the simu-
lation procedure ACCostEvalSim is fixed-parameter tractable
with the number of actions in the largest task (i.e., the size
of the largest disjoint subgraph of the workflow graph).

We also define two drivers for using this simulation pro-
cedure (see Appendix , The first, ACCostEvalMC, randomly
samples start states from a given distribution and uses the
Monte Carlo technique to generate large numbers of data
points, allowing the analyst to detect trends across a variety
of start states. An alternative driver, ACCostEvalCl, decides
how many simulation runs to conduct based on a desired
confidence and the assumption of a particular distribution
of costs across runs. This allows the analyst to fix a start
state and repeatedly execute ACCostEvalSim until she can be
confident that the results are accurate.

6. CASE STUDY

In this section, we demonstrate the suitability analysis
process using our framework. This case study explores a
workload based on an online management system for an
academic conference, including paper submissions, reviews,
and discussion. The specification of the workload is done
in a group-centric secure information sharing model [14}(15],
and our candidate systems include two variants of role-based
access control [523] and traditional UNIX user-group-other

permissions [7]. The qualitative phase is conducted using
parameterized expressiveness [11], and the quantitative phase
is conducted using several cost measures that indicate how
naturally the systems can implement the workload.

6.1 Workload and Candidate Systems

The workload’s operational component (i.e., the abstract
system that describes the application’s requirements) is based
on that used in [9] for a group-based program committee
workload, as this system contains all the state, labels, and
queries we need to naturally represent our conference work-
load. Users can join and leave groups, and objects can be
added and removed from groups. The log of these events is
used to decide whether a user can access an object. Users
who perform a strict join to a group receive access only to
objects added after they join, whereas a liberal join grants
immediate access to all existing objects. A strict leave re-
scinds all of the user’s accesses within the group; a liberal
leave allows the user to retain access. All objects (i.e., papers,
reviews, discussion messages) are added to groups via liberal
add, and thus whether a user can access an object in a group
is determined solely by the relative times the join and add
took place and the variants of join/leave that was performed.

These capabilities naturally satisfy the requirements of
the academic conference. When the program committee is
formed, a discussion group is created, and each reviewer joins.
Each paper is submitted to an author group, which holds
the objects the author can see (initially, only the submitted
paper). During the reviewing period, a review group is
created for each paper, which the paper’s reviewers join.
Discussion about papers in contention takes place in the
discussion group. When the group discusses a paper with
which a reviewer has a conflict of interest, this reviewer will
temporarily leave the discussion group (executing liberal
leave to retain previous accesses and strict join to return
without gaining access to the conflicted discussion).

We consider several role- and group-based candidate sys-
tems for implementing the conference workload. As such
systems provide a level of indirection between subjects and
objects, they are more likely to be effective at implementing
the group-based conference workload than systems without
this level of indirection (e.g., access control list systems). We
choose widely-deployed candidate systems from both the in-
dustrial and consumer spaces, making them likely candidates
for developing the type of system described by our conference
workload. We evaluate the following candidate systems.

RBAC RBAC), is the most basic role-based access control
system in the RBAC standard [23]. States contain the set
of users U, set of roles R, and set of permissions P, as well
as relations between them: UR C U x R describes users’
membership in roles, and PA C R x P describes permissions’
assignment to roles. A user u is authorized to permission p
if Ir.((u,ry € URA (r,p) € PA). Labels allow adding to and
removing from all of U, R, P, UR, and PA.

Hierarchical RBAC While RBAC), grants a level of indi-
rection between users and permissions, RBAC} includes a
hierarchical structure over roles to further extend this ab-
straction. RBAC, includes all state elements of RBAC,
as well as the role hierarchy RH C R x R, a binary re-
lation over R whose transitive closure is the Senior par-
tial order (we sometimes designate the transitive, reflex-
ive closure >). In hierarchical RBAC, a user inherits all

permissions from roles junior to roles she is explicitly as-
signed. That is, a user u is authorized to permission p if
Ir, re.({u,m1) € URA (ro2,p) € PAAT1 > 12). Labels allow
full manipulation of all state elements.

