
Exploring Architectures for Cryptographic Access Control
Enforcement in the Cloud for Fun and Optimization

Stefano Berlato
Security and Trust Research Unit

Fondazione Bruno Kessler
Trento, Italy

sberlato@fbk.eu

Roberto Carbone
Security and Trust Research Unit

Fondazione Bruno Kessler
Trento, Italy

carbone@fbk.eu

Adam J. Lee
Computer Science Department

University of Pittsburgh
Pittsburgh, United States
adamlee@cs.pitt.edu

Silvio Ranise
Security and Trust Research Unit

Fondazione Bruno Kessler
Trento, Italy
ranise@fbk.eu

ABSTRACT
To facilitate the adoption of cloud by organizations, Cryptographic
Access Control (CAC) is the obvious solution to control data shar-
ing among users while preventing partially trusted Cloud Service
Providers (CSP) from accessing sensitive data. Indeed, several CAC
schemes have been proposed in the literature. Despite their differ-
ences, available solutions are based on a common set of entities—e.g.,
a data storage service or a proxy mediating the access of users to
encrypted data—that operate in different (security) domains—e.g.,
on-premise or the CSP. However, the majority of the CAC schemes
assume a fixed assignment of entities to domains; this has security
and usability implications that are not made explicit and can make
inappropriate the use of a CAC scheme in certain scenarios with
specific requirements. For instance, assuming that the proxy runs
at the premises of the organization avoids the vendor lock-in effect
but may substantially undermine scalability.

To the best of our knowledge, no previous work considers how to
select the best possible architecture (i.e., the assignment of entities
to domains) to deploy a CAC scheme for the requirements of a
given scenario. In this paper, we propose a methodology to assist
administrators in exploring different architectures of CAC schemes
for a given scenario. We do this by identifying the possible archi-
tectures underlying the CAC schemes available in the literature
and formalizing them in simple set theory. This allows us to reduce
the problem of selecting the most suitable architecture satisfying
a heterogeneous set of requirements arising from the considered
scenario to a Multi-Objective Optimization Problem (MOOP) for
which state-of-the-art solvers can be invoked. Finally, we show how
the capability of solving the MOOP can be used to build a prototype
tool assisting administrators to preliminary perform a “What-if”

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’20, October 5–9, 2020, Taipei, Taiwan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6750-9/20/10. . . $15.00
https://doi.org/10.1145/3320269.3384767

analysis to explore the trade-offs among the various architectures
and then use available standards and tools (such as TOSCA and
Cloudify) for automated deployment in multiple CSPs.

CCS CONCEPTS
• Security and privacy → Access control; Cryptography.

KEYWORDS
Cryptographic Access Control; Architecture; Optimization

ACM Reference Format:
Stefano Berlato, Roberto Carbone, Adam J. Lee, and Silvio Ranise. 2020.
Exploring Architectures for Cryptographic Access Control Enforcement
in the Cloud for Fun and Optimization. In Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security (ASIA CCS ’20),
October 5–9, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3320269.3384767

1 INTRODUCTION
Cryptographic Access Control (CAC) allows organizations and
users to enforce Access Control (AC) on cloud-hosted sensitive data
while preserving data confidentiality with respect to both external
attackers and the cloud itself. Several CAC schemes have been pro-
posed in the literature, each embodying particular features through
different cryptographic primitives. Among others, Attribute-Based
Encryption (ABE) is employed by some CAC schemes [13, 18, 39]
due to its ability to enforce rich Attribute-Based AC (ABAC) policies.
Other schemes combine asymmetric and symmetric cryptography
in hybrid cryptosystems [10], employ lazy revocation [40] or ex-
press other AC models like Role-Based AC [41] (RBAC). Others
adopt proxy re-encryption [32] or onion encryption [29] to offload
the burden of cryptographic operations to the cloud.

Problem Statement. While these CAC schemes offer advanced
and remarkable features, they are often not suitable for a concrete
use [10]. For instance, ABE applied to AC in the cloud “only exists
in an academic world and it is often difficult to find a practical use
of ABE for a real application” [18]. Since researchers often focus
on high-level features only, little space is left for aspects related
to the deployment of their scheme in a given scenario. An impor-
tant aspect for the deployment of CAC schemes is the definition
of the software entities that compose the CAC scheme along with

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

208

https://doi.org/10.1145/3320269.3384767
https://doi.org/10.1145/3320269.3384767

the entities’ logical or physical locations (i.e., the definition of the
“architecture” of the CAC scheme). However, CAC schemes are sel-
dom provided with an architecture or this is usually fixed and it
cannot adapt to the requirements (e.g., enhance architecture scal-
ability or reduce architecture-related monetary costs) of different
scenarios. Indeed, while CAC has been studied in several scenarios
like eGovernment [15, 21] and eHealth [1, 7, 15, 25, 28, 32], we
note that different scenarios have different requirements on the
architectures of CAC schemes (i.e., architectural requirements). For
instance, the eGovernment scenario may favour scalability and reli-
ability of the architecture, while the eHealth scenario could require
more control over the data. Unfortunately, the lack of study on
the relationship between the architectures and the requirements
of scenarios hampers the adoption of CAC schemes, since these
are incapable of adapting to the mutable requirements of different
scenarios. In other words, there is little or no research on how to fill
the gap between CAC schemes in the abstract and an architecture
for a deployment in a given scenario.

Solution. In this paper, we propose a methodology for finding
the optimal architecture meeting the specific requirements of a
given scenario for the enforcement of CAC schemes in the cloud.
In particular, our contributions are as follows:

• we provide an architectural model to capture elements—
namely resources, entities and domains— commonly involved
in the architectures of CAC schemes. The architectural model
formally expresses the set of the possible architectures of
CAC schemes which preserve the expected confidentiality,
integrity and availability properties of the involved resources.
Then, to assess the model generality, we illustrate how the
architectures of some state-of-the-art CAC schemes can be
specified in our architectural model;

• we define how to evaluate different architectures based on
security and usability goals that may be desirable in different
scenarios. Then, we formalize a MOOP (which can be solved
leveraging well-known techniques for Pareto optimality) to
select the most suitable architecture that satisfies the goals
of a specific scenario;

• we give a proof-of-concept application of how the architec-
tural model and the MOOP can be used to assist administra-
tors in the deployment of CAC schemes architectures. We
develop a web dashboard1 to solve a specific formalization
of the optimization problem and perform a “What-if” anal-
ysis to further tune the requirements of the scenario and
check the resulting architecture in real-time. To ensure cloud
portability, interoperability and automatic deployment of the
resulting architecture, we rely on the TOSCA (Topology and
Orchestration Specification for Cloud Applications) OASIS
standard to automatically generate a deployable specification
of the resulting architecture. Finally, we implement a CAC
scheme supporting such an architecture (i.e., the scheme pro-
posed in [10]) and provide a fully working prototype with
Amazon Web Services (AWS).

The paper is structured as follows. In Section 2 we introduce
the background. In Section 3, we illustrate two important scenarios

1see https://stfbk.github.io/complementary/ASIACCS2020

often considered in the cloud-relevant literature, namely eGovern-
ment and eHealth, while in Section 4 we introduce our architectural
model. We present the optimization problem in Section 5 and our
validation deployment in Section 6. In Section 7 we discuss related
work and we conclude the paper with final remarks and future
work in Section 8.

2 BACKGROUND
In this section, we introduce AC, RBAC and present the high-level
functioning of a cryptographic RBAC scheme.

2.1 Access Control
Samarati and De Capitani di Vimercati [34] defined AC as “the pro-
cess of mediating every request to resources maintained by a system
and determining whether the request should be granted or denied”.
Resources usually consist of data such as files and documents. AC
is traditionally divided into three levels:

• Policy: this abstract level consists of the rules stating which
users can performwhich operations on which resources. The
policy is usually defined by the owner of the resources or of
the system (e.g., the organization);

• Model: this intermediate level is a formal representation of
the policy (e.g., RBAC [35] and ABAC [16] are two models)
giving the semantics to granting or denying users’ requests;

• Enforcement: this concrete level comprehends the hardware
and software entities that enforce the policy based on the
chosen model. The physical or logical location of these en-
tities along with their interactions (i.e., the architecture) is
part of the enforcement level.

These three levels are independent of each other. This allows eval-
uating different enforcement mechanisms for the same policy and
model.

RBAC is one of the most widely adopted AC models in which
Users are assigned to one or more roles. In the context of an orga-
nization, a role reflects an internal qualification (e.g., employee).
Permissions are assigned to one or more roles by administrators
of the policy. Users activate some roles to access the permissions
needed to finalize their operations (e.g., read a file). Formally, the
state of an RBAC policy can be described by the set of users U ,
roles R, permissions P and the assignments users-roles UR ⊆ U × R
and roles-permissions PA ⊆ R × P . A user u can use permission p if
∃r : ((u, r) ∈ UR) ∧ ((𝑟, 𝑝) ∈ PA). We note that role hierarchies can
always be compiled away by adding suitable pairs to UA.

There are two main classes of enforcements for AC. In the first
class, a trusted central entity decides whether to grant a specific
action on a resource to a given user. All resources are stored in one
or more trusted logical or physical locations (i.e., domains) to which
the trusted entity has full access. Unfortunately, this trusted entity
may not always be present in every scenario. Therefore, the second
class studies the enforcement of AC policies in partially trusted
domains [4, 9]. A partially trusted domain is a domain controlled
by a third-party (e.g., an external organization or a cloud service
provider) which faithfully performs the assigned instructions (e.g.,
store the data) but, at the same time, it tries to extract information
from the stored data. If data are sensitive, this behaviour may be
undesirable. A CSP is an example of a partially trusted domain,

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

209

as traditionally assumed in the literature of cloud computing [5].
Indeed, a report by the U.S. Federal Trade Commission [31] states
that CSPs regularly collect companies’ data without the latter’s
knowledge. When trust on the participant entities is limited, re-
sources are often encrypted to ensure confidentiality (e.g., through
encryption) and integrity (e.g., through signatures).

