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ABSTRACT
The sharing of sensitive personal information via cloud platforms
motivates the need for measures that aim to minimize informa-
tion leakage to unauthorized users. In this work, we propose a
novel SQL optimizer that strikes a balance between query runtime
performance and private information exposure. Our approach to
ensuring that the access control policies regulating data disclo-
sure are enforced during distributed query execution is based upon
a state-of-the-art authorization model from the literature and a
preference-aware query optimizer. Our preliminary studies show
that our approach outperforms the way the authorization model
was originally implemented in terms of query runtime performance
which is crucial for the operation on Big Data. To improve it, we ad-
just the algorithms utilized by a preference-aware query optimizer.

CCS CONCEPTS
• Information systems→Query optimization; • Security and
privacy → Management and querying of encrypted data;
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1 INTRODUCTION
Cloud technologies facilitate the storage and processing of signifi-
cant amounts of data in a decentralized manner. While they bring
many benefits, they also introduce security concerns about data
and query privacy and confidentiality [8], [14], [23]. On the client
side, query processing in the cloud may leak data to third parties
about the users’ intentions or their private information. On the
server side, distributed query processing may expose confidential
data to unexpected parties as data flows traverse the system.
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There is a need to protect private information during distributed
query evaluation and processing. Traditional optimization meth-
ods for executing a query across multiple providers tend to favor
performance over privacy, in that optimal plans from a perfor-
mance perspective may make disclosures of sensitive data to in-
termediate nodes in the execution plan that could otherwise be
prevented. Similarly, data releases previously considered to present
anonymized data could be easily deanonymized. For example, there
is an emerging trend of sharing data between partnering organiza-
tions in healthcare, following specific established data governance
procedures (e.g., hospitals and insurance companies store and ex-
change information about their patients and customers). By being
oblivious to such privacy policies, traditional query optimization
and execution processes cannot guarantee them.

An attempt to balance privacy and performance was made in
[4], where the authors carry out a two-phased process: the query
was first optimized using an off-the-shelf optimizer, and then post-
processed to ensure that the access control policies of data providers
were respected during the distributed execution of the query. How-
ever, this two-phased approach separates query performance op-
timization and authorization policy enforcement. As a result, the
optimality of the modified query evaluation plan may not be pre-
served, as the modifications needed for policy enforcement may
lead to inefficient query execution.

In this work, we present a solution that integrates query optimiza-
tion and access control authorization in a single phase, eliminating
the shortcoming of the above two-phase approach. Towards this
goal, we have integrated the access control authorization model
into the distributed query optimizer PAQO [9],[12], [13]. PAQO is a
version of the PostgreSQL query optimizer that uses user-specified
preference constraints as an additional optimization metric [10],
[11]. By including data providers’ authorization constraints at opti-
mization time, the resulting query execution plan strikes an optimal
balance between policy enforcement and execution efficiency.
Contributions:
• We identify inefficiencies that arise when the access controls
and visibility constraints at each data provider are considered
and enforced by post-processing physical execution plans,
rather than considering these as inputs to the optimization
process.
• We propose a solution that mitigates the identified limita-
tions of the two-phased approach to enforcing access con-
trols and visibility constraints by considering these con-
straints as optimization metrics along with the traditional
performance optimization criteria.
• We show how our proposed solution can be realized in PAQO,
an existing distributed query optimizer. Specifically, the new
authorization-aware version of PAQO provides users with
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Figure 1: Use Case Scenario - classic strawman approach for query evaluation

the opportunity to take advantage of the performance of
the cloud providers, while at the same time allowing data
authorities to maintain the control over their data.
• We evaluate our solution via a time- and space-complexity
analysis of the proposed algorithms, as well as a cost/benefit
analysis.

Outline: The remainder of this paper is structured as follows: Sec-
tion 2 describes our use case scenario and Section 3 the query
execution model. Section 4 presents the implementation of a state-
of-the-art authorization model to mitigate the presented privacy
issues. In Section 5, we identify performance limitations of this
implementation and propose an integration of the model into the
distributed query optimizer PAQO to overcome these limitations.
We discuss the time and space complexity of our solution in Section
6 and present a cost benefit analysis in Section 7. We discuss related
work in Section 8 and provide a concluding summary in Section 9.

