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ABSTRACT
The Group-centric Secure Information Sharing (g-SIS) fam-
ily of models has been proposed for modeling environ-
ments in which group dynamics dictate information-sharing
policies and practices. This is in contrast to traditional,
dissemination-centric sharing models, which focus on attach-
ing policies to resources that limit their flow from producer to
consumer. The creators of g-SIS speculate that it may not be
strictly more expressive than dissemination-centric models,
but that it nevertheless has pragmatic efficiency advantages
in group-centric scenarios [12]. In this paper, we formally and
systematically test these characteristics of an access control
system’s suitability for a scenario—expressiveness and cost—
to evaluate the capabilities of dissemination-centric systems
within group-centric workloads. We show that several com-
mon dissemination-centric systems lack the expressiveness
to meet all security guarantees while implementing the wide
range of behavior that is characteristic of the g-SIS models,
except via impractical, convoluted encodings. Further, even
more efficient implementations (admissible under relaxed
security requirements) suffer from high storage and compu-
tational overheads. These observations support the practical
and theoretical significance of the g-SIS models, and provide
insight into techniques for evaluating and comparing access
control systems in terms of both expressiveness and cost.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection
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1. INTRODUCTION
Group-centric Security Information Sharing (g-SIS) [11,12]

is a modeling paradigm and class of access control models
that has been proposed for sharing environments in which
users and resources are brought together in groups to fa-
cilitate collaboration and efficient exchange of information.
Its creators contrast it with the traditional, dissemination-
centric modeling paradigms that are currently used in access
control and information sharing. In dissemination-centric
sharing, emphasis is placed on attaching policies (and/or
attributes that determine policy) to resources as they are
created or made available. These policies then restrict which
consumers can access the resources. In g-SIS, on the other
hand, users are granted access to resources based on their
temporal membership in groups—e.g., if object o is added
to a group that a user u is a member of, u will be granted
access to o. The rules for users who join later, objects that
are removed, and users who leave are determined by the
particular parameterization of g-SIS used.

Although g-SIS seems to represent its motivating scenarios
rather elegantly, there has, to date, been no fully-functional
implementation of the g-SIS models. This may partially be
due to the creators’ hypothesis that group- and dissemination-
centric techniques yield the same theoretical set of capabilities
(i.e., that the set of dissemination-centric models is, collec-
tively, equal in expressiveness to the set of group-centric mod-
els) [12]. Even assuming that this hypothesis holds, g-SIS
seems pragmatically better-suited to group-centric workloads
than systems such as role-based access control built with
dissemination-centric uses in mind (in both ease of imple-
mentation and efficiency). Thus, in this work we evaluate
the expressiveness hypothesis and other questions regarding
the capabilities of dissemination-centric access control sys-
tems within the context of group-centric sharing workloads.
Specifically, we investigate the following questions:

1. Which systems based on the g-SIS models can be safely
implemented within, or simulated by, dissemination-
centric access control systems?

2. How strong are the security properties that can be
guaranteed by dissemination-centric systems when im-
plementing workloads based on the g-SIS models?

3. How efficiently can dissemination-centric systems im-
plement workloads based on the g-SIS models?

4. What practically-interesting instantiations of the g-SIS
models cannot be safely and efficiently implemented by
dissemination-centric systems?



While investigating these questions, we formalize several
instantiations of the g-SIS models. Some are based on math-
ematical extrema in the space of g-SIS instantiations and are
intended to represent a diverse cross-section of the capabili-
ties of the g-SIS models. Others are based on realistic use
cases to which g-SIS seems particularly well-suited. We then
employ parameterized expressiveness [9]—a fine-grained, pa-
rameterized generalization of simulation-based expressiveness
techniques—to answer questions #1 and #2. To evaluate
question #3, we utilize a Monte Carlo simulation technique to
generate traces of group-based sharing actions. These actions
are then simulated in g-SIS systems, and they are translated
into equivalent action sequences in dissemination-centric ac-
cess control systems. The costs of executing these traces are
recorded and compared. Finally, we address question #4 by
interpreting and analyzing the results of questions #1–3, dis-
cussing the various failings of the use of dissemination-centric
techniques in group-centric environments.

Our analysis provides new insights into the relationship
between group-centric and dissemination-centric sharing, and
represents the first in-depth analysis into the use of g-SIS.
We support the notion that g-SIS is a practically signifi-
cant proposal by demonstrating the inability of traditional
systems to satisfy many of its models safely and efficiently.
More fundamentally interesting, to the best of our knowledge,
our analysis represents the first systematic examination and
comparison of access control systems based on both their
theoretical capabilities (i.e., relative expressive power) and
more pragmatic notions of quantitative efficiency (i.e., imple-
mentation costs). We believe this style of analysis has the
potential to answer many practical questions that arise when
examining an application’s access control needs, and that
our demonstration of these techniques toward understanding
the impact of g-SIS supports this claim by example.

The rest of this paper is structured as follows. In Sec-
tion 2, we introduce g-SIS and expressiveness analysis. In
Section 3, we describe the specific g-SIS instantiations that
we will be analyzing. In Section 4, we explain our parame-
terized expressiveness analysis and interpret its results. In
Section 5, we discuss our techniques for cost analysis via
Monte Carlo simulation, and present the results of this anal-
ysis. We discuss our results and reason about the drawbacks
of utilizing dissemination-centric techniques for group-centric
workloads in Section 6. Finally, we discuss other related
work in Section 7 and conclude in Section 8.