2.2 Cryptographic Access Control Schemes
In partially trusted environments, CAC is often used to enforce AC
while ensuring the confidentiality of sensitive data. Data are en-
crypted and the permission to read the encrypted data is embodied
by the secret decrypting keys. While implying a further compu-
tational burden (i.e., the cryptographic operations), CAC allows
encrypted data to be stored in partially trusted domains.

For concreteness, we present the CAC scheme proposed in [10]
for enforcing cryptographic RBAC policies, although our findings
can be generalized for other CAC schemes (e.g., [28, 32, 39–41]). To
abstract from low level details, we assume that all communications
occur through pairwise-authenticated and private channels (e.g.,
TLS). In the proposed scheme, each user 𝑢 and each role 𝑟 is pro-
vided with a pair of secret and public keys (ks𝑢 , k

p
𝑢) and (ks𝑟 , k

p
𝑟),

respectively. Each file is encrypted with a different symmetric key
ksym. To assign a user to a role, the role’s secret key ks𝑟 is encrypted
with kp𝑢 , resulting in {ks𝑟 }kp𝑢 . To give read permission to a role, the
symmetric key ksym is encrypted with kp𝑟 , resulting in {ksym }kp𝑟 .
The use of both secret-public and symmetric cryptographic schemes
is usually called “Hybrid Encryption” [10]. The policy is enforced
through the encrypted cryptographic keys and further auxiliary
data (e.g., files version numbers and digital signatures), together re-
ferred to as metadata. Both encrypted data and metadata are stored
in the cloud. To read a file, a user performs the following actions
through a software entity usually called proxy:

(1) The user decrypts the role’s encrypted secret key {ks𝑟 }kp𝑢 with
his secret key ks𝑢 , obtaining ks𝑟 ;

(2) The user decrypts the encrypted symmetric key {ksym }kp𝑟
with ks𝑟 , obtaining ksym;

(3) The user decrypts the file with ksym.

To write on a file, a user performs the same operations to obtain
the symmetric key ksym and then sends the new (encrypted) file
to the cloud. Finally, an entity in the cloud, usually called Refer-
ence Monitor (RM), checks whether the user has actually write
permission before accepting the new file.

3 SCENARIOS AND PROBLEM STATEMENT
We study scenarios in which an organization outsources the storage
of sensitive data to the cloud and wants to use a CAC scheme to
preserve the data confidentiality in presence of partially trusted
Cloud Service Provider (CSP). Besides the basic requirement of
ensuring data confidentiality (i.e., besides enforcing the AC pol-
icy), each scenario has different architectural requirements (e.g.,
simplify maintenance or enhance reliability). We note that differ-
ent CAC schemes architectures have a different impact on these
requirements. For instance, the architecture of the CAC scheme
presented in Section 2.2 assumes the data and the RM to stay in
the cloud domain, while the proxy is installed in the computer of

each user. By using the cloud, this architecture gains scalability
and reliability, but it may suffer from high cloud-related monetary
costs and the negative “Vendor Lock-in” effect, i.e., the more cloud
services are used, the more difficult is to switch to another cloud.
Hosting the RM at the premises of the organization can partially re-
lieve these issues but may give rise to other concerns (e.g., software
maintenance effort and weakness to Denial-of-Service attacks). In
this paper, we develop a tool-supported methodology that assists
administrators in evaluating these kinds of trade-offs.

Preliminary, we present two scenarios often studied in the lit-
erature of CAC schemes, namely eGovernment and eHealth. We
discuss their requirements and highlight the importance of carefully
analyzing architectural trade-offs when deploying a CAC scheme.

3.1 eGovernment Scenario
The eGovernment scenario is getting more attention [15, 21] as
the Public Administrations (PAs) in different countries (e.g., Italy2,
Spain3) start a digitalization process to simplify the maintenance
of their infrastructure by using the cloud.4

Based on technologies that include mobile and web applications
together with electronic identity services (besides cloud computing),
PAs can develop and provide a portfolio of public services. Suppose
a PA wants to allow citizens to access government-issued personal
documents (e.g., tax certificates) from anywhere and anytime. A
European citizen may use eIDAS5 to authenticate in an online
service of a foreign European country. Then, through a CAC scheme,
the citizen may share his data (e.g., an electronic passport or the
tax certificate) with a public authority of the foreign European
country while still preserving end-to-end confidentiality [15]. We
summarize some of the most important architectural requirements
of the eGovernment scenario:

• eGR1 - enable citizens’ access from anywhere and anytime;
• eGR2 - simplify the maintenance of the architecture;
• eGR3 - limit CSP-related costs for budget constraints;
• eGR4 - prioritize the scalability of the services.

It should be clear how difficult it is to select the most suitable
CAC scheme architecture for the requirements of the eGovernment
scenario, as this means finding the architecture that simultaneously
maximizes the achievement of each requirement.

3.2 eHealth Scenario
The problem of storing medical data in the cloud has been widely
studied in the literature [1] by many researchers [7, 15, 21, 25,
28, 32, 36, 40], along with the eHealth scenario requirements. For
instance, Hörandner et al. [15] discussed the possible need for track-
ing patients’ medical data from multiple devices (e.g., glucometers)
continuously. These data are sent to the smartphone and finally en-
crypted and uploaded to the cloud. Domingo-Ferrer et al. [7] pointed
out that, besides medical data (e.g., Blood sugar, LDL Cholesterol),
also metadata should be hidden from the CSP, since they may leak
sensitive information. Suppose a person with a mental disorder is

2https://www.agid.gov.it/it/infrastrutture/cloud-pa
3https://joinup.ec.europa.eu/collection/egovernment/news/spanish-government-
approv
4https://joinup.ec.europa.eu/
5https://www.eid.as/home

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

210

hospitalized in a clinic specialized for treating mental disorders. The
clinic is storing in the cloud the patients’ medical data encrypted
under a CAC scheme. However, suppose the CAC scheme expects
the patient’s name to be included in the metadata (e.g., in the AC
policy or in the name of the file). Therefore, the CSP may infer
that a specific person has a mental disorder. Consequently, the CSP
may share this information for targeted advertisements or with a
health insurance company that may then increase the insurance
premium of the person. We summarize some of the most important
architectural requirements of the eHealth scenario:

• eHR1 - hide metadata to avoid information leaking;
• eHR2 - prioritize redundancy to avoid medical data loss;
• eHR3 - limit the vendor lock-in effect.

As for the eGovernment scenario, it is not trivial how to find the
architecture satisfying all or the highest number of these require-
ments at the same time.

3.3 Problem Characterization
Generalizing the scenarios presented in Section 3.1 and Section 3.2,
we are interested in finding the CAC scheme architecture that
strikes the best possible trade-off among the several requirements
of a scenario. Depending on the scenario, there are many security
and usability goals to consider and requirements to balance. There-
fore, we argue that there is no single CAC scheme architecture that
fits all scenarios. There is a need to carefully evaluate different ar-
chitectures and find the one that maximizes the achievement of the
requirements of each scenario. We do this by first formalizing the
notion of CAC scheme architecture (Section 4) and then reducing
the problem of finding the optimal architecture to a multi-objective
optimization problem [22] (Section 5).

4 A MODEL FOR CAC ARCHITECTURES
While CAC schemes have different features, their architectures
leverage several common elements (e.g., cryptographic keys, proxy,
and reference monitor). We identify three sets to contain the basic
building blocks of our model, namely (cryptographic) Resources,
Domains and Entities. We also consider the set Properties to con-
tain the three basic security properties, namely C(onfidentiality),
I(ntegrity), and A(vailability). These sets are linked together by six
relationships: domains can contain (CanContain) entities and pre-
serve or not (Preserves) the security properties of resources, while
entities use (Uses) and host (Hosts) resources and inherit (Inherits) se-
curity properties required (Requires) by resources. Figure 1a shows
the situation as an Entity-Relation diagram where sets are depicted
as rectangles with rounded corners and relations as diamonds.

Below, we define the three sets and six relations and explain how
they are combined to specify an architecture for a CAC scheme. To
show expressiveness and adequacy, we specify several architectures
of CAC schemes proposed in the literature as instances of our
architectural model. Formally, we work in basic set theory and use
the standard notions of set membership (∈), containment (⊆), and
set comprehension ({·| · · · }). Sometimes, we write 𝑋 (𝑞) to denote
𝑞 ∈ 𝑋 for 𝑞 an element (a tuple) and 𝑋 a set (relation, respectively).
Figure 1 summarizes the concepts expressed in this section.

(a) Elements and Relationships

Requires

Resources
Hosts

Uses
Inherits

Entities

Properties

CanContainDomains

Preserves

(b) 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠 (𝑟𝑒𝑠, 𝑝𝑟𝑜)
PropertyResource C I A

encrypted data ✗ ✓ ✓
secret keys ✓ ✓ ✓
metadata ✗/✓ ✓ ✓

(c) 𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 (𝑑𝑜𝑚, 𝑝𝑟𝑜, 𝑟𝑒𝑠)

PropertyDomain C I A
clientu secret keysu , metadatau
on-premise ★ ★ ★
CSP - ★ ★

(d) 𝐻𝑜𝑠𝑡𝑠 (𝑒𝑛𝑡, 𝑟𝑒𝑠)

Entity Resources
proxyu secret keysu
proxy secret keys
RM -

MS metadata

DS encrypted data

(e)𝑈𝑠𝑒𝑠 (𝑒𝑛𝑡, 𝑟𝑒𝑠)

Entity Resources
proxyu metadatau , encrypted data
proxy metadata, encrypted data
RM metadata, encrypted data

MS -

DS -

(f) 𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑠 (𝑒𝑛𝑡, 𝑝𝑟𝑜, 𝑟𝑒𝑠)
Property

Entity C I A
proxyu secret keysu , metadatau secret keysu secret keysu
proxy secret keys, metadata secret keys secret keys

RM metadata𝑎 - -

MS metadata𝑎 metadata metadata

DS - encrypted data encrypted data

(g)𝐶𝑎𝑛𝐶𝑜𝑛𝑡𝑎𝑖𝑛 (𝑑𝑜𝑚, 𝑒𝑛𝑡)

Domain Entities

clientu
𝑏

on-premise

CSP
𝑐 𝑐

𝑎 If 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠(metadata, C);𝑏 proxyu 𝑐 If not 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠(metadata, C);

