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Abstract—Access control is fundamental to computer security,
and has thus been the subject of extensive formal study. In
particular, relative expressiveness analysis techniques have used
formal mappings called simulations to explore whether one
access control system is capable of emulating another, thereby
comparing the expressive power of these systems. Unfortunately,
the notions of expressiveness simulation that have been explored
vary widely, which makes it difficult to compare results in the
literature, and even leads to apparent contradictions between
results. Furthermore, some notions of expressiveness simulation
make use of non-determinism, and thus cannot be used to define
mappings between access control systems that are useful in
practical scenarios. In this work, we define the minimum set
of properties for an implementable access control simulation;
i.e., a deterministic “recipe” for using one system in place of
another. We then define a wide range of properties spread
across several dimensions that can be enforced on top of this
minimum definition. These properties define a taxonomy that
can be used to separate and compare existing notions of access
control simulation, many of which were previously incomparable.
We position existing notions of simulation within our properties
lattice by formally proving each simulation’s equivalence to a
corresponding set of properties. Lastly, we take steps towards
bridging the gap between theory and practice by exploring
the systems implications of points within our properties lattice.
This shows that relative expressive analysis is more than just a
theoretical tool, and can also guide the choice of the most suitable
access control system for a specific application or scenario.

I. INTRODUCTION

Access control is foundational to computer security and,
as such, has been the topic of extensive formal study. Much
of this work has focused on comparing different techniques
for representing and enforcing access control, deemed access
control models, systems, or schemes. By far the most common
type of comparative study in access control techniques is the
expressiveness simulation (e.g., [1]–[14]). A simulation is a
formal mapping from, say, system S to system T that proves
T is at least as expressive as S: that is, T possesses the raw
capability to be used in operating environments in place of S .

However, the formal definitions of the various simulations
used in the literature vary widely. Different simulations have
been used to prove various types of results, ranging from
very specific properties about whole ranges of models (e.g.,
monotonic access control models with multi-parent creation
cannot be simulated by monotonic models with only single-
parent creation [6]) to the ability to replace certain specific

models with others in practice (e.g., role-based access control
can be configured to enforce mandatory and discretionary
policies [9]). However, this disparity in the goals of these
works has led to many different definitions of access control
simulation, often tailored to the particular result sought. It
has been shown that these different simulations prove wildly
different notions of expressiveness, often not preserving any
particular security properties [13].

Furthermore, not all of these notions of simulation are
practically useful. For instance, some make use of non-
determinism, manipulating the policy differently depending
on what future queries will be asked. While this may allow
a theorist to show that system T is capable of doing all the
things S is, if a practitioner wants to use system T in place
of system S , she needs a deterministic procedure for doing so.

In this work, we build a taxonomy for expressiveness
simulations based on the simulation properties that they satisfy.
We determine the minimum requirements for a mapping to
be implementable, or applicable toward using one system in
place of another in practice. We use these requirements to
construct a general definition of implementable simulation, and
provide a taxonomy of additional restrictions on this definition
for simulations that enforce more stringent properties. We then
position existing simulations from the literature within this
lattice, providing the first such comparison in the literature.

To this end, we make the following contributions.

Definition of implementable access control simulation We
propose a general definition of an implementable access control
mapping that is broad enough to encompass much of the wide
range of existing access control simulations, yet precise enough
to guarantee implementability. Intuitively, an implementable
simulation of S in T shows that T can accomplish everything
S can, and deterministically shows how (Section III).
Lattice of simulation properties We decompose and expand
upon the properties enforced by various access control simula-
tions from the literature, forming a lattice relating the range
of access control simulations to one another. This lattice
allows us to formally compare the guarantees offered by
existing notions of access control simulation (many of which
were not formerly known to be comparable) and points to
unexplored combinations of properties that can yield different
expressiveness results (Section IV).



Positioning of existing simulations We construct formal
proofs positioning existing notions of access control simu-
lation within our lattice of simulation properties, including a
comparative discussion of simulations that previously seemed
incomparable. We thus systematize the formal relationships be-
tween previously-published simulations, allowing reconciliation
of previously disparate expressiveness knowledge (Section V).
Selecting simulation properties We observe that many of the
dimensions upon which our simulation property lattice is built
have implications for the use of simulations for satisfying real-
world requirements using existing access control systems (e.g.,
required storage, whether data structures must be locked for
concurrent usage). Thus, in addition to positioning existing
notions of simulation within our lattice of properties, we
assist in creating new notions of simulation by selecting
the properties that should be enforced in an expressiveness
analysis based upon the scenario in which an eventual access
control deployment will occur. To this end, we discuss in detail
various interactions between simulation properties, the results
of enforcing different properties, and how a specific deployment
scenario dictates which properties are relevant (Section VI).

We begin by providing background on the goals of and
techniques used in relative expressiveness analysis.

II. RELATIVE EXPRESSIVENESS ANALYSIS

In this section, we describe how relative expressiveness
analysis is conducted, survey the history of the technique,
and point out the wide variety in existing access control
expressiveness simulations.

A. Motivating Examples

An access control system’s expressiveness (or expressive
power) is a measure of the range of policies that it can
represent and the transformations it can make to those policies.
Statements of relative expressiveness state that one system
is capable of replacing another (that is, it can represent all
the same policies and transform them in equivalent ways).
Assume, for instance, that an organization is considering
transitioning from one access control solution to another, in
order to accommodate evolving requirements. The organization
may have specific desired features for this new access control
system, but it certainly must be able to represent all of the
policies that the existing system can, or it would not be a
suitable replacement. Thus, this organization is searching for
a new system that is at least as expressive as its old system.

Another use of relative expressiveness is in suitability
analysis. Prior work has noted that practically evaluating an
access control system must take into account the application
in which the system is to be used, as well as additional
cost metrics (e.g., computation, ease of use). This analysis
problem has been identified as a system’s suitability to a
particular application [15], [16]. Suitability analysis formalizes
an application’s access control requirements (a workload), and
uses expressiveness to prove that an access control system
can satisfy those requirements. Assume, in this case, that
the aforementioned organization is choosing an initial access

control system for a new collection of data. Comparing the
candidates’ relative expressiveness is not particularly enlight-
ening, since the most expressive system may not be the most
suitable; the organization should instead formalize their access
control workload and use relative expressiveness analysis to
identify which of the candidates are expressive enough to satisfy
this workload. Thus, while work in suitability analysis has
shown that expressive power alone is insufficient for evaluating
an access control system, expressiveness is a fundamentally
important component of a more general suitability analysis
workflow: one cannot determine which access control system
is best for a particular use case without first determining which
are capable of satisfying that use case.

B. Prior Work

Relative expressiveness analysis generally starts by formal-
izing a pair of access control systems as state machines. These
state machines include, at a minimum: a set of states, each of
which encapsulates a snapshot of the access control system’s
data structures; a procedure describing how to interpret the
states’ data structures to determine which authorization requests
are granted; and a set of commands, used to manipulate the data
structures and thus transition between states. Some formalisms
for access control systems also include additional queries
beyond access requests [13], [14]. A simulation, then, is a
structure that proves T is at least as expressive as S—or, that
T can be used in place of S. The term simulation is rather
vague, here, and for good reason: various notions of simulation
in the literature have meant very different things (e.g., What
type of behavior must be simulated? How closely must T
represent the information in S?), and as a result have implied
very different types of expressiveness results.

The works of Sandhu, Ganta, Munawer, and Osborn [2]–[4],
[7]–[9] include some of the earliest access control simulations.
In these works, a simulation of S in T must show that a
permission can be granted in S if and only if it can also be
granted in T . No other formal properties are enforced, though
in some cases additional properties become part of the de
facto definition of simulation. For instance, while there is no
requirement for T to have a state equivalent to each S state
(merely for T to be able to grant each access that S does,
in some state), the example simulations all include methods
for mapping each S state to a T state (as this is the simplest
way to show the required property). In addition, although the
definition does not prohibit the use of an unbounded number
of T commands to simulate a single S command, Sandhu and
Munawer [7] only use simulations in which an S command is
simulated using a constant number of T commands.

Ganta’s PhD dissertation [5] attempts to formalize a more
rigorous notion of expressiveness simulation. In his simulation,
the state correspondence is explicit, requiring that each state
in S have a corresponding state in T that grants all the same
accesses (at least, all those that exist in S—those that exist in
T but not in S are unconstrained). In addition, to ensure that
T cannot grant accesses that S cannot, any state that can be
entered in T must also have a corresponding reachable state in



S . Finally, to ensure accesses in T cannot be combined in ways
that cannot occur in S , the following restriction is made: when
simulating a T command in S, multiple commands may be
used, but each state along the way must allow either a subset
of the accesses of the start state or a subset of the accesses
of the end state. Thus, no two accesses can be allowed in the
same state in T that are not allowed in a single state in S.