2 USE CASE SCENARIO
The following is an example that we will use throughout the paper
to highlight the problem and our solution.
Example: Alice has her health insurance provided by the InsureCo
insurance company, which maintains a database named Sales. Cus-
tomers’ SSNs, names, addresses, and insurance policies are stored
in the table Customers on Sales. Furthermore, Alice is registered
as a patient at the hospital HospG. HospG hosts a database server
that contains relations for their financial department (Payments
covering customers’ SSNs, names, payments, coverage/lack of in-
surance) and the medical departments (Treatments relation). Alice
has records in both databases. In addition, she is using an applica-
tion that allows her to execute the following query to receive a full
report on her medical and health insurance coverage situation:

SELECT * FROM Customers, Payments, Treatments
WHERE Customers.fkey=Payments.pkey AND

Treatments.fkey=Payments.pkey;

3 QUERY EXECUTION MODEL
In this paper we consider the model illustrated in Figure 1. We
assume a multi-provider environment in which some servers are
database servers, and others are computational servers participating
in the execution of distributed queries. Users submit queries to a
trusted provider. We assume that the trusted provider knows a
priori all of the servers participating in the system via an expanded
catalog that includes cached metadata about these remote servers.

When a user submits a query, the query optimizer at the invoking
provider determines the optimal query plan and distributes parts of
it to each server, database or computational, determined as being
part of the query evaluation. The involved servers will evaluate
their assigned portions of the query execution plan, combine their
intermediate results, and return the final query results to the user. In
this paper, we consider only selection, projection, and join queries
(hereafter abbreviated as SPJ queries). We assume that third-party
providers are able to carry out encrypted joins.

By introducing the opportunity to export rows or attributes,
users may take advantage of third party providers’ processing
power while minimizing the leakage of confidential information.
Encrypted visibility is considered as joins between relations and
evaluating conditions can be performed over encrypted attribute
values. Deterministic symmetric encryption can be accommodated
during evaluation of equality conditions in selections and joins.

4 AUTHORIZATION MODEL
Every database server which owns the control over certain data
is defined as its data authority (DA). We assume DAs protect all
tables by means of access controls (e.g., using the industry standard
RBAC [21]) and hence, users only obtain the results that they are
authorized to see.

We also assume that providers, database, and computational
servers in the system are honest-but-curious passive adversaries.
These providers will correctly evaluate the query sub-plans assigned
to them, and will return the correct results to the users, but in doing
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so, they will see the data if it is plain text, and may try to infer
information regarding the users. For this reason, we assume that
each data authority establishes its own authorization requirements
(i.e., visibility rules) for data release. For simplicity in this paper,
and without the lack of generality, we assume that policies are
specified at the table level. All attributes in a table are set with the
same authorization policies.

Data is stored and processed in either plain text or encrypted
form, and the controlling DA specifies the subject’s level of visibility,
as in [4]:

Definition 4.1. (Visibility Constraint) A visibility constraint de-
fined by a data authority DAi is a triple:

< subject , table,visibility >

where a subject can be another data authority DAj , end-user u, or a
provider S and the visibility can be

plaintext − the subject has a complete visibility on the at-
tribute’s values;

encrypted − the subject has a visibility only on an encrypted
version of the attribute values;

no visibility − the subject cannot view either the encrypted
or the plaintext values of attributes.

Whenever no visibility restriction is defined against a subject, the
no visibility rule is applied.

It is expected that users will have authorization only over plain-
text attributes values, since users need to be able to access the
responses to their own queries. Also, the data authorities storing
a relation are expected to have plaintext authorization over the
attributes of the very same relation. As stated above, providers and
any other authorities have access rights as dictated by DA policies
in order to prevent confidential information leakage.

As an example, Table 1 shows the visibility constraints in our
use case scenario. In this, HospG considers that it can provide the
following accesses to operate on its data:

(1) InsureCo - access only to the encrypted version of the data
located in Payments and Treatments;

(2) TP (a third-party provider) - access only to the encrypted
version of the data located in both Payments and Treat-
ments;

At the same time, InsureCo on its own gives authorization only to
TP to operate on the encrypted version of its data in Customers.

Table 1: Authorizations for the Subjects of our Example

Subjects Plaintext Encrypted

HospG Payments
Treatments

Payments
Treatments

InsureCo Customers Customers
Payments

TP -
Payments,
Treatments,
Customers

The explicit visibility constraints on tables implicitly determine
the visibility of views defined on these tables as well as of inter-
mediate tables, resulting from the execution of the query, e.g., par-
tial results. This means that a provider can process a query if the
provider has either explicit or implicit visibility on all tables that
are part of the query.

