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In this paper paper we discuss a method of linking databases with domain knowl-
edge to provide an extended semantics for use with statistical, machine learning, and
automated discovery programs. We focus on the use of data in conjunction with domain
knowledge for automated discovery in medical databases, and show how an induction
program can find new knowledge in a database by reasoning about classes and relation-
ships that are implicit in the original data, but explicit in the representation of domain
knowledge.

1 Introduction.

In this paper paper we discuss a method of linking databases with domain knowledge to
provide an extended semantics for use with statistical, machine learning, and automated
discovery programs. We focus on the use of data in conjunction with domain knowledge
for automated discovery in medical databases, and show how an induction program can
find new knowledge in a database by reasoning about classes and relationships that are
implicit in the original data, but explicit in the representation of domain knowledge.

Programs for automated, inductive discovery have been shown to be effective in
discovering patterns from data. Some discoveries have been made that are important
enough to be published in the literature of the scientific subject domain. Although
induction programs by themselves can make interesting discoveries, we focus here on
removing the severe restriction that a learning program always works within a small,
fixed, semantic bias. We illustrate these points in the domain of plant exposures, with
the RL program extended and applied to a large, multi-year database of toxic and
non-toxic plant exposures.

The present work is far from complete; however, it shows how knowledge bases
and databases codified for other purposes can introduce an open-endedness to the bias
within which an induction program operates. Our long-term view is to maintain access,
perhaps over the internet, to large stores of background knowledge relevant to a given
domain of inquiry. Our goal is that this background knowledge can be linked to the data
for different induction problems to extend the semantic bias of the discovery program.

2 The Domain.

We are working to discover patterns in a large set of data recorded from calls to poison
centers. The data we are focusing on, drawn from the American Association of Toxic
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Control Centers Toxic Exposure Surveillance System (AAPCC TESS), describe inci-
dents of potentially toxic exposures of people to plants—most frequently, incidents of
children eating parts of plants. The database contains about one million such records
collected by poison control centers across the U.S. over the last 10 years. Because
it is the policy of poison centers to record follow-up information we have a record of
symptoms, recommended actions, actual actions, and outcome, as well as demographic
information. Most of the time, poison centers are able to gather sufficient information
about the plants to identify with high confidence the genus and species.

Of primary importance are patterns that indicate when a victim should be sent to
a hospital emergency room and when it is safe to recommend waiting. However, as we
point out, there are other interesting discoveries to me made with these data, especially
when linked to botanical, geographical, and climatic knowledge bases.

3 The Need for Background Knowledge.

The representation most commonly used by statistical, inductive learning, and discovery
systems to describe problems is the simple feature vector. However, scientific domain
knowledge takes on a richer, more structured form. Prominent in any scientist’s store
of useful background knowledge are various taxonomies, categories and relationships
between concepts. To illustrate this, consider the following two scenarios.

A sequence of potentially poisonous plant exposure cases may have related sub-
stances: one person ate Toxicodendron radicans, another Toxicodendron diversilobum,
and another Toxicodendron vernix. Knowing the genus-species relationship in botani-
cal naming, one would naturally say that these are all Toxicodendron exposures. This
is important since the symptoms and treatment for exposure to the various species in
the Toxicodendron genus are similar. More importantly, a scientist (or program) that
knows the botanical taxonomy would see the commonality even if other, less obvious,
names were used. Now suppose one is presented with exposures from various species
in the Araceae family, and also from Rheum rhabarbarum (common rhubarb). Given
that the irritant calcium oxalate is present throughout the Araceae family, and in the
leaves of the R. rhabarbarum species, one might reason about common treatments for
exposure to these plants jointly based on their common toxin.

These examples show the importance of using domain knowledge to describe and
explain sets of items. In the first example, a naturally occuring class was used. In the
second, we considered a common feature of items in a set. These forms of reasoning are
particularly important in epidemiological problems where occurrences and distributions
are analyzed in terms of commonalities introduced by demographic, geographic, and
other relational factors.

4 Augmenting Databases with Inheritance Networks.

To automate the forms of reasoning illustrated above, we need to represent individual
data items as well as their relationships to general concepts. We can do this in a uniform
way using inheritance networks, which provide an efficient way to navigate and explore
the space of relationships among data and concepts.
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Figure 1: Linking Data to Botanical Knowledge.

Figure 1 illustrates how several exposure cases can be linked to part of a knowledge
base of plants. Only a few records and their links to a small part of the botanical
knowledge base are shown. Unlabeled arrows are ISA links, which can be interpreted
as set inclusion. Thus, the link T. radicans → Toxicodendron means that every plant in

the species T. radicans is also in the genus Toxicodendron. The role link Araceae
contains
→

Calcium oxalate means that plants in the Araceae family contain calcium oxalate. Since
calcium oxalate is present throughout the Araceae family we put the link at the family
level, and let lower nodes inherit it. Calcium oxalate is specific to R. rhabarbarum
(within its family), so the contains link is put directly on that species’ node.

For both automated discovery systems and database systems, the ability to scale up
is very important. At this point, two aspects of the representation that facilitate scaling
are apparent. First, inheritance networks are a compact representation. Background
information is not duplicated across similar data items. Second, these predicates can
be evaluated very quickly using marker-propagation algorithms. This is important
since an inductive learning algorithm will evaluate many candidate predicates in its
search. To find which exposures involved calcium oxalate, the program marks the node
Calcium oxalate, then propagates markers down sequences of ISA links, and the roles
contains and substance. The final markers will be attached to the extension of the
predicate—in this case the nodes Exposure-4, Exposure-5, and Exposure-6. Special care
must be taken if the network allows nonmonotonic links corresponding to exceptional
cases, but the basic idea is the same.