Ammann, Lipton, and Sandhu [1], [6] took a different (and
much more strict) approach to more rigorously defining a
simulation. First, they describe a strict state correspondence
that requires T to represent its states with the same sets and
relations as S, and for these sets to have identical contents
in corresponding T and S states. In other words, T cannot
include additional elements in any sets that S uses (although
additional, distinct sets may be stored). For example, one could
simulate the state {U = {a, b}, V = {c}} with state {U =
{a, b}, V = {c},W = {〈a, d〉, 〈b, d〉}}, but not with {U =
{a, b}, V = {c, d}}. Given this notion of state correspondence,
a simulation then shows that T can reach a state corresponding
to each reachable S state, and cannot reach any state that does
not have a reachable corresponding state in S . This strict notion
of simulation is used to show that monotonic, multi-parent
systems are more expressive than monotonic, single-parent
systems (e.g., there are monotonic multi-parent systems that
cannot be simulated by any monotonic single-parent system).

Chander, Dean, and Mitchell [10] restrict the definition of
simulation in a different way. Rather than force a more strict
state correspondence (the static portion of the simulation), they
more tightly restrict the way the simulation handles the system
as it executes (i.e., the command mapping). In these simulations,
the state correspondence is comparatively lax: to simulate an S
state, a T state must allow and deny all the same authorization
requests as its corresponding S state. Additional requests can
exist in T and are unconstrained, but all requests corresponding
to those in S must have the same value in corresponding states.
However, the process for simulating an S command using T
commands must be independent of the state: it cannot execute a
T command for each user, or otherwise inspect the state when
determining what commands should be executed. In addition,
in the strong form of simulation, each S command must be
simulated with a single T command. They then compare the
expressiveness of access control lists, trust management, and
two forms of capability systems (all systems studied in forms
with and without revocation and delegation).

Tripunitara and Li [12], [13] noted that the existing notions
of simulation did not correspond directly to any particular
safety analysis questions, and thus a simulation of any of
these types does not make any particular safety guarantees.
They formalize compositional security analysis (intuitively,
determining whether a certain set of access control queries
will always, never, or sometimes become true in any reachable
state), which is a generalization of simple safety analysis [17].
They then present a notion of simulation tailor-made to preserve
these types of analysis questions.

Their simulation, called the state-matching reduction, consid-
ers a broader range of queries than only authorization requests,

placing the strictness of its state correspondence somewhere
between the work of Ammann, Lipton, and Sandhu and that
of Chander, Dean, and Mitchell. The state-matching reduction
maps each query qS in S to a single query qT in T , and the
simulation must determine the value of qS in any state in T
by checking the value of qT . Finally, reachability constraints
ensure that T can reach a state corresponding to each reachable
S state, and cannot reach any state that does not have a
reachable corresponding state in S. Tripunitara and Li prove
that this notion of simulation preserves compositional security
analysis instances: that is, if there exists a state-matching
reduction from S to T , then any compositional security analysis
instance has the same truth value in both systems. Tripunitara
and Li’s reductions have since been used to analyze role-based
access control [18] and prove that newly-proposed systems are
more expressive than certain existing systems [19].

Work by Hinrichs et al. [14] recognizes the value of the
state-matching reduction but claims that, in practice, not all
scenarios require the preservation of all possible compositional
security analysis instances (nor are these the only types of safety
properties that are ever relevant). They present parameterized
expressiveness, which defines a baseline set of simulation
properties, and provides several additional properties that can be
enforced atop the baseline to provide additional guarantees. The
base simulation uses the same query-based state correspondence
as Tripunitara and Li, but relaxes the query mapping to allow
it to consult multiple T queries to determine the value of
an S query during simulation. Further properties enforced
above this baseline include using the identity query mapping
for authorization requests (to ensure that T ’s authorization
questions are the queries being used to simulate S’s autho-
rization requests), forbidding string manipulations (to prohibit
the state mapping from using arbitrary encodings to store
information in the contents of strings such as user names),
and restricting the command mapping from mapping non-
administrative commands in S to administrative commands
in T . This framework has since been used to evaluate the
suitability of certain general-purpose access control systems
for various unique, application-specific requirements [15], [16].

C. Usage and Implications

Unfortunately, there are several indications that research on
expressiveness analysis is being held back by the inability
to reconcile the vastly different notions of expressiveness
simulations and the disconnect between the properties preserved
by a simulation and those that are important to a practical de-
ployment. Several works have demonstrated scenarios in which
static notions of expressiveness indicate two systems are equally
capable of satisfying a set of operational requirements, but
in practice they are better-suited to very different deployment
scenarios [15], [20]. Bourdier et al. point out the existence
of several competing techniques for expressiveness analysis,
none of which consider the deployment. They approach one
facet of this problem by proposing a formalism for access
control systems that can more easily be transformed into
implementations using rewrite-based tools [21]. Several others



simply express a desire to use expressiveness analysis, but
never do so, presumably due to the complexities of selecting
and using the right notion of simulation [22], [23].

A group at the National Institute of Standards and Technol-
ogy has developed Policy Machine, an attempt at a universal
access control system (one that can represent any policy
via only configuration changes) [24]. However, in evaluating
Policy Machine’s success, they avoid formally proving its
expressiveness and instead show informal mappings that
demonstrate how one might use Policy Machine to represent
several existing access control systems’ policies [25]. Soon
after, the group published a report bemoaning the lack of
quality metrics for evaluating access control systems, noting
that, in access control, “one size does not fit all,” and thus said
metrics must consider the deployment scenario [26].

This overview illustrates that while each notion of expres-
siveness simulation has been used to prove various results,
the body of knowledge is troublesome to interpret and utilize
due to the wide variation in the properties required by each
simulation. In this work, we fill this void in the literature
by (1) proposing a minimal definition of simulation that
satisfies properties guaranteeing that its results are practically
useful; (2) presenting a set of additional properties that
more strict simulations can enforce; and (3) categorizing the
above notions of simulation based on the properties that they
enforce. We make the additional contribution of (4) discussing
relationships between attributes of a deployment scenario and
the practical effects of enforcing simulation properties, thus
assisting analysts in selecting the most relevant properties (and
therefore conducting the most relevant form of expressiveness
analysis) for the environment in which an access control system
will be deployed.

III. IMPLEMENTABLE EXPRESSIVENESS SIMULATIONS

In this section, we give requirements for a simulation to be
implementable and define our general formulation of relative
expressiveness analysis through the lens of implementability.

A. Implementability Requirements

In this work, we aim to consider expressiveness simulations
that are implementable: i.e., practically useful for making
decisions about which system is most suitable for a particular
deployment. Implementability enforces the following intuition:
if a system T is at least as expressive as S , then one should be
able to determine a general way to use T in place of S . Thus,
we define a minimal set of properties for an expressiveness
mapping to be considered implementable.

State mapping In order to use T in place of S, it must be
possible to (uniquely) determine which T state to use in place
of a particular S state. Thus, the state mapping must be a
function from the simulated system states to the simulating
system states.1

1It is possible that multiple states in S can be represented using the same
state in T . Thus, we do not require the state mapping to be an injection.
Furthermore, there may be states in T that are not used to simulate S, and
thus the state mapping need not be an surjection.

Command mapping To use T in place of S, it must be
possible to execute commands in T that are equivalent to
the commands in S. It is not necessarily the case that each
S command can be simulated using a single T command, so
we require a function from S commands to sequences of T
commands.2 Finally, it may be necessary to map an S command
differently depending upon the state in which it is intended to
be executed. Since using T in place of S means we only have
a T state to inspect during execution, this function should map
an S command and a T state to a sequence of T commands.
Query decider For some simulations of S in T , we may only
care that T allows the same set of accesses that S would.
However some types of simulations may allow the overriding
of T ’s default method of deciding granted permissions (e.g.,
adding the additional requirement that the requesting user is a
member of the REAL_USERS group, to distinguish from other
data stored in the user-set). While some types of simulations do
not allow this, to remain general we simply require a function
that maps each S query and T state to either true or false.
In some formalisms, this only includes the queries requesting
access, while in other cases other types of queries are allowed
(e.g., “Is user u a member of role r?”).