For instance, the following query can be executed at the database
server S1 where table R1 is stored and involves R2.B, which was
derived from a table R3 stored at a database server S2, only if S1
has a permission to see R3.

SELECT R1.A FROM R1, R2 WHERE R1.A=R2.B;

In this example, attribute R2.B is referred to as an implicit at-
tribute in [4].

Definition 4.2. (Implicit Attribute) An attribute that does not
necessarily appear in a resulting relation schema but that has to be
taken into account in the computation of the relation is implicit.

Definition 4.3. (Implicit Visibility) The (implicit) visibility of an
intermediate relation during the execution of a query is determined
by the visibility of the implicit attributes.

In the next section, we will explain how our pruning algorithm
takes into account potential implicit visibility and mitigates the
risks of private information leakage caused by it.

5 AUTHORIZATION-AWARE QUERY
OPTIMIZATION

In this section, we first present the shortcomings of the strawman
approach, and then present our solution.

5.1 Strawman Approach
In [4] the authors present an authorization model that accommo-
dates the strawman approach of creating query evaluation plans
using an off-the-shelf query optimizer and then post-processing the
resulting plan to enforce any required access controls. Effectively,
the post-processing is a second optimization phase integrated into
physical plan generation that assigns execution locations to each op-
eration according to the DA’s authorization requirements. However,
this disconnect between optimization and the required authoriza-
tion model leads to the creation of unnecessarily inefficient query
plans.

Consider again our running example:

SELECT * FROM Customers, Payments, Treatments
WHERE Customers.fkey=Payments.pkey AND

Treatments.fkey=Payments.pkey;

Let us assume that Customers has a cardinality of 100 tuples,
Payments 5,000,000 tuples, and Treatments 200 tuples. We fur-
ther assume that the joins are performed on attributes in Cus-
tomers and Treatments that are foreign keys to Payments.

In optimizing this query, a traditional SQL query optimizer (the
first phase of a two-phase approach) would first join Customers
and Payments, as Customers is half the size of Treatments, re-
sulting in the query plan shown in Figure 2.

Post-processing this plan to support the authorization restric-
tions would disallow joining the tables Customers and Payments
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Figure 2: Tree generated by the traditional optimizer - Post-
greSQL

Figure 3: Inefficient site-assigned plan based on the autho-
rization model and the tree generated by the traditional op-
timizer - PostgreSQL

Figure 4: Efficient site-assigned plan based on our algorithm
and the authorization model

at HospG. Hence, the second phase would logically choose InsureCo
as a location to evaluate this join (as in Figure 3), though this
comes at a great cost to query performance. Under this plan, all of
Payments (5,000,000 tuples) must be shipped over the network to
InsureCo, incurring a great cost to not only total query evaluation
time, but also network bandwidth utilization. Further, according to
the presented authorization scheme, the cost of encryption of all
the 5,000,000 tuples will also be incurred.

5.2 Authorization-Aware Approach
To avoid the shortcomings of two-phase optimization just discussed,
we take a synergistic approach to query optimization, accounting
for the triple, encryption/decryption, location, and query perfor-
mance during the query optimization process. We observe that an
authorization-aware (AA) approach reduces the execution time of
the query by joining first Payments and Treatments together at

HospG and by utilizing indexes on Payments to speed up the join
and avoid scanning the entire Payments table. Also, it will avoid
the need of data shipping and encryption of all the 5,000,000 tuples.
Clearly, such a plan (Figure 4) can only be discovered by consider-
ing the authorizations and the possible locations when determining
the join order in a query plan.

In order to avoid implementing an authorization-aware optimizer
from scratch, we built upon the PAQO query optimizer[12]. PAQO
is a version of the PostgreSQL query optimizer that uses user-
specified requirements and preferences as additional optimization
metrics. We use PAQO to encode authorization constraints as inputs
to the query optimization process. Our modifications allow us to
track implicit visibility, as described in the previous section, by
bookkeeping additional information on the derived tables during
plan enumeration. This data is then used in our pruning algorithm.

5.2.1 Node Descriptors. In order to achieve our goal, we define
slightly modified and extended versions of the node descriptors
used by PAQO to identify the portions of the query that should be
specially handled according to the authorization scheme in place.