UNIX Permissions Finally, the ugo system [7,/9] is based
on the user, group, other system of access control in UNIX.
Thus, if RBACy and RBAC: fill the need for a commonly-
used industrial standard system, ugo fills the role of a com-
mon consumer system. In ugo, objects can be associated
with an owner user and group, and permissions are then
granted to the user, the group, or everyone else.

6.2 Qualitative Analysis

In this section, we summarize the qualitative analysis we
conducted to ensure that each of our candidate systems is
capable of satisfying the conference workload. For brevity,
and given the availability of other case studies discussing
in-depth qualitative suitability analysis (e.g., [9,{11]), in this
case study we omit full proofs of expressiveness theorems
(to be presented in an accompanying technical report), and
consider a fixed set of implementation guarantees. For exam-
ple expressiveness proofs which are sufficiently similar to our
proofs of the theorems below, see [9]; for formal definitions
of the implementation properties, see [9}[11].

Correctness Correctness is a bare minimum requirement
for an implementation in parameterized expressiveness. In-
tuitively, correctness says the following: a workload state’s
image in a system answers mapped queries exactly as the
original state answers the original queries; and the same
system state is reached by executing a workload action and
mapping the result into the system or by mapping the initial
state and executing the action’s image in the system.

Weak AC-Preservation AC-preservation says that mayen(r)
must map authorization request r from workload state w to
system state o(w) directly, checking whether o(w) F auth(r).
This forces the workload and system to have identical sets
of requests, which is not always the case (e.g., access ma-
trix systems typically use subject-object-right triples, while
role-based systems often use user-permission pairs). Weak
AC-preservation captures the spirit of AC-preservation (en-
sures the use of the authorization procedure of the system)
but allows us to define a request transformation function to
map workload requests to system requests.

Safety Safety ensures that the intermediate states through
which a system travels while implementing a single work-
load label do not add or remove granted requests except as
determined to be necessary by the start and end states.

We implement the conference workload in RBAC] (role-
based access control with role hierarchy) using techniques
presented in [9]. Members who strict join a group are granted
a subset of the permissions of older members, a pattern we
can mirror naturally using a role hierarchy. In a way, older
members “inherit” access to all added objects; new members
only receive access to objects added after they joined. We
thus create a chain in the role hierarchy for each group. When
a g-SIS group is created, the top of the chain is created in
RBAC,. We name the top role of the chain after the group,
and use this to correlate chains to groups.

When an object is added to a group, it is available to all
members, and thus the corresponding permission in RBAC
is added to the bottom of the chain, where access to it

Executed operations
51 S2 01 53 5S4 02 S2
s.join s.Jjoin ladd sjoin Ljoin ladd lleave

Time

Figure 3: An example role hierarchy implementing the con-
ference workload in RBAC,

will be inherited upward (to older members). When a user
liberal joins a group, they gain access to all existing objects,
and thus we add this user in RBAC to the top of the role
chain, where she will inherit permission corresponding to each
object. When a new user strict joins a group, they create a
new “view” of the group, since they are not authorized to any
existing objects. Thus, we create a new RBAC, role (named
arbitrarily) and link it to the bottom of the group’s chain.

When a user strict leaves a group, she is removed from any
roles in the group’s role chain, losing access to all objects
in the group. When a user liberal leaves a group, on the
other hand, she should retain access to the current set of
objects. Thus, we create an orphan role, which does not
inherit any permissions from other roles, and from which no
users inherit permissions. Then, the leaving user is added to
the orphan role, and the role is granted access to the group’s
objects to which the user currently has permission. Then,
when the user is removed from the main role chain, she does
not lose accesses. We give a demonstrative example of the
role hierarchy structure in Fig.

Using this technique, we can implement the conference
workload in RBAC: while preserving correctness, weak AC-
preservation, and safety.

Theorem 2 There exists a correct, weak AC-preserving, and
safe implementation of the conference workload in RBAC .