We use these requirements to motivate our definition of the
general case of implementable relative expressiveness.

B. Expressiveness Mappings

To define relative expressiveness mappings, we must first
define the state machines that represent access control systems.
Since we aim to compare existing expressiveness simulations,
we use a formalism for these structures that remains similar to
existing work, e.g., [10], [12], [13].

An access control system is formalized as a state machine
belonging to a particular access control model. An access
control model formalizes the way in which the access control
system will store and interpret information to make access
control decisions. Its data structures are formalized as a set of
access control states, and its methods for determining whether
to allow or deny inquiries as a set of authorization requests.
The value of all requests in a state (whether they are allowed
or denied) defines the access control policy, or theory, to be
enforced in that state.

Definition 1 An access control model is defined as M =
〈Γ,R〉, where Γ is the set of states and R is the set of
authorization requests, where each request r ∈ R is a function
Γ→ {TRUE, FALSE}. The entailment (`) of a request is defined
as γ ` r , r(γ) = TRUE. ♦

For example, consider a simple role-based access control
model whose states are defined over sets U of users, P of
permissions, and R of roles, as well as the user assignment
UR ⊆ U ×R and permission assignment PA ⊆ R× P . The
requests in this model are of the form “Is u authorized for p?,”
which is TRUE if ∃r : 〈u, r〉 ∈ UR ∧ 〈r, p〉 ∈ PA.

2Not sets of T commands, as commands may appear multiple times; and
not bags of T commands, as order matters.



When we refer to the size of a state, we are referring to the
size of its decomposition into primitive objects (e.g., users and
roles) and tuples (e.g., entries in a user assignment relation).

Definition 2 Given an access control modelM = 〈Γ,R〉 and
a state γ ∈ Γ, the set decomposition of γ is denoted [γ], and
refers to the “set of sets” forming γ, in which γ is represented
as being comprised of primitive sets and relations. ♦

Thus, the size of an access control state γ is defined as
|γ| =

∑
S∈[γ] |S|. For example, if [γ] = {U = {u1}, R =

{r1, r2}, UR = {〈u1, r1〉, 〈u1, r2〉}}, then |γ| = |U | + |R| +
|UR| = 5.

An access control system expands on a model by providing
methods of transforming the current state and additional
methods of querying the states. These additional queries allow
the user to ask additional boolean queries of the system, but a
value of TRUE does not indicate an authorization was granted.

Definition 3 Given access control model M = 〈Γ,R〉, an
access control system within M is a state transition system,
S = 〈Γ,Ψ, Q〉, where Ψ is the set of commands, where each
command ψ ∈ Ψ is a function Γ → Γ, and Q ⊇ R is the
set of queries, where each query q ∈ Q is a function Γ →
{TRUE, FALSE}. ♦

We use the notation next(γ, ψ) to denote the state
resulting from executing ψ in γ (that is, ψ(γ)), and
terminal(γ, ψ1 ◦ ψn) to denote the final state produced by
repeatedly applying next to the commands ψ1, . . . , ψn starting
from state γ: next(. . . next(γ, ψ1), . . . , ψn).

A system based on the example role-based model must
define commands to transform the state: e.g., to assign roles
to users, and assign permissions to roles. Additional queries
beyond the model’s requests may include those of the form
“Is user u a member of role r?”

Next, we define an access control mapping, which maps
one system to another but does not enforce any simulation
properties. We define a mapping as motivated in Section III-A
so that it can represent any implementable expressiveness
simulation.

Definition 4 Given two access control systems, S =〈
ΓS ,ΨS , QS

〉
and T =

〈
ΓT ,ΨT , QT

〉
, a mapping from S to

T is a triple of functions σ = 〈σΓ, σΨ, σQ〉, where:
• σΓ : ΓS → ΓT is the state mapping
• σΨ : ΨS × ΓT → (ΨT )

∗ is the command mapping
• σQ = QS × ΓT → {TRUE, FALSE} is the query decider

This definition is demonstrated in Fig. 1. Each function
takes its most general form that satisfies the requirements
from Section III-A. Thus, the definition remains general (it
does not enforce any specific security requirements yet), while
ensuring that any such mappings can generate implementable
procedures for using the simulating system in place of the
simulated system.

To demonstrate Definition 4, consider mapping a simple
access control list system to the role-based system described
throughout this section. The state mapping can map each ACL
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Fig. 1: The general form of an implementable expressiveness
mapping.
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Symbol Description
SC State correspondence
SS State storage

CD Command mapping dependence
CC Command mapping complexity
CS Command mapping stuttering
CT Trace structure
CA Actor preservation

QD Query decider dependence
QC Query decider complexity
QP Query preservation

R Reachability

Fig. 2: An overview of the dimensions of expressiveness
simulation properties

state to a role-based state in which each user u has a unique
role ru, and each user’s role is assigned the permissions from
the ACL state. The command mapping can map, e.g., “grant
u access to o” to “assign o to role ru.” The query mapping
would then map “Can u access o?” to “Is u authorized for o?”

IV. EXPRESSIVENESS SIMULATION PROPERTIES

In this section, we describe the lattice of properties that we
use to taxonomize access control expressiveness simulations.

A. Overview of dimensions of properties

In order for a mapping to be considered a simulation,
it must enforce additional properties over Definition 4. We
restrict this definition in a variety of ways. Although no set
of restrictions can be shown to be the full, correct set for all
conceivable simulations, there are naturally three categories of
restrictions to consider for simulations, given their structure
(a set of three functions): i.e., refinements to each of the state
correspondence, command mapping, and query decider. We also
consider restrictions to the reachability constraints required (a
cross-cutting dimension describing how these functions must
relate to one another). A summary of these dimensions is
depicted in Fig. 2.

Our state correspondence σΓ can be based on any of a
handful of structural definitions, defined by SC (i.e., what
elements do we inspect to determine whether two states
correspond?). Further, SS can limit the amount of storage
the state correspondence uses (e.g., T must simulate S using
only a linear amount of additional storage).



The command mapping σΨ can be restricted by CD in what
state elements it can use to map commands (e.g., whether it can
inspect arbitrary state elements or only those that are exposed
via queries). CC considers limiting the time-complexity of
the command mapping routine. Since the command mapping
returns a sequence of commands, CS can limit the number of
commands it can return (e.g., only one, or constant in the size
of the state). We identify CT, a dimension of concurrency-
related trace structure restrictions, as well as CA, requiring the
simulation to map S commands executed by certain types of
users only to T commands executed by that category of users.

The query decider σQ can also be restricted in a number
of ways. Like the command mapping, we may limit what
elements of the state the decider can inspect when deciding
how to answer queries within a specific state (QD), or the time-
complexity of the routine (QC). In some cases a simulation of
S in T may be required to map certain S queries to specific
related queries in T , most notably authorization requests (e.g.,
to answer whether user u should have permission p in S, T
should simply check whether user u has permission p in its
current T state); this type of restriction is handled in QP.

Finally, our reachability restrictions R define how these three
functions relate, by allowing us to parameterize whether we
require one-way reachability (T must be able to transition to
states corresponding to all reachable S states) or bidirectional
reachability (T also cannot transition to states that do not
correspond to reachable S states).

The bare minimum set of these simulation properties that
must be enforced for a mapping to be considered a simulation
is a notion of state correspondence and a reachability relation.
We present the definition of implementable expressiveness
simulation, which refines the mapping by enforcing these
properties.

Definition 5 Given two access control systems, S =〈
ΓS ,ΨS , QS

〉
and T =

〈
ΓT ,ΨT , QT

〉
and a mapping

σ = 〈σΓ, σΨ, σQ〉 from S to T , an implementable expres-
siveness simulation of S in T based on σ is defined as
σ′ = 〈σΓ, σΨ, σQ,∼, R〉, where:

• ∼ ⊆ ΓS × ΓT is the state correspondence, and ∀γ ∈
ΓS , γ ∼ σΓ(γ)

• R is a reachability restriction

We define all properties over the expressiveness simulation
σ = 〈σΓ, σΨ, σQ,∼, R〉. Unless otherwise noted, properties
within a dimension are totally ordered from most to least strict.

B. State correspondence properties

As discussed in Section III-B, the state correspondence of
an implementable simulation of S in T is a function, σΓ :
ΓS → ΓT mapping each state in S to a state in T . There are
several ways in which we can restrict this mapping.

Dimension SC: State correspondence structure

This dimension of properties restricts the way in which
corresponding states are structurally similar. All properties

within this dimension were inspired by state correspondence re-
lations from prior expressiveness simulations; other application-
specific state correspondence relations are conceivable.