Query plans are trees of nodes that represent relational algebra
operations. Each node descriptor will be a quadruplet

< op, params, p, auth >

where op is the operation represented by the node, params repre-
sents the parameters to that operation, p is the principal (e.g., a
database server or a third party provider) assigned to evaluate the
operation, and auth identifies whether the principal has encrypted
or plaintext visibility over the data in place.

These node descriptors are used to match query tree nodes that
the data authorities would like to be evaluated in a specific way
according to the required authorization model. ∗ will be used as a
general wildcard. Setting op, params, or p to be in a node descriptor
will cause that portion of the node descriptor to match any value
in the corresponding portion of a query plan node. For our running
example, the authorizations will be defined as follows:
< ∗, {Payments},HospG, PlainText >,
< ∗, {Payments},HospG,Encrypted >
< ∗, {Treatments},HospG,Encrypted >
< ∗, {Treatments},HospG, PlainText >
< ∗, {Customers}, InsureCo, PlainText >
< ∗, {Customers}, InsureCo,Encrypted >
< ∗, {Payments}, InsureCo,Encrypted >
< ∗, {Payments},TP ,Encrypted >
< ∗, {Treatments},TP ,Encrypted >
< ∗, {Customers},TP ,Encrypted >

The list of node descriptors will define our Authorization list
used later in our modified PAQO algorithm.

5.2.2 Query Optimization Considering Predefined Authorizations.
By adopting a greedy, heuristic approach to optimizing queries,
PAQO is able to efficiently produce highly preferred plans. This
approach allows PAQO to protect the intension of reasonably-sized
user queries. As we will see in the complexity analysis, the im-
plemented modifications incur only a linear overhead of checking
authorization requirements for each plan generated over the PAQO
algorithms.
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In Algorithm 1, we present a modified version of the classic
dynamic programming-based query optimization algorithm that in-
cludes data owners’ authorization requirements in the optimization
process and also accounts for the use of multiple, distributed evalua-
tion sites in constructing query plans. The sets of usable evaluation
sites within the distributed system and the required authorizations
are taken as input to the optimization. In addition to being needed
to prune out unusable access paths (Line 4 of Algorithm 1), required
authorizations are needed by the JOINPLANS function (Line 15).
Additional bookkeeping is implemented for every new derived table
(node) needed by the PRUNEPLANS function (Line 2).

First, ACCESSPLANS (Algorithm 2) must iterate through all pos-
sible evaluation locations in order to ensure that efficient plans are
found (Line3). Two plans are enumerated per location one consid-
ering the data will be encrypted and another one considering the
case the data is available in plain text. This is the only thing that
differs this function by the original ACCESSPLANS function used
by the traditional/PAQO optimization algorithm.

An iteration through all evaluation sites is similarly performed
in JOINPLANS (Algorithm 3). In this case, however, there is no easy
way to reduce the list of potential sites. All sites must be explored,
not just the sites that evaluate the children of a new join node.
Consider two sub-plans p1 evaluated at S1 and p2 evaluated at
S2. Let us assume that p1 and p2 are significantly faster than any
other plans realize their respective relations. Let us further assume
that the condition to be used in joining p1 and p2 is required by
our authorization scheme to be evaluated at S3. If we make the
reasonable assumption that the cost to ship the results of both p1
and p2 to S3 and perform a join is less than the cost to ship only
one of the results and perform a crossproduct, then the fastest plan
upholding required authorizations cannot be found by iterating
only through sites evaluating the children of a prospective join.

ACCESSPLANS and JOINPLANS must check to make sure each
newly produced plan does not violate any authorization require-
ment (Lines 7 and 9 (encrypted data), or 11 and 12 (plaintext data)).
Any plans that violate an authorization requirement are promptly
pruned from the search space. Finally, the classical PRUNEPLANS
function (Algorithm 4) must be slightly modified. For every node of
a potential query plan we will keep a parent/parents of base tables
from which the new table was derived. Based on this bookkeeping
we are going to check for implicit data leakage in the PRUNEPLANS
function (Line 2).

Considering the presented algorithm for our running example,
the final query plan produced by our optimizer will look as the one
presented in Figure 4. By joining first Payments and Treatments
together at HospG, indexes on Payments can again be utilized to
speed up the join and avoid scanning all of table Payments. Also,
we will avoid the data shipping and encryption of all the 5,000,000
tuples.