(h) Sets

𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑠 (𝑒𝑛𝑡, 𝑝𝑟𝑜, 𝑟𝑒𝑠) iff
((𝐻𝑜𝑠𝑡𝑠 (𝑒𝑛𝑡, 𝑟𝑒𝑠) ∧ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠 (𝑟𝑒𝑠, 𝑝𝑟𝑜))

∨(𝑈𝑠𝑒𝑠 (𝑒𝑛𝑡, 𝑟𝑒𝑠) ∧ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠 (𝑟𝑒𝑠,𝐶))
)

(1)

𝐶𝑎𝑛𝐶𝑜𝑛𝑡𝑎𝑖𝑛 (𝑑𝑜𝑚, 𝑒𝑛𝑡) iff
∀𝑝𝑟𝑜, 𝑟𝑒𝑠. ∃𝑟𝑒𝑠′

((𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑠 (𝑒𝑛𝑡, 𝑝𝑟𝑜, 𝑟𝑒𝑠) =⇒
𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 (𝑑𝑜𝑚, 𝑝𝑟𝑜, 𝑟𝑒𝑠′)) ∧ 𝑟𝑒𝑠 ⊑ 𝑟𝑒𝑠′

)
(2)

Figure 1: Summary of Basic Notions of CAC Schemes

4.1 Cryptographic Resources and Properties
The set Resources contains (cryptographic) resources of the follow-
ing types (see the column Resource in Table 1b):

• encrypted data: by definition, the architecture of a CAC
scheme involves data (e.g., files encrypted with ksym, as
introduced in Section 2.2) encrypted under an AC policy;

• secret keys: a CAC scheme expects a set of secret crypto-
graphic keys (e.g., the asymmetric keys of users and roles,
(ks𝑢 , k

p
𝑢) and (ks𝑟 , k

p
𝑟), and the symmetric keys of files, ksym,

as introduced in Section 2.2);
• metadata: intuitively, a CAC scheme needs also metadata
(e.g., the AC policy, public cryptographic keys, files version
numbers and digital signatures, as introduced in Section 2.2).

Since CAC schemes rely on these resources to properly function,
we require to preserve their integrity (i.e., prevent unauthorized
modifications) and availability (i.e., guarantee access when needed).
However, a resource may be sensitive or not (e.g., public crypto-
graphic keys are not sensitive). Therefore, we may require or not to
preserve the Confidentiality of a (cryptographic) resource. Table 1b

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

211

defines the relation Requires, i.e., it identifies the CIA properties
pro required by each resource res: ⟨res, pro⟩ ∈ Requires when the
cell at the row res and column pro shows the symbol ✓ whereas
⟨⟩res, pro⟩ ∉ Requires when it contains the symbol ✗.

We assume perfect encryption over data (i.e., the confidentiality
of the encrypted data cannot be compromised by attacking the
available cryptographic primitives) so that confidentiality of en-
crypted data is implied. On the contrary, the confidentiality of the
secret keys is crucial for the overall security of CAC schemes; we
add this as a requirement. Therefore, we require to preserve the
confidentiality of the keys. Finally, the sensitivity of the metadata
depends on the organization and the scenario. For instance, the
name of files can potentially disclose on what projects the organiza-
tion is working, while the AC policy can reveal the organization’s
internal hierarchy [41]. Depending on the organization’s judgment,
metadata confidentiality can be either required or not (✓/✗). We
note that sensitive metadata can be encrypted and turned into non-
sensitive metadata at the cost of additional overhead on the CAC
scheme. However, not all CAC schemes expect to encrypt metadata,
and some entities may need to access plain-text metadata anyway.
Therefore, we consider as optional the possibility to have sensitive
metadata.

4.2 Domains and Trust
Following [10] and [40], we identify three domains defined from
the organization’s point of view. Domains are containers for other
elements (e.g., a CSP hosting a database) and are grouped together
in the set Domains (see the column Domain in Table 1c):

• clientu is the domain in which the user u operates. We define
the clientu domain as the user’s u personal devices (e.g., his
laptop and smartphone). We assume that personal devices
are not shared among users and that access is protected
through passwords or similar authentication techniques. In
this way, each user operates independently from the other
users;

• on-premise is the domain in which the administrators operate.
Usually, the on-premise domain lies within the organization
as an area to which only authorized personnel can access
(e.g., a data centre to which only administrators can access,
either physically or virtually);

• CSP is the domain of a third-party offering cloud services,
like computing and storage of files. It is a logical area and is
geographically distributed [6].

The fact that a domain dom is assumed to preserve (or not)
a CIA property pro of a resource res it contains is formalized as
Preserves(dom, pro, res). We show in Table 1c the definition of the
relation Preserves, where the symbol “★” is a wildcard for any re-
source and the symbol “-” stands for no resource. We consider
administrators and thus the on-premise domain to be fully trusted.
As a consequence, the on-premise domain preserves the CIA prop-
erties of all the resources it contains— formally, for res in Resources,
Preserves(on − premise,𝐶, res), Preserves(on − premise, 𝐼 , res) aswell
as Preserves(on − premise, 𝐴, res). As discussed in Section 3, we as-
sume the CSP to be partially trusted; this means that the CSP
preserves the integrity and availability of the resources it con-
tains but not the confidentiality—formally, Preserves(CSP, 𝐼 , res),

Preserves(CSP, 𝐴, res), and (CSP,𝐶, res) ∉ Preserves for res in Re-
sources. Users are not trusted to operate on (i.e., they do not pre-
serve the CIA properties of) resources the AC policy does not grant
them access to. However, users are trusted to operate on resources
the AC policy grants them access to (e.g., the user’s own secret keys).
To refer to the portion of a resource to which the user u has access to,
we use the subscript u. For instance, secret keysu indicates the secret
keys to which the user u has access to based on the AC policy (e.g.,
(ks𝑢 , k

p
𝑢)) and not the whole set of secret keys (e.g., another user’s

u′ keys, i.e., (ks𝑢′, k
p
𝑢′)). Similarly, metadatau refers to the portion

of metadata the user u can access to based on the AC policy. There-
fore, each clientu domain preserves the CIA properties of the subset
of resources the AC policy grants the user u access to (i.e., secret
keysu and metadatau). Formally, Preserves(clientu, pro, secretkeysu)
and Preserves(clientu, pro,metadatau) for pro in Properties.

4.3 Entities and Relationships with Resources
The set Entities contains elements that actively perform tasks in
CAC schemes (see the columns Entity in Table 1d and Table 1e):6

• proxy: Domingo-Ferrer et al. [7] argued that the architectures
of CAC schemes usually involve a local proxy to interface
users with encrypted data. The proxy takes care of encrypt-
ing the data before uploading them to the storage service
and decrypting data before showing them to the user.

• reference monitor (RM): Garrison et al. [10] discussed the
presence of a minimal reference monitor to check modifi-
cations to encrypted data. This entity checks the integrity
and compliance with the AC policy of the users’ actions (e.g.,
write on an encrypted file). Possibly, the RM also performs
cryptographic operations (e.g., verifying digital signatures);

• data storage (DS): this entity is the storage (e.g., a database)
containing the data;

• metadata storage (MS): this entity is the storage (e.g., a data-
base) containing the metadata.

To accomplish its tasks, an entity must be located in at least
one domain (e.g., a software needs to run on a machine); for this,
an entity may host and use resources (e.g., a proxy using a secret
cryptographic key to decrypt an encrypted file). Tables (d) and (e)
define the relations Hosts and Uses, respectively, i.e., they identify
the entity ent that hosts or uses a resource res. The proxy trans-
forms high-level requests (e.g., read a file) into the sequence of
low-level cryptographic operations necessary to accomplish them
(e.g., obtain the decrypting key, download the encrypted file and
decrypt the file, as presented in Section 2.2). Therefore, the proxy
hosts the secret keys and uses metadata and encrypted data. We
note that the proxy can be installed on each of the users’ personal
devices (i.e., multiple instances) or in a unique trusted location (i.e.,
single instance) like a server within the organization. In the former
case, expressed as “proxyu”, each proxy hosts the secret keys of the
user u and accesses metadata to which u has access to. In the latter
case, expressed as “proxy”, the proxy hosts the whole set of se-
cret keys and accesses the whole set of metadata. Formally, we
specify these as Hosts(proxy, secret keys), Uses(proxy,metadata),
Hosts(proxy𝑢 , secret keys𝑢), and Uses(proxy𝑢 ,metadata𝑢). Finally,

6Entities’ icons made by Freepik from www.flaticon.com

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

212

the RM uses both metadata and encrypted data to verify the com-
pliance with the AC policy of the users’ actions; the DS and the MS
store encrypted data and metadata, respectively. Formally, this is
written as follows:Hosts(MS,metadata),Hosts(DS, encrypted data),
Uses(RM,metadata), and Uses(RM, encrypted data).

4.4 Putting Things Together
We are now ready to define the notion of a CAC scheme architec-
ture by identifying which CIA properties each entity inherits on
which resources and then inferring in which domains an entity
can stay by checking whether the domain preserves the properties
inherited by the entity. To do this, we define two relations Inherits
and CanContain, respectively. The intuition is that an architecture
will be formed by those pairs ⟨ent, res⟩ that satisfies both relations
for ent an element of Entities and res an element of Resources.

According to (1) in Table 1h, a tuple ⟨𝑒𝑛𝑡, 𝑝𝑟𝑜, 𝑟𝑒𝑠⟩ ∈ 𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑠 if
the entity 𝑒𝑛𝑡 hosts the resource 𝑟𝑒𝑠 and 𝑟𝑒𝑠 requires 𝑝𝑟𝑜 , or the
entity 𝑒𝑛𝑡 uses the resource 𝑟𝑒𝑠 and 𝑟𝑒𝑠 requires 𝑝𝑟𝑜 having that 𝑝𝑟𝑜
is the confidentiality property. Table 1f is extensionally equivalent
to (1) in Table 1h.