To implement the workload in RBAC) (role-based access
control without role hierarchy), we follow the same procedure,
but store the role hierarchy encoded in role names. This
expands the set of roles to include a role named for every
path through the logical hierarchy in the downward direction.
Thus, if in RBAC: we would store a hierarchy that says
A>B,B>C,and A > D, we represent this in RBAC)
with roles {A, B,C, D, AB, ABC, AD, BC'}. For every role r
a user would be assigned to in RBAC", she will be assigned to
each role starting with r in RBAC). In the previous example,
if (u,A) € UR in RBAC1, then in RBAC), this maps to
{{u, A), (u, AB), (u, ABC), (u, AD)} C UR in RBAC,. This
allows us to implement the conference workload in RBAC),
while preserving our chosen implementation guarantees.
Theorem 3 There exists a correct, weak AC-preserving, and
safe implementation of the conference workload in RBAC.

Finally, although ugo has the inherent disadvantage that
each object is owned by only a single user and group, it can
implement the conference workload by mapping a workload
object assigned to multiple groups to an object with a single
group owner. This group then represents all groups with
authorization and includes as members all users with access.

Liberal
Add Paper
to Author
Group

1/time remaining

(a) Author’s submit phase actor machine

Create
Author
Group

Create
Paper
Object

Author
conflicted with
paper X
liberal leave
discussion
group

Author
conflicted with
paper X strict
join
discussion
group

Chair rotates
discussion to
paper X

Chair rotates
discussion to
paper Y

(b) Conflict-of-interest workflow

Figure 4: Case study invocational structures

Of course, this incurs a storage penalty; the magnitude of
this overhead will be explored in quantitative analysis.

Theorem 4 There exists a correct, weak AC-preserving, and
safe implementation of the conference workload in ugo.

6.3 Quantitative Analysis

To perform simulation-based cost analysis, we formalized
actor machines for the conference program chair, authors,
and reviewers, as well as workflows that describe how these
actors interact. These instantiations of the structures defined
in Section [4 allow us to describe the usage of the workload
system (which, recall, is essentially the system of the program
committee workload in [Eﬂ with a different expected usage).

The actors in our system are a program chair, a set of
reviewers, and a set of authors. Each paper is assigned three
reviewers, and each reviewer is assigned nine reviews, and
thus we have three times as many authors as reviewers (with-
out loss of generality, we assume that one author is registered
to submit each paper). The program chair is responsible for
administrative tasks such as creating groups (the discussion
group and each paper’s review group), assigning reviews to
reviewers, copying the submitted papers into their respective
review groups, and rotating through the submitted papers
during discussion. The program chair also transitions be-
tween the phases of the simulation, which determines the
actions that the other actors can execute at any particular
time. The phases proceed in the following order:

1. Create Chair creates the discussion group

2. Recruit Chair adds the reviewers to the discussion group
3. Submit Authors create author groups and submit papers
4

. Review Chair creates review groups and adds assigned
reviewers; reviewers add reviews to the review groups

5. Discuss Chair rotates discussion between various papers;
reviewers add comments in the discussion group; conflicted
reviewers leave during discussion

6. Notify Chair adds review summaries to author groups;

authors read their summaries

Formally, actor machines include the actions from all
phases, and the chair uses workflows to ensure that only
the current phase’s actions are enabled. For simplicity, we
often consider them as separate actor machines between
which the actor transitions. Figure @ demonstrates an ex-
ample single-phase actor machine, and Fig. @b demonstrates
a particular workflow task, the conflict-of-interest workflow.

To conduct cost analysis, we built a Java implementation
of ACCostEvalMC to simulate the conference workload. We
repeated the simulation for 200 runs, randomly selecting the
number of authors and reviewers (preserving the proportion
of 3 times as many authors as reviewers).