SCs: Structure-correspondent
γS

s∼ γT , ∀Si ∈
[
γS
]
.(Si ∈

[
γT
]
)

SCq: Query-correspondent
γS

q∼ γT , ∀q ∈ QS .(γS ` q ⇐⇒ σQ(q, γT ) = TRUE)

SCa: Authorization-correspondent
γS

a∼ γT , ∀r ∈ RS .(γS ` r ⇐⇒ σQ(r, γT ) = TRUE)

Authorization-correspondent simulations enforce that every
γS maps to a γT that agrees on all authorization requests: any
permission granted/denied in γS must also be granted/denied
in γT . Requests that exist in T but not in S are not restricted.
This type of correspondence is used in [2], [3], [7]–[10]. Query-
correspondence requires that γS and γT agree on all queries,
not just authorization requests. This type of correspondence is
used in the expressiveness simulations of [13], [14].

Finally, structure-correspondent simulations require all cor-
responding state elements to be identical. If γS structure-
corresponds to γT , then every set in γS exists in γT , and
contains all the same elements (γT may contain additional sets
or relations). Thus, if γS contains sets of users and permissions,
and a relation between them (a subset of users× permissions)
specifying accesses, γT must contain identical sets of users and
permissions, and an identical set of 〈user, permission〉 pairs.
This notion of state correspondence is used in [6].

The type of state correspondence used is a central character-
istic of a type of simulation. Enforcing a state correspondence
that is too weak can allow the simulating system to diverge
from the simulated system in unexpected ways, while a state
correspondence that is too strong will cause the simulating
system to track the simulated system more closely than
necessary (e.g., by constraining the values of queries that the
deployment never needs to ask). Thus, choosing a particular
state correspondence is choosing how closely the simulating
system must stay to the simulated system.

Dimension SS: State storage

An orthogonal class of restrictions that can be placed on the
state correspondence relation involve its allowed storage. Here,
we restrict the size of γT = σΓ(γS) with respect to γS .

SSl: Linear storage
∃c ∈ R+, s ∈ Z+ : ∀γ ∈ ΓS : |γ| ≥ s⇒ |σΓ(γ)| ≤ c|γ|
SSp: Polynomial storage
∃k ∈ R+, s ∈ Z+ : ∀γ ∈ ΓS : |γ| ≥ s⇒ |σΓ(γ)| ≤ |γ|k

SS∞: Unbounded storage No restriction.

A linear storage simulation says that γT can grow at most
linearly with γS , while in a polynomial storage simulation, the
size of γT is bounded by a polynomial in the size of γS . The
most obvious result of enforcing properties within SS is limited
trusted storage, but it can also limit iteration over the resulting
state (e.g., if an action must be taken for each document in the



simulating system, SSl ensures that this sequence of actions is
linear in the size of the simulated state).

C. Command mapping properties

Recall that the command mapping for an implementable
simulation (Definition 5) is a function σΨ : ΨS×ΓT → (ΨT )

∗

that returns the sequence of T commands needed to simulate
an S command starting from a particular T state. Thus, it
allows us to simulate S commands in an active simulation
using T . We now discuss the ways in which we can restrict
this mapping.

Dimension CD: Command mapping dependence

While Definition 5 maps each S command and T state to
a sequence of T commands, some previous works use more
strict command mappings, mapping each S command to a
sequence of T commands without considering the state [10].
In between these options, we may map each S command and T
theory, calculating the sequence of T commands by observing
only the queriable portions of the T state. Command mapping
dependence thus restricts the information that the command
mapping can consider about a T state when calculating the
trace of T commands to execute.
CDi: Independent command mapping
∃σ′ : ΨS → (ΨT )

∗
.(σΨ(ψ, γ) ≡ σ′(ψ))

CDt: Theory-dependent command mapping
∃σ′ : ΨS × Th(T )→ (ΨT )

∗
.(σΨ(ψ, γ) ≡ σ′(ψ,Th(γ)))

CDs: State-dependent command mapping No restriction.

With independent command simulations, S commands must
be precompiled to T commands which will work in any
reachable T state. This is a restriction placed by [10]. Theory
dependent command mappings allow limited inspection of the
T state; this restriction allows the sequence of T commands
to be determined based only on the theory of the T state: the
values of all T queries in the state. If two T states answer all
queries the same way, the same T commands would be used
in both to simulate an S command. With this restriction, the
monitor that transforms S inputs into T procedures need not
be more privileged than users of the access control system,
since queries are the user’s only API to observe the state.

Finally, state-dependent command mappings can arbitrarily
observe the state. This requires a monitor that is privileged
enough to observe elements of the state that are not queriable,
and two states that answer all queries identically may simulate
commands differently depending on unobservable state.

Dimension CC: Command mapping complexity

Having considered the inputs available to the command
mapping, we now consider the time complexity of this mapping.
Note that this is measured as the increase in time as the state
grows and thus is meaningless for independent command.

CCc: Constant command mapping ∀ψ ∈ ΨS , the algo-
rithm for σψ(γ) = σΨ(ψ, γ) has time complexity T (n) ∈ O(1)

CCl: Linear command mapping ∀ψ ∈ ΨS , the algorithm
for σψ(γ) = σΨ(ψ, γ) has time complexity T (n) ∈ O(n)

CC∞: Unbounded command mapping No restriction.

Constant command simulations do not allow more processing
time for bigger states. Thus, the command mapping cannot
loop over sets within the state. With linear command, the
command mapping can take time linear in the size of the state,
e.g., looping over sets in the state, but cannot contain double
loops over sets, sort sets, etc. Finally, unbounded command
simulations put no limit on the complexity of the command
mapping (though we may expect it to have to be tractable, e.g.,
poly-time).

Dimension CS: Command mapping stuttering

Since the command mapping maps an S state to a sequence
of T states, we may restrict the number of commands that can
be used to simulate a single S command.

CS1: Lock-step ∀ψ ∈ ΨS , γ ∈ ΓT : |σΨ(ψ, γ)| ≤ 1

CSc: Constant step ∃c : ∀ψ ∈ ΨS , γ ∈ ΓT : |σΨ(ψ, γ)| ≤ c
CS∞: Unbounded step No restriction.

A lock-step simulation allows at most one T command for
each simulated S command. This mitigates concurrency issues
for multiuser systems, since the system does not pass through
potentially inconsistent states between command executions.
Constant step simulations allow multiple commands to be
used, but only a number constant in the size of the state. Thus,
multiple actions can be taken, but not, e.g., a command for each
user in the system. Finally, unbounded step does not restrict
how many T commands can be executed per S command.

Dimension CT: Trace structure

This class of properties enforces structural constraints on the
traces of commands returned by the command mapping. This
can address the potentially inconsistent states between start and
end states in traces generated by the command mapping. Here,
we present several examples of trace restrictions, using the
notation terminal(γ, ψ1, · · · , ψj) to denote the end state re-
sulting from executing the sequence of commands ψ1, · · · , ψj ,
starting from the state γ. Note that this dimension of properties
is not totally ordered.
CT1: Semantic lock-step

∀ψ ∈ Ψ
S
, γ
S ∈ Γ

S
, γ
T ∈ Γ

T
.(

∃ψ = 〈ψ1, ψ2, . . . , ψm〉 ∈ (Ψ
T

)
∗
, i ∈ (1,m].(

σΨ(ψ, γ
T

) = ψ ∧
∀j ∈ [1, i).(γ

S ∼ γT ⇒
γ
S ∼ terminal(γT , ψ1 · · ·ψj)) ∧

∀j ∈ [i,m].(γ
S ∼ γT ⇒

next(γS , ψ) ∼ terminal(γT , ψ1 · · ·ψj))))

First, a semantic lock-step simulation can appear to be lock-
step (i.e., it does not enter any inconsistent states), because
even though it is allowed to execute multiple T commands to
simulate a single S command, only one of those commands
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Fig. 3: A graphical representation of semantic lock-step

is allowed to make correspondence-related changes. That is,
consider the sequence of T states constructed by executing
the sequence of commands σΨ(ψS , γT ). In semantic lock-step,
all of these states must correspond to the either the start state
in S or the end state in S, and once the transition from start
state to end state is made, the remaining states must all be
equivalent to the end state. Thus, from the point of view of a
user who can ask any combination of queries, the simulation
appears to be lock-step. This restriction is depicted in Fig. 3.