According to (2) in Table 1h, a tuple ⟨𝑑𝑜𝑚, 𝑒𝑛𝑡⟩ ∈ 𝐶𝑎𝑛𝐶𝑜𝑛𝑡𝑎𝑖𝑛 if
for all properties 𝑝𝑟𝑜 inherited by 𝑒𝑛𝑡 on 𝑟𝑒𝑠 , 𝑑𝑜𝑚 preserves 𝑝𝑟𝑜 on
𝑟𝑒𝑠 ′ with 𝑟𝑒𝑠 ⊑ 𝑟𝑒𝑠 ′ where ⊑ models a hierarchy on resources. The
hierarchy refers to secret keysu ⊑ secret keys since secret keysu
is a portion of secret keys and similarly metadatau ⊑ metadata
as metadatau is a portion of metadata. Table 1g is extensionally
equivalent to (2) in Table 1h and can be interpreted as follows. If we
consider multiple instances of the proxy (a proxyu for each user u),
the proxy would host a portion of the secret keys (i.e., secret keysu)
and access a portion of the metadata (i.e., metadatau) only. In this
case, the clientu domain can contain the proxyu . Then, being fully
trusted by definition, the on-premise domain preserves the CIA
properties of all resources and therefore can contain all entities.
Finally, the CSP can contain the DS entity since the DS inherits
the integrity and availability properties of the encrypted data only.
Then, depending on the sensitivity of metadata, the RM and MS
could inherit the confidentiality property. If the organization deems
metadata not to be sensitive, the CSP can contain both the RM and
MS. As a final note, since the RM provides security and compliance
checks on users’ actions, we assume that the RM cannot run in
the users’ computer. Therefore, we assume that ⟨clientu , RM⟩ ∉

𝐶𝑎𝑛𝐶𝑜𝑛𝑡𝑎𝑖𝑛.
As we can see from Table 1g, different domains can contain

the same entity (e.g., both the on-premise and the CSP domain
can contain the DS entity). It is important to notice that two or
more domains can contain an entity at the same time. These hybrid
architectures may be useful for entities hosting data (i.e., proxy, MS,
DS). For instance, important encrypted files (e.g., with a sensitive
name) can be hosted in a DS on-premise, while other files can stay
in a DS in the cloud (e.g., [32]). The proxy can be installed in the
computer of each user so to split the set of secret keys and also in
an on-premise server to allow temporary users or light devices (e.g.,
smartphones) to access the architecture (e.g., [39]). The MS can be
split so to host sensitive metadata (e.g., the list of users’ names)
on-premise and non-sensitive metadata (e.g., public cryptographic
keys) in the CSP domain (e.g., [41]). In these hybrid architectures,

Table 2: Considered CAC Scheme Architectures

CAC Architecture
Scheme clientu on-premise CSP arc

[10] ⟨proxyu , clientu⟩, ⟨MS, CSP⟩, ⟨RM, CSP⟩, ⟨DS, CSP⟩

[40] ⟨proxyu , clientu⟩, ⟨MS, CSP⟩, ⟨DS, CSP⟩

[41] ⟨proxyu , clientu⟩, ⟨MS, on-premise⟩, ⟨MS, CSP⟩, ⟨DS, CSP⟩

[39]
⟨proxyu , clientu⟩, ⟨proxy, on-premise⟩,
⟨MS, on-premise⟩, ⟨RM, on-premise⟩, ⟨MS, CSP⟩, ⟨DS, CSP⟩

[28] ⟨proxy, on-premise⟩, ⟨DS, on-premise⟩, ⟨DS, CSP⟩

[32]
⟨proxyu , clientu⟩, ⟨MS, on-premise⟩,
⟨RM, on-premise⟩, ⟨DS, on-premise⟩, ⟨MS, CSP⟩, ⟨DS, CSP⟩

to avoid synchronization and update issues, we assume that each
resource is hosted by one entity only. Of course, it is possible to
have offline backups of the resources. Finally, we do not consider a
hybrid architecture for the RM since it does not host any resource.

Architectural Model. By considering all possible entity-domain
pairs that satisfies the constraints imposed by the CanContain re-
lation (i.e., formally an architecture is a subset of the Cartesian
product of the sets Entities and Domains), we identify 81 possi-
ble architectures for CAC schemes (see appendix A for the com-
plete list). Each entity must be deployed in at least one of the
domains that can contain it but the RM, that can be absent from
the architecture as this happens in the architectures of some CAC
schemes [3, 8, 12, 13, 24, 40]. In this case, after a write request, the
old file is not replaced but a new version is added that is validated
by the next user attempting to read the file. If the new version is
not valid (i.e., the writer user did not have write permission), the
reader fetches the old versions of the file until finding a valid ver-
sion. Formally, we define the set ARC of all possible architectures
𝑎𝑟𝑐 as follows:

ARC = {arc ⊆ (Entities × Domains) | (∀⟨𝑑𝑜𝑚, 𝑒𝑛𝑡 ⟩ ∈ arc : 𝐶𝑎𝑛𝐶𝑜𝑛𝑡𝑎𝑖𝑛 (𝑑𝑜𝑚,
𝑒𝑛𝑡)) ∧ (∀𝑒𝑛𝑡 ∈ Entities \ {𝑅𝑀 } ∃𝑑𝑜𝑚 ∈ Domains : ⟨𝑑𝑜𝑚, 𝑒𝑛𝑡 ⟩ ∈ arc) }; (3)

4.5 Instances of our Architectural Model
Table 2 shows the architectures of some CAC schemes in the lit-
erature and how they are specified in our architectural model as
elements of ARC. We depict a hybrid architecture by duplicating
the icon of the entity under multiple domains. We discuss how
our model allows us to capture the most important aspects of the
various CAC schemes in the following.

Garrison et al. [10] designed a CAC scheme for a dynamic RBAC
policy with a focus on computational efficiency (e.g., hybrid encryp-
tion). The architecture comprehends the same three domains that
we presented. A proxy for each user contains the user’s secret keys.
The (non-sensitive) metadata related to the AC policy are in the
MS and the encrypted files in the DS entity. Both of these entities,
together with the RM checking digital signatures on encrypted data,
stay in the CSP domain.

In [40], the authors discussed the same three domains that we
presented. The architecture of the CAC scheme expects a proxy
for each user containing the user’s secret keys (what the authors
call “Key-store” module). Non-sensitive metadata (i.e., hierarchies

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

213

and cryptographic public parameters) are kept in the MS (“Meta-
data Directory” module) in the CSP domain. The DS (“Data Store”
module) stores encrypted data in the CSP domain. As in [8], the
authors proposed a CAC scheme without the RM, relying therefore
on the users to validate write operations.

In [41], the authors employ Role-Based Encryption (RBE) to
enforce RBAC policies in the CSP. In their architecture, the DS
stores encrypted data in the CSP domain. Non-sensitive metadata
(i.e., public parameters of RBE) are in the MS in the CSP domain,
while sensitive metadata (i.e., role hierarchy and user memberships)
stay in an MS within the organization. The architecture of the CAC
scheme expects a proxy for each user. This CAC scheme does not
support the write operation, thus the architecture does not expect
the RM entity.

In [39], the authors proposed a CAC scheme along with a proof
of concept prototype named “FADE”. Users interact with a proxy
(“FADE client”) that can be deployed locally in each user’s com-
puter or as in a server within the organization. The architecture
comprehends a quorum of key managers deployed as a centralized
trusted entity within the organization. These key managers store
sensitive metadata (e.g., cryptographic parameters) through thresh-
old secret sharing [37]. The key managers perform blind decryption
on cryptographic keys [27] and interact with the users to execute
cryptographic operations during file uploads and downloads. Thus,
the key managers act both as MS and RM. Encrypted files are stored
by the DS in the CSP domain. Each file is associated with an AC
policy (i.e., non-sensitive metadata) that is stored in the CSP.

Premarathne et al. [28] studied how to securely store medical
big data in the cloud. They designed a role-based CAC scheme
making use also of steganography. The architecture comprehends
the “User” (i.e., clientu), “Health Authority” (i.e., on-premise), and
“Cloud Storage” (i.e., CSP) domains. Users authenticate to a trusted
health authority server. This server is responsible for extracting
users’ data (i.e., proxy) from files stored by the DS in the CSP domain.
Metadata related to steganography (e.g., indexes and lengths) are
stored in the health authority server (i.e., metadata storage). In this
CAC scheme, the RM entity is missing. Indeed, since the proxy runs
in the trusted on-premise domain, no one can tamper with it and
proxy’s actions are assumed to be legitimate.

In [32], the authors propose a CAC scheme based on a hybrid
architecture. A private DS (i.e., on-premise domain) stores confi-
dential patients’ data (e.g., chronic diseases, mental health issues)
and it can be accessed by authorized personnel only. A public DS
(i.e., CSP domain) handles patient’s data that are shared with other
parties like medical researchers and government authorities. Access
to the DSs is regulated by an RBAC policy. Therefore, each cloud
has part of the metadata needed by the CAC scheme. Each user
(e.g., doctors and nurses) is given secret keys.

5 TRADE-OFF ANALYSIS FOR
ARCHITECTURAL DESIGNS

Once defined the set ARC of the possible architectures for CAC
schemes, we formalize the problem (introduced in Section 3.3) of se-
lecting the architecture that maximizes the achievement of multiple
goals of a scenario as a MOOP [22]. Below, we first identify security
and usability goals that may be desirable in different scenarios (as

described in Section 3.1 and Section 3.2). The set of goals is not
meant to be exhaustive or representative, it is only given as an ex-
ample to illustrate the optimization problem; other goals may easily
be added. Then, we discuss the effect on the security and usability
goals of different architectural choices. Finally, we show how to
reduce the problem of selecting the architecture that maximizes
the achievement of the desired goals into an optimization problem
that considers the simultaneous maximization of a collection of
objective functions that measure how much goals are achieved.