5.2.3 Computing and Distributing Assignments. Query operation
assignments should also cover establishing and distributing keys for
attributes which need to be encrypted/decrypted during the query
plan execution. The only requirement about the key establishment
is that attributes involved in some predicate in encrypted form
need to be encrypted with the same key. The key associated with
an attribute should be distributed only to the subject responsible

Algorithm 1 Dynamic programming algorithm that accounts for
authorization requirements and covers implicit visibility restric-
tions
Require: SPJ query q on relations R1...Rn , with selection/

projection/join conditions C1...Cm , required authorizations
AUTH1...AUTHr

Require: Possible evaluation sites S1...Ss
Require: A list of nodes (derived tables) D
1: subplans ← EMPTY_LIST
2: subplans[1].add ({EMPTY_LIST })
3: for i = 1 to n do do
4: optPlan[{{Ri }]←
5: accessPlans (Ri , {AUTH1...AUTHr })

6: for i = 2 to n do do
7: for all P {R1...Rn } such that |P | = i do do
8: optPlan[S]← 0
9: for all O ⊂ P do do
10: l ← optPlan[O]
11: r ← optPlan[P/O]
12: rs ← {AUTH1...AUTHr }

13: cs ← {C1...Cm }
14: ss ← {S1...Ss }
15: optPlan[P]← optPlan[P] ∪ jps

16: prunePlans (optPlan[P])
return optPlan[R1...Rn]

Algorithm 2 ACCESSPLANS: Access plan enumeration with au-
thorization checking
Require: A relation Ri to enumerate access plans for
Require: A list of required authorizations AUTH1...AUTHr
Require: The conditions C1...CM specified as part of the query
Require: Possible evaluation sites S1...Ss
1: aPlans ← 0
2: c ← POSSIBLE_CONDS (Ri , {C1, ...,Cm })
3: for k = 1 to s do
4: for all physical scan operators, po do
5: Newencr ← NEWSCAN (po,Ri , c )
6: aPlans ← sPlans ∪ {Newencr }

7: NewpT ext ← NEWSCAN (po,Ri , c )
8: aPlans ← aPlans ∪ {Newencr }

9: if not VIOLATES AUTH(Newencr {AUTH1...AUTHr }

then)
10: aPlans ← aPlans ∪ {Newencr }

11: if not VIOLATES AUTH(NewpT ext {AUTH1...AUTHr }

then)
12: aPlans ← aPlans ∪ {NewpT ext }

return aPlans

for the encryption and decryption of the attribute. Also, encryp-
tion/decryption operation assignment should be considered.

Based on our approach the following query operation assignment
plan is considered:

(1) Operation assignment based on the presented distributed
query authorization algorithm
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(2) Post-order visit of the query plan to extend it with the en-
cryption/decryption operations

(3) Establishment of the required keys
(4) Distribution of the sub-queries and the keys to the involved

subjects

In our work we consider a negligible cost for the encryption and
decryption operations (e.g., if AES is used). Finally, it is to be noted
that the end user requesting a query execution is required to be
authorized to access all the data which is input to the query.

Algorithm 3 JOINPLANS: Join enumeration pseudocode
Require: A set of plans that will make up the left side of a new

root join Le f t1...Le f tu
Require: A set of plans that will make up the right side of a new

root join Riдht1...Riдhtv
Require: A list of authorizations AUTH1...AUTHr
Require: The conditions C1...Cm specified as part of the query
Require: Possible evaluation sites S1...Ss
1: jPlans ← 0
2: for i = 1 to u do
3: for j = 1 to v do
4: c ← POSSIBLE_CONDS (Le f ti ,Riдhtj , {C1...Cm })
5: for k = 1 to s do
6: for all physical join operators, po do
7: Newencr ← Le f ti Z po, cRiдhtj at Sk
8: if not VIOLATES AUTH

(Newencr {AUTH1...AUTHr }) then
9: jPlans ← jPlans ∪ {Newencr
10: NewpT ext ← Le f ti Z po, cRiдhtjatSk