CTq: Query monotonic
∀ψ ∈ ΨS , γ ∈ ΓT , q ∈ QT .monotonic(ψ, γ, q), where:

monotonic(ψ, γ, q) , ∃ψ = 〈ψ1, ψ2, . . . , ψm〉 ∈ (Ψ
T

)
∗
.(

σΨ(ψ, γ) = ψ ∧
∀i ∈ (1,m).(

terminal(γ, ψ1 · · ·ψi) ` q ⇒
(terminal(γ, ψ1 · · ·ψi−1) ` q ∨ terminal(γ, ψ1 · · ·ψm) ` q) ∧

terminal(γ, ψ1 · · ·ψi) 0 q ⇒
(terminal(γ, ψ1 · · ·ψi−1) 0 q ∨ terminal(γ, ψ1 · · ·ψm) 0 q)))

Consider the start and end states of a trace in T , γ and γ′,
respectively. Let Q+ be the set of queries that become true
in γ′ that were false in γ, and Q− be the set of queries that
become false in γ′ that were true in γ. During the trace from
γ to γ′, query monotonicity enforces that no queries are made
true except Q+, and no queries are made false except Q−.
Thus, from the point of view of a user who can ask only single
queries, the simulation appears to be lock-step.

CTa: Access monotonic
∀ψ ∈ ΨS , γ ∈ ΓT , r ∈ RT .monotonic(ψ, γ, r)

Access monotonicity is similar to query monotonicity but
considering only authorization requests. Let R+ be the set
of requests that become allowed in γ′ that were denied in
γ, and R− be the set of requests that become denied in γ′

that were allowed in γ. During the trace from γ to γ′, access
monotonicity enforces that no requests are granted except R+,
and no requests are revoked except R−.

CTs: Non-contaminating

∀ψ ∈ Ψ
S
, γ
T ∈ Γ

T
.(

∃ψ = 〈ψ1, ψ2, . . . , ψm〉 ∈ (Ψ
T

)
∗
.(

σΨ(ψ, γ
T

) = ψ ∧
∀γTi ∈

{
γ
T
i | ∃ψi ∈ ψ : γ

T
i = terminal(γ

T
, ψ1 · · ·ψi)

}
.(

Allowed(γ
T
i ) ⊆ Allowed(γ

T
) ∨

Allowed(γ
T
i ) ⊆ Allowed(terminal(γ

T
, ψ)))))

The non-contaminating trace property ensures that no two
accesses are allowed in the same state that are not both

allowed in either the start or end state. This prevents, e.g.,
an intermediate state where a file can be accessed by two
users simultaneously when simulating a command intended to
switch which user can access the file. This definition uses the
Allowed(γ) notation, indicating the set of all permissions p
allowed in state γ (i.e., such that γ ` p).

Dimension CA: Actor preservation

Actor preservation properties restrict which users can be
invoked in T to handle S commands. Here, we assume that
α(ψ) denotes the actor executing the command ψ. Note that
this requires system support (e.g., the executing actor being
an implicit argument passed to a command) in order for a
simulation to be executable.

CA>: Self-execution ∀ψS ∈ ΨS , γ ∈ ΓT ,∀ψT ∈
σΨ(ψS , γ), α(ψS) = α(ψT )

CAa: Administration-preservation Let A be the administra-
tive subset of executing entities in the system. ∀ψS ∈ ΨS , γ ∈
ΓT ,∀ψT ∈ σΨ(ψS , γ), α(ψT ) ∈ A⇒ α(ψS) ∈ A

Self-execution says that any command in S executed by any
user u must be mapped to a sequence of commands in T , all of
which are executed by u. Administration-preservation prevents
the invocation of administrators in T where they were not
needed in S. In an administration-preserving simulation, any
command in S executed by a non-administrative user is mapped
to a sequence of commands in T , none of which is executed
by an administrator. Other forms of actor preservation, as well
as defining the set of administrators, are application-specific.

D. Query decider properties

We defer the bulk of the technical discussion of the query
decider restrictions to the technical report accompanying this
paper [27], as they are largely similar to the command mapping
restrictions. Query decider dependence (QD), like command
mapping dependence (CD), restricts the information that the
query decider can consider about a T state when deciding
the truth value of an S query in that state. Query decider
complexity (QC) restricts the runtime of the routine.

Query preservation (QP) indicates which queries need to
stay the same as they are mapped from system S to system T .
A particular application may require any given set of queries
to be preserved; the most common property in this dimension
is authorization preservation, which enforces that the query
decider maps each S request to the value of the identical
request in the T state. This can be seen as ensuring that T
is using its model “as intended” (i.e., forcing it to answer
simulated requests as it would its own native requests).

E. Reachability

Dimension R: Reachability

The last dimension of properties we consider ties the
mappings together to ensure the simulation is indeed what
one could consider a simulation in the classic sense. A state
correspondence, query decider, and command mapping do not



automatically define a simulation without reachability con-
straints. Here, we define forward and bidirectional reachability,
two variants of this type of constraint (note that these properties
are presented in increasing strictness since the latter builds
upon the former).

R→: Forward reachability
∀γS0 , γ

S
1 ∈ Γ

S
, γ
T
0 ∈ Γ

T
.(

γ
S
0 ∼ γ

T
0 ∧ γ

S
0 7→ γ

S
1 ⇒ ∃γ

T
1 ∈ Γ

T
.(

γ
T
0
∗7→ γ
T
1 ∧ γ

S
1 ∼ γ

T
1 ))

R↔: Bidirectional reachability Forward reachability, and:

∀γS0 ∈ Γ
S
, γ
T
0 , γ

T
1 ∈ Γ

T
.(

γ
S
0 ∼ γ

T
0 ∧ γ

T
0 7→ γ

T
1 ⇒ ∃γ

S
1 ∈ Γ

S
.(

γ
S
0
∗7→ γ
S
1 ∧ γ

S
1 ∼ γ

T
1 ))

In forward reachability, any transition made in S must be
possible in T . If γS0 corresponds to γT0 , and γS1 can be reached
from γS0 via the commands of S, then γS1 must correspond
to a state γT1 in T that is reachable from γT0 . The notion of
state correspondence is determined by the property chosen in
dimension SC.

Bidirectional reachability (or bi-reachability), also requries
that T cannot enter a state that does not correspond to a
reachable state in S. If γS0 corresponds to γT0 , and γT1 is
reachable from γT0 by executing a command, then there must
exist an S state γS1 that corresponds to γT1 and that is reachable
from γS0 by executing one or more commands. This process
may make use of multiple steps, since the procedure for finding
the corresponding S states does not need to be constructed,
these states must simply exist. The operational advantage of
enforcing R↔ is that, even if the simulating system’s native
operations are exposed to users, the system can never enter a
state that does not have an equivalent in the simulated system.

V. POSITIONING EXISTING SIMULATIONS

As mentioned in Section IV-A, no set of properties can
be proven to describe all conceivable simulations. In this
section, we support the set of properties defined in this work
by showing that it can precisely describe the wide range of
existing expressiveness simulations.

A. Expressiveness using Simulation Properties

We will now draw the formal distinction between a simu-
lation and expressiveness. Here, we use T sim

X
S to denote,

“T can admit a simulation of type X of S,” and S ≤X T
to denote, “T is at least as expressive as S with respect to
simulations of type X .”

While previous work considers the expressiveness result to
be equivalent to a simulation (i.e., T sim

X
S ≡ S ≤X T ),

expressiveness in a practical sense is subject to a subtle distinc-
tion. Since we mean for expressiveness to be implementable
(i.e., if T is as expressive as S , then T can be used in place of
S), expressiveness within the domain of simulation properties
should mean the following: if T is as expressive as S , then T
can simulate any system that S can simulate. Thus, we define
expressiveness in the context of a set of simulation properties.

Definition 6 (Expressiveness) Given access control systems
S and T and a set of simulation properties P , we say that
T is at least as expressive as S with respect to P (denoted
S ≤P T ) to mean that, for every system U , if S can simulate
U while enforcing P , then T can simulate U while enforcing
P (∀U : S sim

P
U ⇒ T sim

P
U). ♦

We first point out that this definition of expressiveness is
strictly more general than the more traditional (often implied)
notion. Since S can trivially simulate itself, S ≤X T implies
T sim
X
S. The additional generalization can be viewed from

a formal standpoint as dropping the (incorrect) assumption
that all types of simulation are transitive (i.e., that T sim S
and S sim U imply T sim U). For instance, assume that T
can simulate S and S can simulate U , each with a quadratic
increase in state storage. While T may be able to simulate U ,
this simulation may require greater than quadratic storage.