5.1 Identifying Goals
From cloud-relevant literature, we sample 8 security and usability
goals that may be desirable in our scenarios:

• Redundancy [17, 20, 38]: the extent to which the architecture
allows to effectively have duplicated resources;

• Scalability [19, 20, 28, 36, 39, 40]: the ability of the architec-
ture to scale up and down to accommodate dynamic work-
loads (e.g., the variable number of users’ requests or crypto-
graphic operations);

• Reliability [17, 19, 20, 30, 36, 39]: the ability of the archi-
tecture to keep working after the failure of one or more
entities. We measure reliability by considering Single-Point-
of-Failures (SPOF);

• Maintenance [17, 20, 28, 36, 38]: the easiness in the deploy-
ment and maintenance (i.e., software updates) of the archi-
tecture;

• Denial-of-Service Resilience [10, 19, 20, 30]: the intrinsic re-
silience of the architecture to Denial-of-Service (DoS) at-
tacks;

• Minimization of CSP Vendor Lock-in [19, 39]: the easiness in
switching CSP in the architecture (e.g., from AWS to Azure);

• On-premise Monetary Savings [17, 19, 20, 28, 39]: the mon-
etary savings due to not adding entities to the on-premise
domain;

• CSP Monetary Savings [17, 19, 20, 28, 39]: the monetary sav-
ings due to not adding entities to the CSP domain. If the
organization already has an internal infrastructure, it might
be cheaper to run entities on-premise rather than in the CSP
domain.

5.2 Effect on Goals
We adopt a modular approach to evaluate the effect that an archi-
tecture has on the various goals. We consider the effect of each
entity—when contained in a certain domain—on each goal in isola-
tion. We summarize our considerations in Table 3 by discussing the
effects on the goals identified in Section 5.1. Each entity-domain
pair may have either a positive (+), negligible (=) or negative (-)
effect on a goal.

• Effect on Redundancy. The CSP is a geographically sparse
domain with mechanisms for replicating data across large
geographic distances [6]. On the contrary, the on-premise
domain is, by definition, limited to one location. Therefore,
redundancy is enhanced when entities are in the CSP do-
main;

• Effect on Scalability. As with the redundancy goal, scalability
is a peculiarity of CSPs [6]. The more entities are in the

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

214

Table 3: Single Entity Effect on Goals

Goals

cl
ie
nt

u

hy
br
id

on
-p
re
m
is
e

on
-p
re
m
is
e

CS
P

on
-p
re
m
is
e

hy
br
id

CS
P

on
-p
re
m
is
e

hy
br
id

CS
P

Redundancy = = = - + - = + - = +
Scalability + = - - + - = + - = +
Reliability + = - - + - = + - = +
Maintenance + = - - + - = + - = +
DoS Resilience + = - - + - = + - = +
Vendor Lock-in = = = + - + = - + = -
On-premise Savings + = - - + - = + - = +
CSP Savings = = = + - + = - + = -

CSP domain, the more scalable is the architecture. Also, the
architecture gets more scalable when the proxy is deployed
in the clientu domain, thus the burden of cryptographic
operations is distributed among the users;

• Effect on Reliability. As for the redundancy goal, the CSP
is generally more reliable than the on-premise domain [6].
Entities deployed in the on-premise domain create SPOFs
and make the whole architecture less robust;

• Effect on Maintenance. The presence of entities in the on-
premise domain leads to greater deployment (e.g., setup and
configuration of the infrastructure) and maintenance (e.g.,
operative systems and runtime environments updates) effort.
These issues are delegated to a third-party when entities are
deployed in the CSP domain;

• Effect on DoS Resilience. We consider the CSP domain as
intrinsically resistant to DoS attacks [6]. Therefore, the more
entities are in the CSP (or clientu) domain, the more the
architecture is DoS resistant. On the contrary, DoS attacks
affect the availability of on-premise entities more easily;

• Effect on Minimization of CSP Vendor Lock-in. Intuitively,
each entity in the CSP stresses the vendor lock-in effect. On
the contrary, vendor lock-in is minimized when entities are
in the on-premise and clientu domains;

• Effect on On-premise Monetary Savings. The less the organiza-
tion runs entities internally, the more the on-premise-related
costs are reduced;

• Effect on CSP Monetary Savings. The less the organization
deploys entities in the CSP, the more CSP-related costs are
reduced.

From Table 3, we see that using the CSP yields advantages on
several goals. This favours the use of the CSP in the architectures
of CAC schemes. Indeed, CAC may be unnecessary in architectures
not using the CSP, as resources would be stored in the trusted on-
premise domain. In general, any architecture expecting the proxy
in the on-premise domain may not use CAC, as a trusted proxy
“would obviate the need for any cryptography beyond authenticated
symmetric key encryption” [10].

In contrast, hybrid architectures tend to balance the pros and
cons of the goals. For instance, assume that an architecture expects
the MS to stay in the CSP domain and that the storage service
is billed based on the amount of data stored (e.g., like AWS S3
pricing)7. In a hybrid architecture, metadata are split and stored in
two MSs, one MS in the on-premise domain and one MS in the CSP
7https://aws.amazon.com/s3/pricing/

domain. Supposedly, the MS in the CSP domain would store only
half of the metadata, resulting in half of the price (i.e., half of the
savings). Therefore, we assume that hybrid architectures do not
have an effect on the goals. This is just an example and the effect of
hybrid architectures, as well as the others, can be tuned depending
on the specific scenario and organization. In other words, it is up to
the organization to tune the effects in Table 3 based on its specific
needs.

5.3 Multi-Objective Optimization Problem
We consider a simple approach to combine the effect of each pair
⟨𝑒𝑛𝑡, 𝑑𝑜𝑚⟩ on a goal, under the assumption that the effects are
independent of each other. In practice, we “add” together the +,
- and = symbols as adding the numbers +1, −1, and 0, respec-
tively. Formally, this is equivalent to consider an objective function
𝑔 : ARC ↦→ Z associated with each goal. Having as input the set of
⟨𝑒𝑛𝑡, 𝑑𝑜𝑚⟩ pairs of an architecture arc ∈ ARC, the objective func-
tion returns the sum 𝑔(arc) of the symbols (+, - and =) associated
to each ⟨𝑒𝑛𝑡, 𝑑𝑜𝑚⟩ pair, as defined in each row of Table 3. Note that
hybrid architectures have two ⟨𝑒𝑛𝑡, 𝑑𝑜𝑚⟩ pairs for the same 𝑒𝑛𝑡 .

Pre-filters. We note that not all architectures arc ∈ ARC may
be of interest for a particular scenario. For instance, as said in Sec-
tion 4.4, the architectures of some CAC schemes do not expect the
RM. In this case, we should exclude from ARC every architec-
ture expecting the presence of the RM. Furthermore, depending on
the organization and scenario, there may or not be sensitive meta-
data. Architectures associating sensitive metadata with a domain
not guaranteeing metadata confidentiality should also be excluded.
For instance, an RM using or an MS hosting sensitive metadata
cannot stay in the CSP domain. To formalize this, we define the
set Pre-Filters containing the architectures that shall be excluded
when finding the “optimal” architecture. Consequently, we define
ARCsub ⊆ ARC as the set of architectures in ARC but not in
Pre-Filters:

ARCsub = {arc ∈ ARC|𝑎𝑟𝑐 ∉ Pre-Filters}; (4)

We are now ready to formalize as a MOOP [22] the problem
of finding the optimal architecture arc∗ ∈ ARCsub such that the
tuple (𝑔Redundancy, . . . , 𝑔CSP Savings) of objective goals measuring
the degree of achievement of a goal is optimal:

max
arc∈ARCsub

(𝑔Redundancy (𝑎𝑟𝑐), . . . , 𝑔CSP Savings (𝑎𝑟𝑐)); (5)

Pareto Optimality. It is well-known that solving a MOOP is far
from being trivial. The main source of difficulty is that it may be
impossible to find a solution (an architecture, in our case) that si-
multaneously maximizes all objective functions. In fact, for any
non-trivial MOOP, there is no single solution that is simultaneously
optimal for every goal. Instead, there may exist many solutions
that can be considered equally good, called Pareto optimal [22].
In our context, an architecture arc∗ ∈ ARCsub is Pareto optimal
if and only if there is no architecture arc ∈ ARCsub such that
𝑔𝑖 (arc) ≥ 𝑔𝑖 (arc∗) for each 𝑖 in the set of goals (Redundancy, . . .,
CSP Savings) and 𝑔 𝑗 (arc) > 𝑔 𝑗 (arc∗) for at least one 𝑗 in the set of
goals. In other words, an architecture is Pareto optimal if there does
not exist another architecture that improves one objective func-
tion without detriment to another. A crucial advantage of reducing

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

215

Azure

AWS

...

Step 1: What-if Analysis through web dasbhoard Step 2: Orchestration through Cloudify

MOOP	Solver

Requirements

arc*

Fragments

Cloudify
BlueprintBlueprint

Generator

Figure 2: Two-step Deployment Process

the problem of selecting the most suitable architecture for a CAC
scheme to a MOOP is the possibility to exploit out-of-the-shelf the
several methods and tools that have been devised to help the pro-
cess of choosing one or more solutions among those that are Pareto
optimal. Many of these methods consist in transforming a MOOP
into one or more (single goal) optimization problems whose solu-
tions are Pareto optimal (under reasonable additional assumptions).
We illustrate one such method in the following section.

6 ASSISTED DEPLOYMENT OF CAC SCHEMES
We now present how our architectural model and the MOOP in
formula (5) can be used to assist administrators in the deployment
of CAC schemes architectures. The workflow is summarized in
Figure 2 as a two-step deployment process. The idea is to provide
administrators with a web dashboard in which they can input the
Pre-Filters set and the requirements of their scenario. In the first
step, the web dashboard allows performing a thorough “What-if”
analysis with the help of an automated MOOP solver to carefully
assess the trade-offs of the security and usability goals among
the Pareto optimal architectures in ARCsub. Through this anal-
ysis, the administrators can find the most suitable architecture
arc∗ ∈ ARCsub for their scenario. Then, we automatically gen-
erate a deployable specification (called Blueprint) of arc∗ based
on the TOSCA8 OASIS standard; a database containing blueprint
fragments (Fragments) is used by the Blueprint Generator to build
a TOSCA compliant representation of the arc∗. In the second step,
we rely on the TOSCA-based Cloudify framework to automatically
deploy the generated blueprint in the major CSPs, using the CAC
entities we implemented (the blue icons). The ultimate purpose is to
optimize and simplify the time consuming and error-prone activity
of manually selecting and deploying CAC security schemes in the
cloud.