5 Automatic Discovery Using Domain Knowledge.

We now have the machinery to describe the Knowledge-Based Rule Learner (KBRL)
with an example. Consider the network in Figure 2. Six examples of Datura exposures
are shown, connected to a database of geographical knowledge with location links. The
locations in the geographic knowledge base are, in turn, connected to a database of tem-



perature zones with zone links in the diagram. (Poisonings are also connected to several
smaller knowledge bases, including one for times and dates, showing the relationships
of dates, months, and seasons.) Datura exposures normally occur in August-October;
here we are interested in characterizing an anomalous subset of toxic exposures that
occur in May. Thus, we direct the system to search for a predicate that is true of exactly
exposures 2-4.
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Figure 2: Characterizing May Datura Exposures.

The RL algorithm is a top-down (general-to-specific) inductive learning algorithm,
so the system starts with general predicates and attempts to specialize them. The
user of the system defines criteria with which the system will judge a discovery to be
interesting. For this example, let us use the simple criteria: an interesting pattern is
one that covers all of the May exposures, and none of the other exposures. (Of course,
discovering a pattern characterizing a concept is seldom this easy. Predicates have to be
evaluated statistically, and the concept will usually be covered only partially or covered
by a disjunction of predicates.) The system starts with the general predicate:

location(x) = US

This is specialized to:

location(x) = Southwest

The new rule still does not capture the concept, so an additional conjunct is added:

location(x) = Southwest & zone(location(x)) = Any-Zone

This is further specialized to become:

location(x) = Southwest & zone(location(x)) = Hot



This rule is accepted since it covers the data items in the concept. In practice, rules
are evaluated statistically and the system may have to learn several rules to adequately
cover a concept.

The final learned rule is important in two respects. First, by appealing to classes
mentioned in the knowledge base individual cases are covered at once. Thus, exposures
2-4 are all found to be in hot regions, although in the database they are listed as oc-
curring in separate locations. Second, the rules are phrased in underlying, fundamental
terms, rather than specific surface features.

6 Advantages of Our Representation of Background

Knowledge.

Scientific discovery involves finding regularities and generalizations that are potentially
interesting, often expressed in terms of known categories and relationships. We may
not know a priori which categories or relationships are needed, so the knowledge base
covering information that is possibly relevant to the domain may be quite large.

The use of background knowledge consisting of categories and relations has two
complementary functions, adding to the expressive power and efficiency of any system
that accesses them:

Categories and relations enable inductive generalization based on more complex

reasoning than simple pattern matching of features. If all or most of the items we
have seen thus far in a category have a certain property, we can induce that the
other items in that category also have that property.

Categories and relations focus exploration. Linking data to domain knowledge
provides a strong bias on the set of predicates. Furthermore, these predicates are
hierarchically arranged, imposing a logical top-down search strategy.

Scientific knowledge is often based on taxonomic relationships, with inheritable
properties linked to classes. Inheritance networks are a natural, intuitive method for
representing these forms of knowledge. They are easily specified and easily understood.

In standard feature-vector learners the semantic bias only includes features specifi-
cally associated with the items. For instance, a poisoning incident may contain values
for age, sex, location, substance, etc., but there is no natural way to include information
about the location, substance, its constituents, etc. For such learners, the only option is
to flatten out the knowledge base by creating a new feature for each possible predicate
that might be used to describe an example.

In addition to general categorical and relational information, scientific background
knowledge often contains exceptional cases, requiring the ability to represend and reason
with nonmonotonic information. The ability to reason nonmonotonically also facilitates
the use of partial databases. For example, a particular database may have important
properties specified at a very fine granularity (e.g., at the individual zip-code level),
but may cover only a portion of the data. The use of defaults allows areas not covered
at such a fine granularity to inherit properties from coarser-grained entities (e.g., from
the state level).



Since our objective is to provide a context of domain knowledge for a pattern-
discovery engine, it is essential that we can represent compactly a very large amount
of background knowledge, and reason with it efficiently. This is necessary, because it
is impossible to know exactly what will be relevant to the next discovery; assuming
that one will be able to specify a small amount of background knowledge that will be
sufficient begs the very question of discovery. A related advantage of using inheritance
networks to represent background knowledge is that they are efficient to search. Rela-
tional predicates can be evaluated against a combination database and knowledge base
using fast marker-propagation algorithms.

7 Applications in Botanical Toxicology.

The American Association of Toxic Control Centers Toxic Exposure Surveillance System
(AAPCC TESS) database lists exposures in terms of species, specific location, etc. In
order to extend the generality of the potential patterns discovered with this data, we
connected the AAPCC TESS data to a knowledge base of geographic areas and their
climates. We also used a knowledge base of botanical species, genera, and families.

The AAPCC TESS database has been used with these additional knowledge struc-
tures for our work with collaborators in toxicology and botany. Most of this work is
standard statistical analysis that is facilited by the additional categories. We have also
used both the RL and KBRL learning system with this data/knowledge base to charac-
terize Datura poisonings in terms of basic environmental factors classes of poisonings.
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