15 0.0008

g 2 2 =
E RBAC, E + RBAC,
X e RBAG, & “"‘l“Tﬁ c RBAG,
3 35 1
2 3 b9
3 4 ugo % 0.0006] & 4 _ugo
FEY z
g2 S _ 0.0005
2 g
g 22
g2 £E 0.0004
@15 25 0000 d
£ &2 0.0003
s 10 g)n'g
E £ 2 0.0002
% ola BE
s 23
= <5
0 0.0001

1 6 8 10 12 14 16 100 150 200 250 300

Maximum workload state size (x1000) Number of users

(a) (b)

RBAC,
RBAC, #

ugo

=
S

+

+

++ +
. . + +
2 ;t*:ifﬂ et :1: 3 39034 i}%’i]
st T &%ﬁ ¥

S

>

08 + RBAG,
¢ RBAG,

2 ugo

o

04le & 2008 cBrfn Bonek

Average permissions per role
>

AM
2t8
L ot et

0.2pa aanna

WW

Maximum Number of Roles (x1000)
=

100 150 200 250 300
Number of users

(©) (d)

050 asenlioastian MAKD feseatin: MMM A8

0.45

100 150 200 250 300
Number of users

0.40

+ RBAC,
¢ RBAG,

& ugo

+ RBAC,
0.35 ¢ RBAG,

& ugo

0.30

).25

oportion of non-atomic actions

Average stutter cost per action

156 6% o5
+ bt et 2020 o s
£ e Bt affg Gl oig
1.0 0.15
100 150 200 250 300 100 150 200 250 300
Number of users Number of users
(e) ®

Figure 5: Conference workload cost analysis using ACCostE-
valMC and 200 runs

In Fig. we compare the maximum system state size to
the size of the equivalent workload state, demonstrating the
storage overhead needed to utilize each system. While the
role-based schemes use a small amount of additional state,
ugo requires several times the storage of the workload. This is
due to ugo’s restriction that each object is owned by a single
group; an object that should be accessed by multiple groups
must be owned by a combined group which contains all the
members of the originals. Figure shows that a similar
proportion of each system’s state changes on average for each
action executed, but given the larger storage required by ugo,
this system will require much greater 1/O as well.

We compare the number of users to the number of roles
(groups in ugo) created in each system in Fig. RBAC) uses
many extra roles to simulate hierarchy information, and ugo
creates even more since each object is owned by only a single
group. However, even RBAC: uses several times as many
roles as there are users in the system, potentially indicating a
poor fit from all three systems, as the administrative value of
using roles is reduced when the the number of roles exceeds
the number of users . As indicated in Fig. roles in all
three systems are particularly permission-sparse, averaging
1.2, 0.4, and 0.2 permissions per role in RBAC1, RBAC), and
ugo, respectively. In particular, RBAC, and ugo utilize many
additional roles to store simulated hierarchy information, and
many of these roles are never assigned permissions.

In Fig. [be| we investigate the average number of stutter
steps per action, or the average number of system commands
that must be executed to simulate each workload command.
RBAC., RBAC), and ugo must execute, on average, 1.3,

1.6, and 3.4 actions (respectively) for each workload action
simulated. Furthermore, as shown in Fig. [5f] 18% of workload
actions incur some stuttering in the role-based systems, and
49% incur stuttering in ugo. In scenarios where multiple users
will be interacting with the system, this loss of atomicity
necessitates the incorporation of an additional locking layer
to ensure the system is not accessed in an inconsistent state.

6.4 Summary of Findings

The preceding case study shows that, under the lens of
several cost measures, RBAC is a better choice than RBAC)
or ugo for implementing the conference workload, due to its
native support for role hierarchies, a structure that can mimic
the pattern of authorized requests common in the workload.
However, even RBAC utilizes a large number of permission-
sparse roles, indicating that even it may be a tenuous fit
for the workload. More importantly, though, our case study
demonstrates that the concepts of our two-facet suitability
analysis framework can be applied to a realistic workload
and evaluate access control systems that are common in
practice with respect to that workload. Our simulation
procedure allows us to easily determine the overheads of using
each system, and with an average runtime of around eight
minutes per five-month simulation run, does so efficiently.
The simulation procedure is also trivially parallelizable (since
each run is independent), further enforcing its feasibility.