Below, we describe a proof-of-concept application of the two-step
deployment process for the eGovernment and eHealth scenarios. As
a validation example, we formalize theMOOP into a single objective
optimization problem (Section 6.1). Note that other formalizations
are possible. Then, we input in the dashboard the requirements of
the eGovernment (Section 6.1) and eHealth (Section 6.1) scenar-
ios. We report the Blueprint fragments for the architecture arc∗

of the eGovernment scenario in Appendix B. Finally, we describe
the use of TOSCA and Cloudify to deploy the architecture arc∗

for the eGovernment scenario (Section 6.2) and briefly discuss the
implementation of a CAC scheme supporting this architecture (Sec-
tion 6.3).

8https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

6.1 Constrained Weighted Sum Optimization
As a validation example, we choose to translate our MOOP into
a simple objective optimization problem. We note that this is one
possible formalization for our MOOP, where also others are possible
(Minimum-Cost Flow [14] or Generalized Assignment Optimization
Problem [26]) The objective function is the weighted sum of all
the objective functions. In other words, we construct an objective
function of the form

∑
𝑖∈𝑂 𝑤𝑖 · 𝑔𝑖 , where 𝑂 is the set of goals. The

constants𝑤𝑖 ∈ R’s are called weights and model the importance of
achieving a certain goal. Technically, it is necessary to assume𝑤𝑖 >

0 for each 𝑖 for guaranteeing that the solution of the transformed
problem belongs to the set of Pareto optimal solutions of the original
problem [22].

In some cases, a constrained variant of theweighted sum problem
may be of interest. From the descriptions in Section 3.1 and Sec-
tion 3.2, the eGovernment and eHealth scenarios may benefit from
the enforcement of hard and soft constraints. These are respectively
mandatory and optional thresholds values expressing conditions
on the objective functions. In other words, if 𝑔(arc) is less than
the threshold value of a hard constraint, then the architecture arc
is excluded from ARCsub, i.e., arc ∈ Pre-Filters. Instead, if 𝑔(arc)
is less than the threshold value of a soft constraint, then 𝑔(arc) is
given a penalty, i.e., a penalty value 𝑝 ∈ Z is subtracted from 𝑔(arc).
Below, we present two concrete applications of the weighted sum
optimization problem to the eGovernment and eHealth scenarios.

eGovernment Scenario Application. As presented in Section 3.1,
we consider a PA that wants to allow citizens to access government-
issued personal documents (e.g., tax certificates) anywhere and
anytime. We report in Figure 3 a screenshot of the web dashboard
configured with the requirements of the eGovernment scenario.

The first black section allows to exclude specific ⟨𝑒𝑛𝑡, 𝑑𝑜𝑚⟩ pairs
from the architectures by toggling the visibility of entities’ icons.
This defines the starting subset of the architectures to consider
in the optimization problem ARCsub ⊆ ARC. For instance, the
requirement eGR1 (enable citizens access from anywhere and any-
time) may suggest storing data in the cloud to allow for ubiqui-
tous access to encrypted data. This implies to remove the ⟨DS,
on-premise⟩ pair by toggling the visibility of the DS under the on-
premise domain. The second black section applies weights𝑤 i ∈ R
and constraints on the goals. For instance, the requirement eGR2
(simplify the maintenance of the architecture) can be translated
as a hard constraint that excludes architectures with a negative
value on the maintenance goal. Instead, the requirement eGR3 (limit
CSP-related costs for budget constraints) can be translated as a soft
constraint imposing a penalty (e.g., -5) for architectures with a
negative value on the CSP monetary savings goal. The require-
ment eGR4 (prioritize the scalability of the services) can assign a
weight to the scalability and reliability goals. For instance, the val-
ues can weight twice as much (i.e.,𝑤Scalability = 2,𝑤Reliability = 2).
The dashboard solves the constrained weighted sum optimization
problem and shows in real-time, in the last two blue sections, the
three most suitable architectures and the detail on the goals val-
ues, respectively. We see that the most suitable architecture uses
CSP services as much as possible. This reflects the scalability and
reliability priorities. At the same time, this architecture enhances
the easiness in deployment and maintenance of the architecture.

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

216

Figure 3: Web Dashboard Optimization Problem for eGovernment Scenario

By tuning (e.g., increasing) the penalty value on the CSP monetary
savings goal, the weighted sum of these three architectures would
decrease and other architectures may become optimal.

eHealth Scenario. Webriefly discuss the scenario presented in Sec-
tion 3. Suppose the presence of a clinic treating mental disorders.
The requirement eHR1 (hide metadata to avoid information leak-
ing) adds ⟨MS, CSP⟩ and ⟨RM, CSP⟩ to the 𝑃𝑟𝑒-𝐹𝑖𝑙𝑡𝑒𝑟𝑠 set. As said
in Section 4.1, metadata could be encrypted and turned into not-
sensitive metadata at the cost of additional overhead on the CAC
scheme. This would allow the MS to stay in CSP domain. The RM,
however, would still need to access plain-text metadata, so the RM
cannot stay in the CSP domain anyway. The priority on the re-
dundancy goal in eHR2 (prioritize redundancy to avoid medical
data loss) translates in a weight applied to the value of that goal.
For instance, the redundancy value can weight twice as much (i.e.,
𝑤Redundancy = 2). Finally, eHR3 (limit the vendor lock-in effect) can
be seen as a hard constraint imposing a non-negative value on the
vendor lock-in goal.

6.2 Architecture Modeling with Cloudify
Once identified the most suitable CAC scheme architecture for
the eGovernment scenario, we need a CSP-independent modelling.
We rely on the TOSCA OASIS standard for a flexible and portable
representation of the architecture. TOSCA is a YAML-based mod-
elling language addressing the lack of a standardized view on cloud
services (e.g., storage, cloud functions). The goal of TOSCA is to
allow one to migrate cloud applications across different CSP with-
out investing high cost and time. For the actual modelling, we
choose Cloudify,9 a TOSCA-based open-source cloud orchestration
framework supporting the major CSPs (e.g., Azure, AWS, Google,
OpenStack). Cloudify allows graphical modeling of cloud applica-
tions by creating and configuring cloud services like servers and
network appliances. The graphical model is called “blueprint” and
it is composed of nodes representing cloud services (e.g., security
groups, cloud functions) and relationships (e.g., a database hosted
by a server). Given a blueprint, Cloudify automatically deploys and
orchestrates the cloud application. We manually develop the blue-
print templates of the most suitable CAC scheme architecture of

9https://cloudify.co/

the eGovernment scenario and report it in Appendix B. In detail, we
modelled an AWS relational database service (i.e., MS), a Lambda
cloud function (i.e., RM) and the S3 storage service (i.e., DS). The
proxy is not part of the blueprint since it is expected to be installed
in users’ computers.

6.3 CAC Scheme Implementation
As the last step, we provide a fully working implementation of
the CAC scheme proposed in [10]. We choose this scheme because
it supports the architecture of the eGovernment scenario. As ex-
plained in Section 2.2, the CAC scheme in [10] uses hybrid encryp-
tion. We choose RSA [33] for asymmetric encryption and AES for
symmetric encryption. We implement the proxy as a Java program
to be installed in the computer of each user. The users’ secret key
is generated and stored inside the user’s proxy. We use AWS Java
library to interface with AWS services and implement the Lambda
cloud function code (i.e., RM). Finally, we test our implementation
with several simulated sequences of operations. This means com-
bining the creation of users and roles, assignment and revoking
of permissions and the creation, update and management of files.
We also implemented a graphical user interface based on web tech-
nologies. We made open-source the implementation of the scheme
along with other resources.10

7 RELATEDWORK
Cryptographic Access Control. CAC has been applied in several

scenarios, like local filesystems [13] and the cloud [10]. Goyal et
al. [13] developed a CAC scheme based on ABE. In their scheme,
users can delegate their permissions but not revoke them. This
makes the whole scheme not usable for a dynamic scenario. In [23],
the authors proposed a similar scheme while also avoiding the
disclosure of the AC policy itself, deemed to be sensitive metadata.
Still, run-time modifications of the policy were not addressed. In [2],
the authors considered the revocation of permissions, but they did
not discuss the computational burden that a revocation implies.
Garrison et al. [10] studied the computational usability of a simple
dynamic Role-based CAC scheme. They concluded that, even when
considering a minimally dynamic scenario, the CAC scheme is

10see https://stfbk.github.io/complementary/ASIACCS2020

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

217

likely to produce significant computational overheads. Besides,
many other security and usability goals are often overlooked when
designing a CAC scheme, like scalability, reliability and monetary
costs. Mainly, this is because a concrete deployment for a given
scenario is seldom considered.

Cryptographic Access Control Architectures. There are few works
[11, 18, 29, 36, 39–41] that presented an architecture for the CAC
scheme they proposed.

In [36], the authors developed a scheme to allowmultiple owners
to give access to their data to multiple users, following a mixed
Attribute-Role based CAC scheme. The architecture is composed
of four modules responsible for users’ authentication, AC policy
management and data encryption. The authors discussed scalabil-
ity and performance in read and write operations. However, the
authors did not evaluate other security and usability goals of the
architecture, nor they discussed the way the four modules should be
deployed by the organization or how they should interact with the
CSP. Also, they did not provide alternative designs for the architec-
ture. The set up of many modules may carry considerable overhead,
making the whole scheme unappealing for small companies.

In [41], the authors employ Role-Based Encryption to crypto-
graphically enforce RBAC policies in the cloud. In their architecture,
a CSP stores encrypted data while sensitive metadata are stored
on-premise. Users communicate only with the CSP. In their architec-
ture, the CSP is supposed to run cryptographic operations on behalf
of the users and to communicate with the on-premise domain to
retrieve the needed metadata. However, the authors did not discuss
the feasibility of this communication, nor they analyzed other goals
of the architecture. The authors developed a concrete implementa-
tion of their CAC scheme just for analyzing the performance of the
read and write operations.

In [40], the authors proposed a CAC scheme emphasizing users’
privacy by enabling anonymous access to resources stored in the
CSP. The authors implemented a prototype interacting with AWS,
providing an interface so that further CSPs can be supported. How-
ever, security and usability goals were not considered. The archi-
tecture is fixed and cannot be modified to accommodate different
scenarios.