From a more intuitive standpoint, we point out that, except
in the case of custom-built access control solutions, any
deployment is a simulation of a workload (i.e., ideal operation)
using an existing system. That is, unless S is custom-made
to exactly satisfy the desired workload, replacing it with T is
not a matter of whether T can simulate S , but whether T can
admit an equally good simulation of the (perhaps not formally
specified) workload that S is known to simulate. This concept
is discussed by Kane and Browne [28], who point out that an
access control implementation is often only an approximation
of the desired policy. In particular, as policy languages get
more complex, deployments often make use of approximations
that are easier to analyze and more efficient to enforce than
the overly-expressive policy language.

B. Decomposing Expressiveness Simulations to Properties

In order to use the set of expressiveness simulation properties
detailed in Section IV to systematically compare previously
proposed notions of simulation, we present our formal way
of stating that a notion of simulation and a set of simulation
properties are equivalent. We call this correspondence simu-
lation decomposition: when a notion of simulation X can be
decomposed to a set of simulation properties P , then analyses
using X and P yield equivalent expressiveness results.

Definition 7 (Simulation Decomposition) Given a notion of
access control simulation X and a set of simulation properties
P , X can be decomposed to P (denoted X =̈ P) if and only
if, for all systems S and T , T sim

X
S ⇐⇒ S ≤P T . That is,

T admits an X simulation of S if and only if T is at least as
expressive as S with respect to properties P . ♦

Recall from Definition 6 that S ≤P T says that any system
that can be simulated by S while preserving properties P can
can also simulated by T while preserving P . In light of this,
we will position an existing notion of simulation, X , within the
lattice formed by our simulation properties (i.e., prove X =̈ P)
by proving the following for the set of properties P:

1) (Only-if direction) T sim
X
S ∧ S sim

P
U ⇒ T sim

P
U



2) (If direction) S ≤P T ⇒ T sim
X
S

We give an example of such a proof in the following section.

C. Example Decomposition

To demonstrate how simulation decomposition proofs are
written, we now consider the Ammann-Lipton-Sandhu simula-
tion [6]. The ALS simulation considers access control states
as graphs: sets of primitive objects are node types, and sets of
relations are edge types. The set of node types and edge types
in the states of system S are denoted NT (S) and ET (S),
respectively. The ALS state correspondence is then defined as
follows (reworded slightly from [6]).

Definition 8 A state in system S, a simulated system, and a
state in system T , a simulating system, correspond iff the graph
defining the state in S is identical to the subgraph obtained
by taking the state in T and discarding all nodes (edges) not
in NT (S) (ET (S)). ♦

The ALS simulation is defined with respect to this state
correspondence.

Definition 9 Under the definition of correspondence in Defini-
tion 8, system T simulates system S iff the following conditions
hold:

1) If system S can reach a given state, system T can reach
a corresponding state.

2) If system T can reach a given state, system S can reach
a corresponding state.

We will now demonstrate the two-step simulation decom-
position proof technique described in Section V-B for the
ALS simulation. For the purposes of this proof, let the set
of simulation properties P = {SCs,QPa,R↔}. Recall that
SCs is structure state correspondence, which says that the
simulating state must include all of the unaltered sets from the
simulated state; QPa is authorization preservation, which says
that each authorization request must be mapped identically from
simulated to simulating system (and thus the simulating system
must support the same set of requests as the simulated system);
and R↔ is bireachability, which says that the simulating system
can reach a state which corresponds to each reachable simulated
state, and cannot reach a state which does not correspond to a
reachable state in the simulated system.

We will demonstrate the two steps of the proof technique by
proving two requesite lemmas. First, step 1 (only-if direction):

Lemma 1 Given access control systems S, T , and U ,

T sim
ALS
S ∧ S sim

P
U ⇒ T sim

P
U

That is, if T admits an ALS simulation of S, and S admits
a simulation of U with properties {SCs,QPa,R↔}, then T
admits a simulation of U with properties {SCs,QPa,R↔}.
Proof To prove this lemma, we let S, T , and U be access
control systems such that T sim

ALS
S and S sim

P
U but are

otherwise arbitrary, and we show that T sim
P
U .

Choose an arbitrary state γU0 ∈ ΓU and command ψU ∈ ΨU ,
and let next(γU0 , ψ

U ) = γU1 . Let γS0 ∈ ΓS such that γU0
s∼ γS0 .

Since S sim
P
U ,

∃γS1 ∈ ΓS .(terminal(γS0 , σΨ(ψU , γS0 )) = γS1 ∧ γU1
s∼ γS1 )

Let γT0 ∈ ΓT such that γS0
s∼ γT0 . Since T sim

ALS
S,

∃γT1 ∈ ΓT .(γT0
∗7→ γT1 ∧ γS1

s∼ γT1 )

Thus, there exists a sequence of T commands ΨT0 such that
terminal(γT0 ,Ψ

T
0 ) = γT1 . Define σΨ : ΨU × ΓT → (ΨT )

∗

such that it returns ΨT0 for γT0 , ψ
U .

Then, given γU0 , γ
U
1 ∈ ΓU , γT0 ∈ ΓT , ψU ∈ ΨU such that

next(γU0 , ψ
U ) = γU1 , and γU0

s∼ γT0 ,

∃γT1 ∈ ΓT .(terminal(γT0 , σΨ(ψ, γT0 )) = γT1 ∧ γS1
s∼ γT1 )

Hence, T sim
{SCs,R→}

U . Next, we show QPa.

Choose some arbitrary request rU0 ∈ RU and state γT0 ∈ ΓT .
Since S sim

P
U ,

∀rU ∈ RU , γS ∈ ΓS , σQ(rU , γS) = γS ` rU

Thus, we know that S supports all U requests, and corre-
sponding S and U states will answer U requests identically.
Therefore, rU0 ∈ RS . Since T sim

ALS
S,

∀rS ∈ RS , γT ∈ ΓT , σQ(rS , γT ) = γT ` rS

Thus, σQ(rU0 , γ
T ) = γT ` rU0 .

Hence, T sim
{SCs,QPa,R→}

U . Next, we show R↔.

Choose some arbitrary states γT0 , γ
T
1 ∈ ΓT such that γT0 7→

γT1 . Let γS0 ∈ ΓS such that γS0
s∼ γT0 . Since T sim

ALS
S,

∃γS1 .(γS0
∗7→ γS1 ∧ γS1

s∼ γT1 )

Let γU0 ∈ ΓU such that γU0
s∼ γS0 . Since S sim

P
U ,

∃γU1 .(γU0
∗7→ γU1 ∧ γU1

s∼ γS1 )

Thus, given γT0 , γ
T
1 ∈ ΓT , γU0 ∈ ΓU such that γT0 7→ γT1

and γU0
s∼ γT0 ,

∃γU1 ∈ ΓU .(γU0
∗7→ γU1 ∧ γU1

s∼ γT1 )

Hence, T sim
P
U . �

Next, we demonstrate step 2 (if direction):

Lemma 2 Given access control systems S and T and simula-
tion properties P = {SCs,QPa,R↔}, S ≤P T ⇒ T sim

ALS
S.

That is, if T is at least as expressive as S with respect to
properties P , then T admits an ALS simulation of S .

Proof To prove this lemma, we let S and T be arbitrary
access control systems such that S ≤P T , and we show that
T sim

ALS
S.

Since S ≤P T , for any access control system U , if S sim
P
U ,

then T sim
P
U .
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Since S can trivially simulate itself, S sim
P
S, and thus

T sim
P
S.

Thus, given γS0 , γ
S
1 ∈ ΓS , γT0 ∈ ΓT , by forward reachability,

if γS0
s∼ γT0 and γS0 7→ γS1 , then

∃γT1 .(γT0
∗7→ γT1 ∧ γS1

s∼ γT1 )

Since SCs and QPa satisfy the ALS definition of state
correspondence, this means we have satisfied the first property
of the ALS simulation.

1) If S can reach a given state, T can reach a corresponding
state.

And by bidirectional reachability, given γS0 ∈ ΓS , γT0 , γ
T
1 ∈

ΓT , if γS0
s∼ γT0 and γT0 7→ γT1 , then

∃γS1 .(γS0
∗7→ γS1 ∧ γS1

s∼ γT1 )

And therefore, we have satisfied the second property of the
ALS simulation:

2) If T can reach a given state, S can reach a corresponding
state.