7. DISCUSSION AND FUTURE WORK

Requirements, Redux In Section we outlined require-
ments to guide the development of our suitability analysis
framework. We now discuss the degree to which each re-
quirement was met. The [Domain Ezxploration|requirement is
addressed by our workload formalism and our Monte Carlo
simulation procedure: the former allows the analyst to specify
a broad range of workloads, while the latter enables cost anal-
ysis over many workload instances. |Cooperative Interaction|
is met by combining our invocation formalism with the WSP
solver leveraged by ACCostEvalSim: constrained workflows ar-
ticulate the ways in which cooperation must be carried out,
while the use of actor graphs and the WSP solver ensures the
generation of compliant traces. Although this paper makes
use of a fixed set of implementation guarantees to define im-
plementation safety, this is not mandatory. Proofs of safety
are carried out manually, allowing any notion of safety to be
used and providing [Tunable Safety Sectiondemonstrated
that our notion of cost measure is capable of representing
a wide range of system- and human-centric costs and thus
provides [Tunable Costsl Supporting multi-user workflows
is seemingly at odds with the requirement, as
the workflow satisfiability problem has been shown to be
NP-complete [26]. However, the proof of Theorem [1| makes
use of recent results [4] to show that ACCostEvalSim is fixed-
parameter tractable in maximum task length (typically a
small constant). More concretely, simulating each 5-month
period in our case study took, on average, around 8 min-
utes. The requirement is addressed in Appendix [B]
where we discuss how to calculate confidence intervals for
point estimates of cost. In conclusion, the analysis framework
developed in this paper meets each of the desiderata outlined
in Section and provides a flexible, efficient, and pre-
cise mechanism for analyzing instances of the access control
suitability analysis problem.

Change Change
guarantees cost measures
v) vi
Formalize Formalize Qualitative Quantitative Choose
workload systems analysis analysis system
A
Drop
systems

Figure 6: A possible two-facet, suitability analysis workflow
supported by our framework

Unified Workflow This work explores a qualitative analy-
sis in which we fix the security guarantees that implemen-
tations are required to preserve, and a single instance of
quantitative analysis revolving around the implementations
constructed during the fixed qualitative analysis. While this
is an appropriate and demonstrative case study that sup-
ports the practical usefulness of our framework, in practice,
analyses may be much more complex. For instance, quali-
tative analysis may yield very secure implementations (i.e.,
those that preserve very strict requirements), but quantita-
tive analysis may reveal that all of these implementations
are infeasibly inefficient. As a result, although a system
may be capable of admitting an implementation satisfying
stronger security guarantees, it may not necessarily be worth
the additional cost to do so. The trade-off between strictness
of security guarantees and efficiency became apparent in a
more detailed case study that we conducted in prior work [9].
In this case, we chose to conduct cost analysis using the
strongest expressiveness guarantees that allowed a feasible
(i-e., quadratic or better) implementation using each candi-
date system. In general, this trade-off may inspire an analyst
to revisit any number of the inputs to the analyses. For
example, one may consider multiple implementations that
preserve a range of weaker security guarantees and higher
efficiencies. One might also consider introducing additional
candidate systems. Thus, a practical analysis may be less lin-
ear than our case study and incorporate more backtracking,
as in, e.g., Fig. [f] The techniques presented as part of our
two-facet suitability analysis framework are general enough
to naturally support such complex analysis workflows.

Future Work We have identified several important direc-
tions for future work in suitability analysis. Small changes in
an access control system can be the difference between being
able or unable to implement a workload safely [11] and/or
efficiently [9]. To maximize reuse of existing, trusted systems,
we are developing methods that allow an analyst to make
small tweaks to a system that are safe (i.e., that preserve its
desirable security properties and capabilities) while enabling
greater expressiveness and/or efficiency. We have already
shown that one particular method of tweaking systems is safe
with respect to strong security guarantees, and have used this
method to increase systems’ expressiveness, allowing them to
satisfy new workloads [8]. We are working to generalize this
technique, formalize additional methods of tweaking, and
prove safety for a range of security guarantees.