In [39], the authors proposed a CAC scheme and implemented
it in a proof-of-concept prototype, named “FADE”. The architec-
ture comprehends a quorum of key managers deployed on-premise.
Users interact with a FADE client that can be run in the users’
devices or on-premise. Multiple CSPs can be supported, and per-
formances and monetary costs were analyzed. However, each file
is associated with a single policy, mining the scalability and main-
tainability of the whole AC scheme. The authors also extended
the scheme with a more traditional ABAC model, but no concrete
design is given for such an extension.

Ghita et al. [11] implemented a cryptographic CAC scheme using
ABE. Even though they developed a working prototype, many
aspects were overlooked. For instance, in their CAC scheme it is
not possible to add roles to the AC policy. This is a tight limitation
on the usability of the scheme. The architecture is fixed and forces
the proxy to run in the on-premise domain.

In [29], the authors propose a CAC scheme similar to the one
presented by Garrison et al. [10]. However, revocation is handled

through onion encryption. Each time a permission is revoked, the
CSP adds an encryption layer with a new symmetric cryptographic
key on each affected file. For reading a file, an authorized user
has to decrypt each encryption layer. The administrator can set a
threshold to the number of encryption layers on files, after which
a de-onioning procedure occurs. The authors implemented their
scheme and demonstrated how they obtain only slightly worse
performances with respect to [10] (i.e., 7.2%) while being able to
immediately block access to files by revoked users. Unfortunately,
they did not discuss the monetary costs that their onion mechanism
yields. Moreover, metadata are necessarily stored in the CSP. Unfor-
tunately, the architecture was never taken into account explicitly.
Again, the implementation had the only purpose of measuring the
computational efficiency of the CAC scheme.

In [18], the authors designed and implemented a CAC scheme
based on non-monotonic ciphertext-policy ABE. An administrator
is responsible for creating cryptographic keys from users’ attributes
and each user has a proxy interacting with the CSP. Unfortunately,
the authors used a programming library that not portable to other
platforms. Most importantly, the CAC scheme does not support the
dynamicity of the policy as it was left as future work.

To summarize, even though approaching the problem from dif-
ferent points of view, the focus of these works is mainly proposing
new CAC schemes with novel high-level features. Because of this,
little space is left for additional analysis on security and usability
goals or alternative architectures responsive to the requirements of
a given scenario.

8 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we proposed a methodology to find the most suit-
able architecture of CAC schemes for the requirements of different
scenarios. First, we identified common elements involved in the
architecture of CAC schemes and provided an architectural model
expressing the set ARC of the possible architectures. Then, we
showed how to evaluate different architectures based on security
and usability goals. To find the optimal architecture, we formalized
a MOOP so to leverage well-known techniques for Pareto optimal-
ity. For concreteness, we gave a proof-of-concept application of
how the architectural model and the MOOP can be used to assist
administrators in the deployment of CAC schemes architectures.
We implemented a web dashboard to solve the specific formaliza-
tion of the optimization problem and perform a “What-if” analysis
on the resulting architecture to carefully assess the trade-offs of
the security and usability goals. We used the TOSCA OASIS stan-
dard and the Cloudify framework to automatize the deployment of
the architecture. Finally, we chose a CAC scheme supporting the
architecture and provide a fully working prototype with AWS.

Future Directions. While being an example and not the focus of
this work, the goals we identified may not be enough to express
the requirements of all scenarios. Therefore, we could investigate
further scenarios like eBusiness, eBanking and FinTech. Another
interesting improvement would be extending our tool to support ad-
ditional blueprints associated with more CAC schemes. A security
evaluation of the 81 architectures could be performed along with
the optimization to explicit security assumptions and requirements.

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

218

Acknowledgements. Stefano Berlato, Roberto Carbone and Silvio
Ranise were supported in part by the Integrated Framework for
Predictive and Collaborative Security of Financial Infrastructures
(FINSEC) project that received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under Grant
agreement no. 786727. Adam J. Lee was supported in part by the
National Science Foundation under awards CNS–1253204 and CNS–
1704139.

REFERENCES
[1] Assad Abbas and Samee U. Khan. A Review on the State-of-the-Art Privacy-

Preserving Approaches in the e-Health Clouds. IEEE Journal of Biomedical and
Health Informatics, 18(4):1431–1441, July 2014.

[2] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken. Dynamic
and efficient key management for access hierarchies. ACM Trans. Inf. Syst. Secur.,
12(3):18:1–18:43, January 2009.

[3] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In 2007 IEEE Symposium on Security and Privacy (SP ’07), 05
2007.

[4] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson, Ankur Taly, Michael Vrable,
and Mark Lentczner. Macaroons: Cookies with contextual caveats for decentral-
ized authorization in the cloud. In , 01 2014.

[5] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-Preserving
Multi-Keyword Ranked Search over Encrypted Cloud Data. IEEE Transactions on
Parallel and Distributed Systems, 25(1):222–233, January 2014.

[6] Marios D. Dikaiakos, Dimitrios Katsaros, PankajMehra, George Pallis, andAthena
Vakali. Cloud Computing: Distributed Internet Computing for IT and Scientific
Research. IEEE Internet Computing, 13(5):10–13, September 2009.

[7] Josep Domingo-Ferrer, Oriol Farràs, Jordi Ribes-González, and David Sánchez.
Privacy-preserving cloud computing on sensitive data: A survey of methods,
products and challenges. Computer Communications, 140-141:38–60, May 2019.

[8] Anna Lisa Ferrara, Georg Fachsbauer, Bin Liu, and Bogdan Warinschi. Policy
Privacy in Cryptographic Access Control. In 2015 IEEE 28th Computer Security
Foundations Symposium, pages 46–60, Verona, July 2015. IEEE.

[9] Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. En-
cryption policies for regulating access to outsourced data. ACM Transactions on
Database Systems (TODS), 35:12, 04 2010.

[10] William C. Garrison, Adam Shull, Steven Myers, and Adam J. Lee. On the
Practicality of Cryptographically Enforcing Dynamic Access Control Policies in
the Cloud. In 2016 IEEE Symposium on Security and Privacy (SP), pages 819–838,
San Jose, CA, May 2016. IEEE.

[11] Valentin Ghita, Sergiu Costea, and Nicolae Tapus. Implementation of cryp-
tographically enforced rbac. The Scientific Bulletin - University Politehnica of
Bucharest, 79(2):9–3–102, 2017.

[12] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext
policy attribute based encryption. In ICALP ’08 Proceedings of the 35th inter-
national colloquium on Automata, Languages and Programming, Part II, pages
579–591, 07 2008.

[13] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Proceedings of
the ACM Conference on Computer and Communications Security, pages 89–98, 01
2006.

[14] Horst W. Hamacher, Christian Roed Pedersen, and Stefan Ruzika. Multiple
objective minimum cost flow problems: A review. European Journal of Operational
Research, 176(3):1404–1422, February 2007.

[15] Felix Horandner, Stephan Krenn, AndreaMigliavacca, Florian Thiemer, and Bernd
Zwattendorfer. CREDENTIAL: A Framework for Privacy-Preserving Cloud-Based
Data Sharing. In 2016 11th International Conference on Availability, Reliability
and Security (ARES), pages 742–749, Salzburg, Austria, August 2016. IEEE.

[16] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption.
In Advances in Cryptology - EUROCRYPT 2002, International Conference on the
Theory and Applications of Cryptographic Techniques, pages 466–481, 04 2002.

[17] Yashpalsinh Jadeja and Kirit Modi. Cloud computing - concepts, architecture
and challenges. In 2012 International Conference on Computing, Electronics and
Electrical Technologies (ICCEET), pages 877–880, Nagercoil, Tamil Nadu, India,
March 2012. IEEE.

[18] Julian Jang-Jaccard. A Practical Client Application Based on Attribute Based
Access Control for Untrusted Cloud Storage. In Computer Science & Information
Technology, pages 01–15. Academy & Industry Research Collaboration Center
(AIRCC), January 2018.

[19] Md. Tanzim Khorshed, A.B.M. Shawkat Ali, and Saleh A. Wasimi. A survey
on gaps, threat remediation challenges and some thoughts for proactive attack
detection in cloud computing. Future Generation Computer Systems, 28(6):833–851,
June 2012.

[20] Rakesh Kumar and Rinkaj Goyal. On cloud security requirements, threats, vul-
nerabilities and countermeasures: A survey. Computer Science Review, 33:1–48,
August 2019.

[21] Thomas Loruenser, Daniel Slamanig, Thomas Langer, and Henrich C. Pohls.
PRISMACLOUD Tools: A Cryptographic Toolbox for Increasing Security in Cloud
Services. In 2016 11th International Conference on Availability, Reliability and
Security (ARES), pages 733–741, Salzburg, Austria, August 2016. IEEE.

[22] R.T. Marler and J.S. Arora. Survey of multi-objective optimization methods for
engineering. Structural and Multidisciplinary Optimization, 26(6):369–395, April
2004.

[23] Sascha Muller and Stefan Katzenbeisser. Hiding the policy in cryptographic
access control. In Security and Trust Management, pages 90–105, 2012.

[24] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption
with non-monotonic access structures. In CCS ’07 Proceedings of the 14th ACM
conference on Computer and communications security, pages 195–203, 01 2007.

[25] Praveen Kumar P, Syam Kumar P, and Alphonse P.J.A. Attribute based encryption
in cloud computing: A survey, gap analysis, and future directions. Journal of
Network and Computer Applications, 108:37–52, April 2018.

[26] David W. Pentico. Assignment problems: A golden anniversary survey. European
Journal of Operational Research, 176(2):774–793, January 2007.

[27] R. Perlman. File System Design with Assured Delete. In Third IEEE International
Security in Storage Workshop (SISW’05), pages 83–88, San Francisco, CA, USA,
2005. IEEE.

[28] Uthpala Premarathne, Alsharif Abuadbba, Abdulatif Alabdulatif, Ibrahim Khalil,
Zahir Tari, Albert Zomaya, and Rajkumar Buyya. Hybrid Cryptographic Access
Control for Cloud-Based EHR Systems. IEEE Cloud Computing, 3(4):58–64, July
2016.