11: if not VIOLATES AUTH
(NewpT ext {AUTH1...AUTHr }) then

12: jPlans ← jPlans ∪ {NewpT ext

return jPlans

Algorithm 4 PRUNEPLANS : A function to prune dominated plans
from a given join level, considering the implicit visibility
Require: A list Q of query plans joining the same number of base

relations.
Require: A list of nodes (derived tables) D
1: for all p ϵ Q do
2: CHECK_IMPLICIT (p,D)
3: reject ← False
4: for all otherϵQ |p! = otherdo do
5: if ROOT_SITE (p) == ROOT_SITE (other ) then
6: if p has more interesting sort order then
7: if cost(p) < cost(other) then
8: Q.remove(other)
9: else if cost(plan) > cost(other) then
10: reject ← True
11: break
12: if reject then then
13: Q.remove(p)

6 ALGORITHM COMPLEXITY
In our complexity analysis, let us assume only one physical scan
operator and only one physical join operator are available to the
optimizer. Also, no interesting sort orders can be taken advantage
of during optimization, and no authorization requirements can be
violated by any query plans. As described previously, the changes
to the traditional PostgresSQL algorithm needed to support the au-
thorization requirements are the addition of distributed evaluation
sites and the use of authorization requirements to prune violating
plans.

Lemma 1:The time complexity of our AA (Authorization-Aware) query
optimization algorithm for queries over n base relations with r required
authorizations can be evaluated on s potential servers is O(s3*3n*4*2r).

Proof. Let us assume the worst case scenario when there is no
possible pruning. All possible locations have plain text visibility on
all the data. Each entry in optPlan corresponds to at most s plans
(note there cannot be multiple plans in the same entry that differ
only by sort order or physical operator). There are 2s different scan
plans for each relation, and 2s different join plans for each set of
base relations–We need to consider both cases, encrypted and plain
text visibility. Hence, for each call to JOINPLANS, all 2s plans in
optPlan[O] (Line 10, Algorithnm 1) must be combined with all 2s
plans from optPlan[P/O] (Line 11, Algorithnm 1) with all s sites
considered for evaluation, increasing the runtime complexity by a
factor of 4s3. As per our assumptions, no plans can be pruned due
to requirement violation, and hence such pruning has no effect on
the time complexity. Authorization requirements must be checked
for each plan that is realized, however, and that does have a slight
effect on the runtime complexity. For each plan realized, it must be
determined if it violates any of the r authorization requirements.
This leads to the addition of the 2r term in our run time complexity.

□

Lemma 2: The space complexity of our query optimization algorithm
for queries over n base relations with r required authorization con-
straints that can be evaluated on s potential servers is

O((2s*8*2n +8*s3)*2r).

Proof. Our presented algorithm must store 2s times as many
plans as the PostgreSQL dynamic programming algorithm (the 2s
plans in each entry of optPlan), and must further have 8*s3 memory
available for the JOINPLANS function. As per our algorithm we
must further save, for each plan, a record of which authorization
requirement it upholds/violates. □

Our algorithm imposes only a linear overhead of checking au-
thorization requirements for each plan generated over the O(s3*3n )
bound established in the literature for dynamic programming based
optimization of distributed queries.

7 COST BENEFIT ANALYSIS
In our analysis, we have used the latest statistics from a large
universitymedical center (UPMC) [22]. In Figures 5 to 8, we examine
the performance of the approach described in [4] as well as our
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proposed approach for a range of table sizes and authorization
setups.

According to the latest UPMC statistics [22], the number of
outpatient visits during the last year is 4.7 million. Based on these
statistics, in our analysis we are going to fix the number of selected
records in tablePayments to 4.7 millions and vary only the number
of records for tables Customers and Treatments. We decided to
concentrate ourselves only on the data shipping cost based on
the observation that it produces the biggest challenges for the
respective query [2], utilizing only three tables. Referring to another
statistic provided by UPMC (members covered by UPMC insurance
services), we are going to set the upper limit of selected records
in both tables, Customers and Treatments to 3.4 million. For
simplicity, the cost unit we accommodate in our graphics is “number
of tuples shipped to another site.” Even if the encryption cost is
negligible, for completeness we considered additional cost of 0.1
per tuple whenever encryption/decryption is expected to happen.

In Figures 5, 6, and 7, we follow the authorizations from our use
case scenario. In Figure 8, we slightly change the authorizations
giving the option to HospG to operate on the encrypted version
of Customers relation. By doing this we show the variation be-
tween the two explored costs when we have different level of access
restrictions applied.

Our calculations represented in Figures 5, 6, 7, and 8 show that
our revised PAQO algorithm outperforms the approach described
in [4]. By taking into consideration the authorization requirements
and the data storage locations during the query optimization phase,
the optimizer is able to consider more potential plans (looking at
operations being run on both encrypted attributes or plaintext) and
prune early those prohibited by the established DA policies. This
early pruning will help especially in the cases where the authoriza-
tion setup is more restrictive.