Encouraged by our success in using parameterized expres-
siveness, we are also working to extend the core concept of
this expressiveness framework by defining granular sets of
implementation guarantees that are more closely grounded in
access control application. Rather than providing guarantees

that prevent certain, somewhat arbitrary types of abuse, we
aim to provide guarantees that reflect what an implemen-
tation mapping can do without violating the assumptions
inherent in the application’s usage of the chosen system.

Finally, this paper focuses on a form of the suitability
analysis problem that is specific to access control. However,
we believe that a more general formulation could enable
better understanding of the trade-offs between the formal
requirements and practical costs of solutions to a wider range
of security problems.

8. CONCLUSION

Historically, most work regarding the formal analysis of ac-
cess control systems has focused on expressive power, yielding
a meaningful view of a system’s capabilities but an incom-
plete view of its suitability for any particular application. In
contrast, this work formalizes the suitability analysis problem
to address both expressiveness and efficiency, and presents
a methodology for application-specific evaluation of access
control systems’ suitability.

We show that this methodology satisfies a number of for-
mal requirements for suitability analysis frameworks, cover-
ing flexibility, tractability, and accuracy. Furthermore, we
present a case study that provides practical validation of
the applicability of our methods to a realistic access control
problem. Several access control systems (two role-based sys-
tems and traditional UNIX permission bits) are shown to
be capable of implementing an academic conference work-
load with uniformly strong expressiveness guarantees but
varying degrees of efficiency, enforcing the importance of
measures aside from expressiveness and the significance of
the suitability analysis problem.

Acknowledgements This work was supported in part by
the National Science Foundation under awards CNS—0964295
and CNS-1228697.

9. REFERENCES

[1] P. Ammann, R. J. Lipton, and R. S. Sandhu. The
expressive power of multi-parent creation in monotonic
access control models. JCS, 4(2/3):149-166, 1996.

[2] Kay S. Anderson et al. Sword: scalable and flexible
workload generator for distributed data processing
systems. In Winter Simulation Conference (WSC),
pages 2109-2116, Dec 2006.

[3] A. Chander, J. C. Mitchell, and D. Dean. A
state-transition model of trust management and access
control. In IEEE CSFW, pages 27-43, 2001.

[4] J. Crampton, G. Gutin, and A. Yeo. On the
parameterized complexity and kernelization of the
workflow satisfiability problem. ACM TISSEC, 16(1),
2013.

[5] David F. Ferraiolo et al. Proposed nist standard for
role-based access control. ACM TISSEC, 4(3):224-274,
2001.

[6] G. R. Ganger. Generating representative synthetic
workloads: An unsolved problem. In International
CMG Conference, pages 1263-1269, Dec 1995.

[7] S. Garfinkel, G. Spafford, and A. Schwartz. Practical
UNIX and Internet Security. NIST special publication:
Computer security. O’Reilly Media, 2003.

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

(25]

(26]

27]

W. C. Garrison III, A. J. Lee, and T. L. Hinrichs. The
design and demonstration of an actor-based,
application-aware access control evaluation framework.
Technical Report arXiv:1302.1134, Feb 2013.

W. C. Garrison III, Y. Qiao, and A. J. Lee. On the
suitability of dissemination-centric access control
systems for group-centric sharing. In CODASPY, 2014.
M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
Protection in operating systems. CACM, 19(8):461-471,
Aug 1976.

Timothy L. Hinrichs et al. Application-sensitive access
control evaluation using parameterized expressiveness.
In IEEE CSF, June 2013.

J. Hromkovic. Algorithmics for Hard Problems:
Introduction to Combinatorial Optimization,
Randomization, Approximation, and Heuristics.
Springer-Verlag, Berlin, Heidelberg, 2010.

V. C. Hu, D. F. Ferraiolo, and D. R. Kuhn. Assessment
of Access Control Systems. National Institute of
Standards and Technology, 2006.

Ram Krishnan et al. Group-centric secure
information-sharing models for isolated groups. ACM
TISSEC, 14(3):23, 2011.

Ram Krishnan et al. Foundations for group-centric
secure information sharing models. In ACM SACMAT,
pages 115-124, 2009.