[29] Saiyu Qi and Yuanqing Zheng. Crypt-DAC: Cryptographically Enforced Dy-
namic Access Control in the Cloud. IEEE Transactions on Dependable and Secure
Computing, pages 1–1, 2019.

[30] Gururaj Ramachandra, Mohsin Iftikhar, and Farrukh Aslam Khan. A Compre-
hensive Survey on Security in Cloud Computing. Procedia Computer Science,
110:465–472, 2017.

[31] E. Ramirez, J. Brill, M.K. Ohlhausen, J.D. Wright, and T. McSweeny. Data brokers:
A call for transparency and accountability. In Data brokers: A call for transparency
and accountability, pages 1–101. CreateSpace Independent Publishing Platform,
January 2014.

[32] Fatemeh Rezaeibagha and Yi Mu. Distributed clinical data sharing via dynamic
access-control policy transformation. International Journal of Medical Informatics,
89:25–31, May 2016.

[33] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120–126, February 1978.

[34] Pierangela Samarati and Sabrina de Capitani di Vimercati. Access control: Policies,
models, and mechanisms. In Riccardo Focardi and Roberto Gorrieri, editors,
Foundations of Security Analysis and Design, volume 2171, pages 137–196. Springer
Berlin Heidelberg, 2000.

[35] Ravi Sandhu. Access control: principle and practice. Advances in Computers,
46:237 – 286, 10 1998.

[36] Hiroyuk Sato and Somchart Fugkeaw. Design and Implementation of Collabora-
tive Ciphertext-Policy Attribute-Role based Encryption for Data Access Control
in Cloud. Journal of Information Security Research, 6(3):71–84, September 2015.

[37] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
November 1979.

[38] Ashish Singh and Kakali Chatterjee. Cloud security issues and challenges: A
survey. Journal of Network and Computer Applications, 79:88–115, February 2017.

[39] Yang Tang, Patrick P.C. Lee, John C.S. Lui, and Radia Perlman. Secure Overlay
Cloud Storage with Access Control and Assured Deletion. IEEE Transactions on
Dependable and Secure Computing, 9(6):903–916, November 2012.

[40] Saman Zarandioon, Danfeng Yao, and Vinod Ganapathy. K2c: Cryptographic
Cloud Storage with Lazy Revocation and Anonymous Access. In Muttukrishnan
Rajarajan, Fred Piper, Haining Wang, and George Kesidis, editors, Security and
Privacy in Communication Networks, volume 96, pages 59–76. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[41] Lan Zhou, Vijay Varadharajan, and Michael Hitchens. Achieving Secure Role-
Based Access Control on Encrypted Data in Cloud Storage. IEEE Transactions on
Information Forensics and Security, 8(12):1947–1960, December 2013.

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

219

A ARCHITECTURES AND GOALS
We report here the complete list (in two tables, Table 4 and 5) of
all architecture arc ∈ ARC along with the objective functions
𝑔reliability (𝑎𝑟𝑐), ..., 𝑔CSP Savings (𝑎𝑟𝑐) on the security and usability
goals.

Table 4: Architectures and Goals (1 of 2)

Domain
Client On-premise Cloud Re

du
nd

an
cy

Sc
al
ab
ili
ty

Re
lia
bi
lit
y

M
ai
nt
en
an
ce

D
oS

Re
si
lie
nc
e

Ve
nd

or
Lo

ck
-in

O
n-
pr
em

is
e
Sa
vi
ng

s

CS
P
Sa
vi
ng

s

+3 +3 +3 +3 +3 –3 +3 –3

+2 +2 +2 +2 +2 –2 +2 –2

+1 +1 +1 +1 +1 –1 +1 –1

+2 +2 +2 +2 +2 –2 +2 –2

+1 +1 +1 +1 +1 –1 +1 –1

0 0 0 0 0 0 0 0

+1 +1 +1 +1 +1 –1 +1 –1

0 0 0 0 0 0 0 0

–1 –1 –1 –1 –1 +1 –1 +1

+2 +2 +2 +2 +2 –2 +2 –2

+1 +1 +1 +1 +1 –1 +1 –1

0 0 0 0 0 0 0 0

+1 +1 +1 +1 +1 –1 +1 –1

0 0 0 0 0 0 0 0

–1 –1 –1 –1 –1 +1 –1 +1

0 0 0 0 0 0 0 0

–1 –1 –1 –1 –1 +1 –1 +1

–2 –2 –2 –2 –2 +2 –2 +2

+1 +1 +1 +1 +1 –1 +1 –1

0 0 0 0 0 0 0 0

–1 –1 –1 –1 –1 +1 –1 +1

0 0 0 0 0 0 0 0

–1 –1 –1 –1 –1 +1 –1 +1

–2 –2 –2 –2 –2 +2 –2 +2

–1 –1 –1 –1 –1 +1 –1 +1

–2 –2 –2 –2 –2 +2 –2 +2

–3 –3 –3 –3 –3 +3 –3 +3

+3 +2 +2 +2 +2 –3 +2 –3

+2 +1 +1 +1 +1 –2 +1 –2

+1 0 0 0 0 –1 0 –1

+2 +1 +1 +1 +1 –2 +1 –2

+1 0 0 0 0 –1 0 –1

0 –1 –1 –1 –1 0 –1 0

+1 0 0 0 0 –1 0 –1

0 –1 –1 –1 –1 0 –1 0

–1 –2 –2 –2 –2 +1 –2 +1

+2 +1 +1 +1 +1 –2 +1 –2

Table 5: Architectures and Goals (2 of 2)

Domain
Client On-premise Cloud Re

du
nd

an
cy

Sc
al
ab
ili
ty

Re
lia
bi
lit
y

M
ai
nt
en
an
ce

D
oS

Re
si
lie
nc
e

Ve
nd

or
Lo

ck
-in

O
n-
pr
em

is
e
Sa
vi
ng

s

CS
P
Sa
vi
ng

s

+1 0 0 0 0 –1 0 –1

0 –1 –1 –1 –1 0 –1 0

+1 0 0 0 0 –1 0 –1

0 –1 –1 –1 –1 0 –1 0

–1 –2 –2 –2 –2 +1 –2 +1

0 –1 –1 –1 –1 0 –1 0

–1 –2 –2 –2 –2 +1 –2 +1

–2 –3 –3 –3 –3 +2 –3 +2

+1 0 0 0 0 –1 0 –1

0 –1 –1 –1 –1 0 –1 0

–1 –2 –2 –2 –2 +1 –2 +1

0 –1 –1 –1 –1 0 –1 0

–1 –2 –2 –2 –2 +1 –2 +1

–2 –3 –3 –3 –3 +2 –3 +2

–1 –2 –2 –2 –2 +1 –2 +1

–2 –3 –3 –3 –3 +2 –3 +2

–3 –4 –4 –4 –4 +3 –4 +3

+3 +4 +4 +4 +4 –3 +4 –3

+2 +3 +3 +3 +3 –2 +3 –2

+1 +2 +2 +2 +2 –1 +2 –1

+2 +3 +3 +3 +3 –2 +3 –2

+1 +2 +2 +2 +2 –1 +2 –1

0 +1 +1 +1 +1 0 +1 0

+1 +2 +2 +2 +2 –1 +2 –1

0 +1 +1 +1 +1 0 +1 0

–1 0 0 0 0 +1 0 +1

+2 +3 +3 +3 +3 –2 +3 –2

+1 +2 +2 +2 +2 –1 +2 –1

0 +1 +1 +1 +1 0 +1 0

+1 +2 +2 +2 +2 –1 +2 –1

0 +1 +1 +1 +1 0 +1 0

–1 0 0 0 0 +1 0 +1

0 +1 +1 +1 +1 0 +1 0

–1 0 0 0 0 +1 0 +1

–2 –1 –1 –1 –1 +2 –1 +2

+1 +2 +2 +2 +2 –1 +2 –1

0 +1 +1 +1 +1 0 +1 0

–1 0 0 0 0 +1 0 +1

0 +1 +1 +1 +1 0 +1 0

–1 0 0 0 0 +1 0 +1

–2 –1 –1 –1 –1 +2 –1 +2

–1 0 0 0 0 +1 0 +1

–2 –1 –1 –1 –1 +2 –1 +2

–3 –2 –2 –2 –2 +3 –2 +3

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

220

Figure 4: Cloudify Blueprint Corresponding to arc∗ = {⟨proxyu, clientu⟩, ⟨ RM, CSP ⟩, ⟨ MS, CSP ⟩, ⟨ DS, CSP ⟩ }

B AN EXAMPLE OF CLOUDIFY BLUEPRINT
We report here the blueprint fragments composing the Cloudify
blueprint for the architectures arc∗ ∈ ARC that we considered for
the eGovernment scenario. Each white rectangle is a node and it
represents a cloud service (e.g., security groups, network gateways).
Links are relationships between nodes and are used to control the
deployment flow. For instance, a “depends_on” relationship from

a subnet to a network means that the network has to be deployed
first. The blueprint contains three fragments (blue borders). The
fragment on top models the MS entity as a Relational Database
Service in AWS, while the fragment in the middle models the RM as
a Lambda function in AWS. The last fragment on the bottom-right
corner models the DS as the S3 service in AWS. The proxy runs in
the users’ computers and therefore is not part of the blueprint.

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

221

	Abstract
	1 Introduction
	2 Background
	2.1 Access Control
	2.2 Cryptographic Access Control Schemes

	3 Scenarios and Problem Statement
	3.1 eGovernment Scenario
	3.2 eHealth Scenario
	3.3 Problem Characterization

	4 A Model for CAC Architectures
	4.1 Cryptographic Resources and Properties
	4.2 Domains and Trust
	4.3 Entities and Relationships with Resources
	4.4 Putting Things Together
	4.5 Instances of our Architectural Model

	5 Trade-Off Analysis for Architectural Designs
	5.1 Identifying Goals
	5.2 Effect on Goals
	5.3 Multi-Objective Optimization Problem

	6 Assisted Deployment of CAC Schemes
	6.1 Constrained Weighted Sum Optimization
	6.2 Architecture Modeling with Cloudify
	6.3 CAC Scheme Implementation

	7 Related Work
	8 Conclusion and Future Directions
	References
	A Architectures and Goals
	B An Example of Cloudify Blueprint