As Figure 5 shows, for our running example, our proposed
authorization-aware distributed query optimizer will manage to
reduce the cost by 4 millions of tuples. We would like to point
out that the part of the graphic where both costs have the same
value is the part where the classical optimizer receives less tuples
from the Treatments relation than the Customers one. Because
of this reason, the plans produced by both algorithms are the same,
respectively the cost would be the same.

8 RELATED WORK
In this section we briefly review prior work related to distributed
query processing, authorization enforcement in database systems,
and data encryption in distributed environments.
Distributed Query Processing The optimization and processing
of queries over distributed database systems has been an area of
active research for several decades. A huge amount of work on
distributed database query optimization has focused primarily on
decreasing optimization time and improving the plans generated.
Query optimization was first introduced by Yao and Hevner [16]. In
the late 1970s, authors used heuristic with exhaustive enumeration
approach to optimize the queries. In 1980s researchers as Ceri and
Palagatti [3], Zhou, Chen, Li and Yu [24], Peter Apers [1], Lam and
Martin [17] proposed the different query optimization strategies.
The query optimization model was further extended by Rho and

Figure 5: Cost variation considering the authorizations pro-
vided in our use case scenario

Figure 6: Classic optimization cost variation

Figure 7: Cost based on our algorithm, considering data ship-
ment and encryption

Figure 8: Cost variation considering the authorizations pro-
vided in our use case plus giving HospG the opportunity to
operate on the encrypted version of the Customers relation

March in 1995 [19]. During 21st century, Ahmet Cosar [20], Ze-
hai Zhou [25] used Genetic Algorithm to optimize the distributed
queries. Traditionally Exhaustive Enumeration with some heuris-
tics algorithms (Dynamic Programming, Branch and Bound, Greedy
Algorithm, etc.) was dominantly used to optimize queries [15]. In
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PAQO [12] the authors present the first distributed query optimizer
to include user specified constraints as additional optimization met-
rics. While we take advantage of its pruning approach, we use it to
prune plans which violate authorization requirements explicitly or
implicitly (during computation).
Authorization Enforcement in Database Systems In [4], [5]
the authors develop a novel approach for the specification and en-
forcement of authorizations that enables controlled data sharing
for collaborative queries in the cloud. Data authorities can establish
authorizations regulating access to their data distinguishing three
visibility levels (no visibility, encrypted visibility, and plain text
visibility). Authorizations are enforced in the query execution by
possibly restricting operation assignments to other parties and by
adjusting visibility of data on-the-fly. Thus, users and data authori-
ties are enabled to fully enjoy the benefits and economic savings of
the competitive open cloud market, while maintaining control over
data. While the proposed model is novel, it has a significant limi-
tation in its implementation in a distributed environment. In this
work we mitigated its shortcomings by incorporating the required
authorizations into the query optimizer heuristics.
Data Encryption in Distributed Environment. In [6] the au-
thors create design techniques to verify the integrity of query re-
sults computed by potentially untrusted servers. Other privacy-
related works [7, 18] explore the use and support of encryption
to protect data during query execution. These solutions are only
complimentary to our adopted approach which integrates autho-
rization requirements as a metric into the distributed optimization
process.

9 CONCLUSION
In this paper, we identify the limitations of a recently developed
state-of-the-art data authorization model targeted for distributed
execution of SQL queries in a multi-provider environment such as
on the cloud. In this, a strawman approach was utilized to post-
process an optimized query evaluation plan, produced by an off-
the-shelf optimizer, in order to enforce the access control policies
of data providers during the distributed execution of the query.

While that model provides a flexible approach enabling con-
trolled collaborative query execution in a distributed environment,
we showed that it achieves this at a potentially unreasonable high
cost, making it unpractical for general adoption. Its major short-
coming is that it fails to fully exploit third-party providers for the
execution of the distributed queries.

In response, we propose integration of the authorization model
into the distributed query optimization process. In this way, we can
maximize performance while maintaining data privacy. We explore
the benefits of our proposed authorization-aware approach through
the use of examples and a time and space complexity analysis.
Our future work will include a full-featured implementation of the
authorization-aware optimizer and extensive experimental results
covering broader use case scenarios.
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