A. Law. Simulation Modeling and Analysis.
McGraw-Hill, 2006.

N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond
proof-of-compliance: security analysis in trust
management. J. ACM, 52(3):474-514, May 2005.

T. M. Liggett. Continuous Time Markov Processes: An
Introduction. Graduate Studies in Mathematics Series.
American Mathematical Society, 2010.

R. J. Lipton and L. Snyder. A linear time algorithm for
deciding subject security. J. ACM, 24(3):455-464, 1977.
I. Molloy, P.-C. Cheng, and P. Rohatgi. Trading in risk:
using markets to improve access control. In NSPW,
2008.

S. Osborne, R. Sandhu, and Q. Munawer. Configuring
role-based access control to enforce mandatory and
discretionary access control policies. ACM TISSEC,
3(2):85-106, May 2000.

R. Sandhu. Expressive power of the schematic
protection model. JCS, 1(1):59-98, 1992.

Ravi S. Sandhu et al. Role-based access control models.
IEEE Computer, 29(2):38-47, 1996.

R. S. Sandhu and S. Ganta. On testing for absence of
rights in access control models. In IEEE CSFW, pages
109-118, 1993.

M. V. Tripunitara and N. Li. A theory for comparing
the expressive power of access control models. JCS,
15(2):231-272, 2007.

Q. Wang and N. Li. Satisfiability and resiliency in
workflow authorization systems. ACM TISSEC, 13(4),
2010.

Dana Zhang et al. RoleVAT: Visual assessment of
practical need for role based access control. In ACSAC,
pages 1322, Dec 2009.

APPENDIX
A. PROOF OF THEOREM 1

Theorem [I Assuming that workflow constraints are restricted
to {=,#} (i.e., binding and separation of duty), the simu-
lation procedure ACCostEvalSim is fixed-parameter tractable
with the number of actions in the largest task (i.e., the size
of the largest disjoint subgraph of the workflow graph).

PROOF Our proof is by observation of Algorithm[I] The first
loop (for all Y € 9)) handles assignments and initializations.
The final loop (for all)’ €) outputs results. The main
loop, then, contains all of the computationally intensive code.

The expensive section of the algorithm starts after several
nested loops, adding multiplicative factors for number of
time steps (T /t), number of systems (|2)]), and number of
actors. The steps with computational overhead are nextAc-
tion, which polls an actor machine for the next action, and
WSat, which calculates whether a particular action can be
taken by an actor without causing any workflow instances
to become unsatisfiable (i.e., WSat solves an instance of the
WSP problem).

By previous work [26], WSP can be solved in O(C - A%),
where C' is the number of constraints, A is the maximum
number of actors, and « is the number of steps in the largest
task (i.e., the size of the largest disjoint subgraph of the work-
flow graph). This greatly exceeds nextAction, which executes a
single step in a continuous-time probabilistic machine (poly-
nomial in actor machine size). Thus, the dominant factor in
the complexity of Algorithm [1fis O(S -C-T- AO‘H), where
S = |9)| is the number of systems and T' = T/t is the num-
ber of time steps to simulate. Since T is an input, this means
the algorithm is pseudo-polynomial in 7" and FPT in «a. Since
FPT is considered to be a generalization of pseudo-polynomial
time [12], we refer to the complexity of Algorithm [I] as FPT
thus meeting our definition of tractable.

B. SIMULATION DRIVERS

Algorithm 2 Monte Carlo driver for ACCostEvalSim

Input: 2), set of candidate systems

Input: X, set of implementations (VY € 9 : 0y €)
Input: €, set of cost measures (7 = (R, 4+, <) € €)
Input: L, set of cost functions (VY € 9,C € € : Zgj € L)
Input: I = (W,, M), invocation mechanism

Input: Pr(s), probability distribution over start states
Input: x, number of Monte Carlo runs

Input: Ty, goal time

Input: ¢, time step

procedure ACCostEvalMC(2), 33, €, L, I, Pr (s), x, T, t)
for all [1, x] do > Monte Carlo loop
sp + random sample from Pr (s)
ACCostEvalsim (), £, €, L, I, sg, T¢, t)

Since ACCostEvalSim executes only a single run of the simu-
lation, in this appendix we present two drivers for using this
simulation procedure for different analysis goals.