These properties satisfy the definition for ALS simulation,
and hence T admits an ALS simulation of S (T sim

ALS
S). �

Therefore, we have proved the decomposition of the ALS
simulation:

Theorem 3 ALS =̈ {SCs,QPa,R↔}; that is, the ALS simu-
lation decomposes to structure correspondence, authorization
preservation, and bidirectional reachability.

Proof By Lemma 1, if T sim
ALS
S , then S ≤P T . By Lemma 2,

if S ≤P T , then T sim
ALS

S. Thus, S ≤P T if and only
if T sim

ALS
S, and thus the ALS simulation decomposes to

{SCs,QPa,R↔}. �

In the interest of space, all other decomposition proofs can
be found in the technical report accompanying this paper [27].

D. Results

Now, we present the results of decomposing the simulations
from the series of previous works discussed in Section II into
sets of simulation properties from Section IV. First, a chart of
our results is shown in Fig. 4a, which states the decomposition

of the SMG simulation [2]–[4], [7]–[9], the Ganta simula-
tion [5], the ALS simulation [1], [6], the CDM weak and strong
simulations [10], the TL state-matching reduction [12], [13],
and HMG+ parameterized expressiveness (along with several
parameterized expressiveness properties) [14]. Properties are
omitted if they are not explicitly required by the simulation’s
definition but are implied by other, explicit properties (e.g.,
CDMs decomposes to a set including CDi, which also implies
CCc). Section VI-A discusses which properties imply others.

In Fig. 4b, we arrange this data as a taxonomy, with each split
representing a dimension, with weaker properties positioned
to the left and stronger properties to the right. We split first
on the state correspondence, which is perhaps the biggest
difference among the surveyed simulations. This separates
simulations that preserve only the answers to authorization
requests (SCa) from those that preserve all queries (SCq) and
those that preserve full state structure (SCs). We note that
the ALS simulation is alone in its decomposition including
SCs; all other surveyed simulations allowed the simulating
system to store information in a different organization than the
simulated system, so long as the required queriable information
(requests or queries) can be recovered. We also note that the
predominant difference between the SMG simulation and the
CDM simulations is the command dependence: in SMG, a
command can be mapped completely differently if it is to be
executed in different states, while in CDM, each command
must be mapped without knowing the state in which it will
be executed. The Ganta simulation is unique in enforcing
the non-contamination trace restriction. HMG+ and TL-SMR
use the same state correspondence, but HMG+ enforces a
more lax query dependence and does not require bireachability.
Simulations that are positioned farther apart are the most
dissimilar. Most starkly different are SMG and ALS, positioned
far left and far right, which share no simulation properties
except in dimensions in which both enforce only minimum
properties, despite their similar publication times.

In Fig. 4c, we position the surveyed simulations within a
lattice. Higher simulations decompose to more strict properties,
and an arrow from simulation X to simulation X ′ indicates
that X ′ decomposes to strictly stronger properties than X .
Here we can see that the SMG simulation is strictly weakest,
which supports previous claims to this effect [5], [13]. Several
orthogonal directions were taken in defining other simulations
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Fig. 5: Lattice of state correspondence, command dependence, and query dependence with positioned surveyed simulations

to enforce stronger properties. The CDM simulations, as noted
above, restrict the command dependence. The Ganta simulation
requires non-contamination and bireachability. The TL state-
matching reduction and HMG+ parameterized expressiveness
consider queries, and thus strengthen the state correspondence.
The ALS simulation enforces an even more strict state
correspondence, requiring the structure of a simulated system’s
state to be preserved in the simulating system. Interestingly,
we note that while all are stronger than SMG, most pairs are
incomparable due to being stronger in orthogonal ways. In
particular, while TL-SMR is considered to be a relatively strong
notion of simulation, this is not substantiated by the lattice,
which shows TL-SMR to be stronger than HMG+ and SMG,
but incomparable to the CDM, ALS, and Ganta simulations.

Figure 5 presents a lattice of state correspondence, command
dependence, and query dependence, with the surveyed simula-
tions positioned within it (in this space, the Ganta simulation
is at the same point as the SMG simulation). This figure makes
evident the wide range of points between existing simulations
that have not been explored. In this figure, we omit several
dimensions for readability, namely reachability (which further
separates Ganta, ALS, and TL-SMR from SMG, CDM and
HMG+) and stuttering (which would break CDM into its weak
and strong counterparts). Perhaps the most interesting points
to explore within this lattice are those that exist between two
surveyed simulations. For example, {SCq,CDs,QDs} adds to
SMG the preservation of queries beyond requests, but stops
short of HMG+ by not restricting the query decider to consider
only the theory of the state while mapping queries. Similarly,
{SCa,CDt,QDs} takes away some of SMG’s freedom to
inspect the state mapping commands, but rather than go all
the way to the independent command mapping of CDM, it

still allows it to inspect the state’s responses to queries. We
also point out {SCq,CDs,QDi}, which differs from HMG+ by
enforcing query decider independence (mapping queries cannot
consider the state or theory), but can map each simulated query
to a boolean expression over simulating queries.

VI. SELECTING NEW SETS OF PROPERTIES

In Section V, we positioned the simulations used in previous
works within a comparative lattice, allowing them to be
formally compared for the first time. In this section, we
enable a second use of our lattice of expressiveness simulation
properties: crafting new notions of expressiveness by choosing
the properties that most closely correspond to the scenario
in which an access control system will be deployed. We first
discuss interactions between dimensions; this discussion should
act as a warning against choosing individual properties in
isolation. We then interpret the impact each identified dimension
has on the simulation, and identify properties of a deployment
scenario that may dictate particular choices in each dimension.
Finally, we discuss the potential impact these techniques could
have on future expressiveness analysis.

A. Interactions Between Dimensions

We noted in Section V that some simulations decompose to
sets of properties that include implied properties, or properties
that are redundant given the others in the set. For instance,
command independence (CDi) implies constant-time command
mapping (CCc); if the command mapping does not depend on
the state, then its procedure must be constant-time in the size
of the state. Further, CCc implies constant step (CSc), since a
constant-time procedure must have constant-size output.



An additional type of interaction is between basic properties
and those properties whose definition relies on the basic
properties in the abstract. For example, the definition of forward
reachability (R→) refers to sequences of commands output by
σΨ, the length of which may be limited by command mapping
stuttering (CS). Further, the definitions of both reachability
properties (R) and trace structure properties (CT) refer to
corresponding states. Here, the details of what makes states
correspond is left to the state correspondence structure (SC).

These dependencies show that the proof of a property in
one dimension may rely on the properties chosen in another.
Thus, e.g., changing to a stronger state correspondence requires
re-proving a simulation’s results for reachability and trace
structure, since these are dependent on state correspondence.

Several property dimensions are defined over the size of the
simulated state: command mapping complexity (CC), command
mapping stuttering (CS), and query decider time-complexity
(QC). Thus, these dimensions can be altered with respect to
the original, simulated state by the state storage size (SS). For
example, enforcing polynomial storage (SSp) and linear-time
command mapping (CCl) will guarantee a command mapping
that is linear-time with respect to the simulating state, which
is a polynomial expansion over the original simulated state.

B. Interpreting the Dimensions

We now discuss the practical impacts each identified dimen-
sions, and what types of environments may cause one to prefer
a particular property in these dimensions over others.

SC: State correspondence structure allows one to change
what needs to be preserved about the state during a simulation.
If the deployment scenario in question assumes only that the
simulation allows the proper authorization requests, SCa should
suffice. For scenarios that require the access control system to
support (and provide correct answers to) additional queries such
as, “Is user u a member of role r?”, SCq is more appropriate.
Finally, in scenarios that make use of additional code that has
access to (and assumes a particular arrangement of) the access
control system’s internal data structures, SCs is the best choice.

SS: State storage limits the size of the simulated state with
respect to the original state (i.e., the state of the system being
simulated). This can be restricted for several reasons. The most
obvious is storage space: if trusted storage for representing
access control state is limited, we may restrict the simulation
from mapping states in a way that increases storage by more
than a linear factor (SSl) or a polynomial factor (SSp). However,
the more interesting reason comes from an interaction described
in Section VI-A. Since other dimensions place restrictions (e.g.,
on the number of commands executed) based on the size of the
simulating state, we may restrict the state expansion to linear
(SSl) in order, e.g., to restrict the command mapping procedure
to be linear-time in the size of the original, simulated state. If
state storage is polynomial (SSp), then even if we enforce a
command mapping that is linear in the simulating state (CCl),
this only restricts it to being polynomial-time with respect to
the simulated state. Thus, even when trusted storage space is

unbounded in the deployment scenario, one may desire to limit
state size to limit later iteration over this state.