Algorithm [2] presents ACCostEvalMC. This driver utilizes
the Monte Carlo technique; it calls ACCostEvalMC repeatedly,
each time randomly sampling a start state from the given
distribution. This allows the analyst to generate a large
number of data points across a predefined pattern of start
states, which makes it particularly effective in detecting
trends across various start states. For example, in Section [f]
we randomly choose a number of users in the system for each

run, allowing us to see the effect this parameter has on the
costs of using each system.

Because the repeated execution in ACCostEvalMC contributes
to the complexity of the full analysis by only an additional
pseudo-polynomial factor, ACCostEvalMC, like ACCostEvalSim is
in FPT.

Corollary 5 Under the same assumptions as Theorem
the simulation procedure ACCostEvalMC is in FPT.

PROOF The driver ACCostEvalMC calls ACCostEvalSim x times.
Thus, the runtime complexity of ACCostEvalMC is a factor of x
greater than that of ACCostEvalSim. Since x is an input, this
contributes an additional pseudo-polynomial factor over the
runtime complexity of ACCostEvalSim, and thus ACCostEvalMC
is in FPT. O

Algorithm 3 Confidence-bounding driver for ACCostEvalSim

Input: 2), set of candidate systems

Input: X, set of implementations (VY € 9 : 0y € %)
Input: €, set of cost measures (7 = (R X time, +, <) € €)
Input: L, set of cost functions (VY € 9,C € € : é%} € L)
Input: I = (W,%, M), invocation mechanism

Input: sg, start state

Input: Tj, goal time

Input: t, time step

Input: u € (0, 1), desired confidence level

Input: v € (0,1), desired tolerance

procedure ACCostEvalCl(Y), 3, €, L, I, 50, Ty, t, u,v)
n<+ 0
52(n)

[n]

while t),,| 11 w/2 >wv-X(n) do

n <+ n U ACCostEvalsim (), 5, €, L, I, s, Ty, t)

In the interest of satisfying the requirement, we
also present a second driver, which allows the analyst to

achieve an intended confidence in the cost value generated
for a particular start state. Using this approach, we can
decide the number of simulation runs to conduct based on a
desired confidence and the assumption of a particular distri-
bution of costs across runs, terminating when a satisfactory
confidence is reached. For example, assuming a normal distri-
bution of costs across runs, we can use the fixed-sample-size
procedure for point estimate of a mean [16], which says that
the confidence interval for a mean is:

5%(n)

X(n) :‘:t‘n|,171,% |n|

— 2
where X (n) is the sample mean, Slé‘")

ance, and t, ~ is the critical point for the t-distribution with
v degrees of freedom. The resulting range is an approximate
100(1 — «)-percent confidence interval for the expected av-
erage cost of the system. During simulation, we repeatedly
calculate the confidence interval for incrementing n, terminat-
ing when a satisfactory confidence is reached. For example,
assuming we desire a 90-percent confidence interval of no
more than 0.1 of the mean, we run the simulation repeatedly
until:

is the sample vari-

n
tin|—1,0.95 7‘7§|) <0.1X(n)

Algorithm [3| demonstrates ACCostEvalCl, which uses this ap-
proach to execute ACCostEvalSim until a desired confidence is
reached, rather than executing for a fixed number of runs.

	Introduction
	Prior Work and Expressiveness
	Prior Work: Expressiveness
	Parameterized Expressiveness
	Prior Work: Simulation Techniques

	Suitability Analysis
	Problem Definition
	Solution Requirements
	Approach Overview

	Trace Generation
	Quantitative Cost Analysis
	Cost Measures
	Simulation Procedure

	Case Study
	Workload and Candidate Systems
	Qualitative Analysis
	Quantitative Analysis
	Summary of Findings

	Discussion and Future Work
	Conclusion
	References
	Proof of Theorem 1
	Simulation Drivers