CD: Command mapping dependence allows one to re-
quire that the command mapping be computable without full
knowledge and inspection of the state in which a command will
be executed in. Independent command (CDi) requires that each
command is mapped independent of the state, and is useful
in deployment scenarios in which the agent calculating the
simulating commands is completely unprivileged, and cannot
inspect the state. It is also useful when commands must be
precompiled, thus adding no computation at runtime beyond
that of the simulating commands themselves. Theory-dependent
command mapping (CDt) allows the command mapping to
inspect the theory of the state (i.e., the answers to all queries).
This property is useful in deployment scenarios in which the
simulation agent is no more privileged than normal users—
calculating the mapped commands requires only information
available by asking queries. Finally, state-dependent command
mapping (CDs) allows the command mapping to arbitrarily
inspect the state, requiring a powerful simulation agent.

CC: Command mapping complexity restricts the time-
complexity of the command mapping with respect to the size
of the simulating state. Constant command mapping (CCc)
can restrict the command mapping from taking any longer
for larger states, and is thus appropriate when states can be
large but mapping commands must always remain fast. Linear
command mapping (CCl) prevents expensive nested loops over
access control state as well as operations such as sorting, while
still allowing more processing for larger states.

CS: Command stuttering restricts the number of sim-
ulating commands executed for each simulated command.
Lock-step (CS1) simulations must execute no more than one
simulating command per simulated command, and thus ensure
there is no intermediate state exposed to users. In deployment
scenarios without the ability to force atomic execution of
a sequence of commands (or without built-in data structure
locking), this property is crucial to preventing the inspection
of intermediate (potentially inconsistent) states. Constant step
(CSc) simulations are allowed a constant number of commands
for each simulated command, and are thus appropriate when the
state can grow to be large but the deployment scenario requires
that the number of steps for any simulated action remain
bounded (e.g., to prevent starvation due to locked structures).

CT: Trace structure properties restrict the path that the
simulating system can take during the simulation of a single
command. Semantic lock-step (CT1, depicted in Fig. 3)
provides the benefits of a lock-step simulation in a slightly
relaxed way: a “setup” phase prepares for the transition by
changing only internal data (i.e., while remaining equivalent to
the start state), then the transition occurs to a state equivalent
to the end state, and then the “cleanup” phase cleans up any
unnecessary leftover data (again, while remaining equivalent to
the same end state). This is particularly useful when lock-step
is too strict, but the deployment scenario is sensitive to the
exposure of intermediate states (since, in CT1, no states are
exposed except those equivalent to the start and end states).



Query monotonicity (CTq) ensures that no query changes its
truth value except those that are required to change between
the start and end state. This allows multiple steps, but ensures
that intermediate states, while not corresponding with the start
or end state, never answer any query in a way that neither the
start nor end state would. This is useful in scenarios where
intermediate states are undesirable, but users are not expected
to execute more than a single query between “valid” states (and
will thus never detect the inconsistency). Access monotonicity
(CTa) is similar, but applies only to authorization requests,
and is useful in scenarios where inconsistent states are not
a danger as long as they do not wrongly allow or forbid a
request. Finally, non-contamination (CTs) ensures that no two
accesses are allowed in an intermediate state that are not both
allowed in either the start or end state. Thus, the simulating
system is restricted not only from allowing accesses forbidden
in the simulated system, but also combinations of individually-
allowed accesses that are never combined in the simulated
system. This restriction is particularly useful in environments
with operations that “swap” accesses from one subject or object
to another, or where separation of privilege is utilized.

CA: Actor preservation restricts which users can be
invoked to simulate commands. Self-execution (CA>) requires
each simulating command be executed by the same user as
the original, simulated command. This allows the simulating
agent to be completely unprivileged, mapping commands as
a service to the user, but without executing them with any
privilege beyond the user’s own. Administration-preservation
(CAa) requires any non-administrative simulated command
be mapped to a sequence of non-administrative commands
(i.e., a command that does not invoke administrative privileges
cannot be simulated by an administrative command). This
corresponds to scenarios in which users will be expected
to operate largely without administrative intervention. No
restriction in this dimension means that the command mapping
can return commands to be executed by any other user. This
is most appropriate when the simulating agent is trusted to
execute administrative actions on behalf of untrusted users, or
when the commands returned can then be delegated to other
users to be approved and executed.

Finally, R: reachability specifies whether the simulating
system should be restricted from entering a state that does
not correspond to a simulated state. If the simulation agent is
users’ only interface to the deployed access control system,
forward reachability (R→) is sufficient. However, if users can
access the simulating system’s native commands, bireachability
(R↔) ensures that the system cannot transition to a state that
is inconsistent with the simulated system.

C. Studying Canonical Usages

Next, we use the above interpretation of our expressiveness
simulation properties to guide a discussion about how each of
the notions of simulation that we studied in Section V is used
by its creators. In many cases, the definition for a particular
notion of simulation is underconstrained, and the simulations
written within the framework actually satisfy stronger properties
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than the defined lower bound. We refer to the set of properties
that the authors seem to intend for a simulation to uphold as its
canonical usage. In the case of Sandhu’s simulation, the author
recognizes that the given constructions are stronger than the
definition, noting that formalizing the definition of the stronger
simulation is beyond the scope of the work [2]. Here, we make
conjectures regarding the decomposition of the canonical usage
of these simulations. A lattice view of these conjectures is
shown in Fig. 6, where X indicates the canonical usage of
simulation type X . For example, SM refers to the form of the
SMG simulation used in [7], [8].

It is interesting to note that the relationships between
notions of simulation are not necessarily preserved in the
canonical usage. While SMG by definition is the weakest
simulation, the canonical usage SM is incomparable to any
simulation’s definition and positioned strictly weaker than
the canonical usage of the CDM simulations. While, by
definition, the TL state-matching reduction is more strict than
HMG+ parameterized expressiveness, their canonical usages
are incomparable due to TL-SMR enforcing bireachability
(R↔) and using polynomial state size (SSp), compared to
HMG+ enforcing forward reachability (R→) and using linear
state size (SSl). Finally, we note that all of CDMs, CDMw,
SMG, and ALS simulations are canonically used in such a way
that enforces full query preservation (QPf); that is, all of the
constructed mappings of these types use the identity mapping
for all supported queries, despite the fact that none of them
specifically require this by definition. This trend of a notion
of simulation’s usage being consistently more strict than its
definition reveals the difficulty in fully specifying the set of
properties that a notion of expressiveness simulation is intended
to enforce. The discussion in this section, aimed at helping
analysts choose a reasonable set of properties for a deployment,
can also help ensure that newer notions of simulation are fully
specified, and best match their intended usages.

VII. CONCLUSION AND FUTURE WORK

In this paper, we organize the existing knowledge of
expressiveness simulations by formalizing a granular, property-
based representation, proposing a wide range of dimensions



of simulation properties, and positioning influential notions of
expressiveness simulation from the literature within the lattice
of these properties. In doing so, we provide the first systematic
comparison of existing simulations that were not previously
known to be directly comparable, showing how these notions
of expressiveness simulation relate to one another.

Looking away from existing notions of simulation and rather
between them, this work allows us to explore an organized
space of simulations to identify areas to explore in future
research. For instance, knowing expressiveness results derived
using the SMG and ALS simulations, which of these hold true
for notions of simulation “between” the two existing notions?
What results can be shown for a simulation decomposing to
the union of the properties of two existing notions? How far
up the lattice do all systems become incomparable? These
questions can only be explored thanks to the systematic means
of simulation decomposition.

Finally, understanding the systems implications of various
simulation properties will enable analysts to select the notion
of access control expressiveness that corresponds most closely
to the scenario in which they plan to deploy the target access
control system(s). Thus, we make inroads toward bringing
expressiveness analysis techniques out of the strictly formal
realm, and repurpose these techniques to help select the most
suitable access control system for a given application.

A question to be explored in future work is the identification
of the set of analysis questions that a particular set of simulation
properties preserve. For example, Tripunitara and Li showed
that the state-matching reduction preserves compositional
security analysis instances: the set of questions containing
a single quantifier (∃ or ∀), a propositional formula over
queries ϕ, and a start state γ [13]. Semantically, the question
asks whether ϕ it is {ever, always} true in states reachable
from γ. If T admits a state-matching reduction of S, then
all compositional security analysis instances have the same
value in S and T . Identifying the types of analysis questions
preserved by other notions of simulation would allow us even
greater understanding of the practical and theoretical impacts
of simulation property choices.
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