2. BACKGROUND AND PRIOR WORK
We now discuss the immediately relevant prior work. We

first overview g-SIS, the group-centric secure information
sharing paradigm that inspires our workloads. We then pro-
vide an overview of prior work on access control expressive-
ness analysis, with a particular focus on the technique used
in this work: parameterized expressiveness. A discussion of
other related work is deferred to Section 7.

2.1 The g-SIS Models
The g-SIS models encompass a wide range of access control

systems and behavior, and seem to subsume other group- and
role-based access control and information sharing systems [16,
18,21]. The motivating scenarios which inspired g-SIS include
periodical subscriptions and secure message rooms. It is
conceptually simpler to model such scenarios within g-SIS
than by using dissemination-centric access control; that g-SIS
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Figure 1: Example accesses in a single group in g-SIS

is inherently more capable of representing such scenarios is a
claim that we make and support through the present work.

A major distinguishing feature of g-SIS is its preservation
of a full membership record for groups. A graphical depiction
of such a record is shown in Figure 1. Users can join and
leave groups, and objects can be added and removed from
groups. The log of these events is used to decide whether a
user can access an object. The basic operations each have
numerous variants, ranging from strict to fully liberal. The
semantics of these variants depends on the type of action.

Users who perform a strict join to a group receive access
only to objects added after they join, whereas a fully liberal
join grants immediate access to all existing objects. Note
that, in Figure 1, user u2 performs a strict join whereas u3

performs a liberal join, meaning that u3 has access to o1
while u2 does not. A strict leave rescinds all of the user’s
accesses within the group; a liberal leave allows the user
to retain access. Performing a strict add of a message to
a group grants only current members access; a liberal add
grants future members access as well. In Figure 1, if o3 is
added using strict add, then u1 could not access it even after
a liberal join. Finally, a strict remove rescinds access to the
removed object from all users in the group, while a liberal
remove allows users to retain access.

The application of these operations to the motivating
scenarios (subscriptions, secure messaging) are, thus, fairly
obvious. A subscription service can provide a base level of
service with no access to back issues and no continued access
after canceling. For an additional fee, users can access back
issues (via liberal join) or maintain access to their issues after
canceling (via liberal leave). Secure messaging can make
various uses of combinations of strict and liberal actions:
users can liberal leave before a discussion with which they
have a conflict of interest and strict join at its conclusion;
objects to which new members should not gain automatic
access can be strict added while others are liberal added.

Restrictions on g-SIS in this paper. In this work, we pri-
marily focus on strict and purely-liberal variants of actions,
such as those described above. However, g-SIS also supports
variants that lie between these extremes. For example, in
some systems a liberal (but not fully liberal) leave might al-
low a user to retain only some of their accesses when leaving.
The semantics of these variants are application-dependent.
In this work, liberal actions are assumed to be fully liberal
unless otherwise specified. Finally, g-SIS supports variants
of join with different behavior for users who have left and
re-joined a group. Lossy join may revoke some or all permis-
sions retained from a past liberal leave; lossless join will not
revoke any permissions. Restorative join may re-grant some
or all permissions revoked by a past leave; nonrestorative
join will not re-grant any permissions. In this work, we focus
on lossless, nonrestorative joins unless otherwise specified.



2.2 Expressiveness Analysis
Prior Work. We first evaluate the ability of dissemination-
centric approaches to implement group-centric workloads in
terms of theoretical capability, or expressiveness. The ex-
pressiveness of an access control system describes the set of
policies that it can represent. Many notions of expressiveness
have been studied in the literature [1,3,5,7,9,13,14,17,19,20,
22], and today there is much ambiguity in saying simply, “Y is
more expressive than Z.” Some notions only concern whether
one system can represent all the same sets of authorizations
as another [5], while others reduce a system’s storage to an
abstracted structure to show how one can subsume another
structurally [1]. Somewhere in between, other notions of
expressiveness define a set of queries (including authoriza-
tions) that must be preserved [9,22]. Some may only concern
properties of the states [3], but most go further, enforcing
preservation of state reachability [5, 7, 17,19]: i.e., “not only
are all Z’s states expressible in Y, Y’s mechanism for trans-
forming states allows us to build them.” Some notions even
go so far as to enforce back-reachability, by requiring that
any state in Y representing a state in Z should not be able
to be transformed into a state that the original in Z could
not be [1,22]. There are several other dimensions in which
expressiveness notions differ, including the use of strong sim-
ulation (a state change in Z must be simulated in a single
state change in Y) vs. weak simulation (a state change in Z
can be simulated in a number of changes in Y).

Parameterized Expressiveness. Given this state of affairs,
and our lack of tools for reconciling various notions of ex-
pressiveness, parameterized expressiveness is an attractive
approach [9]. Parameterized expressiveness is an access con-
trol expressiveness framework created to generalize other
expressiveness notions. This framework has much in com-
mon with other techniques, defining systems based on state
machines and building various types of simulations between
them. However, rather than commit to a single set of prop-
erties preserved by those simulations, the set of security
guarantees to be preserved is a parameter of the analysis.
This allows the notion of expressiveness used in a particular
analysis to match the requirements of the application within
which the systems are candidates for use.

This focus on expressiveness within the context of a par-
ticular application allows expressiveness to be defined with
respect to workloads, which are descriptions of specific ap-
plication environments. This allows an analyst to be more
precise about expressiveness in a practical sense, with a focus
on the capability to represent the policies that are needed by
an application, rather than considering the ability to repre-
sent a superset of another system’s policies. Whereas other
expressiveness notions allow an analyst to make statements
such as, “System Y admits a simulation of form S of Z,”
parameterized expressiveness makes statements such as, “If
system Z can implement workload W while preserving the
set of properties G, then Y can implementW while preserving
G,” which is more closely aligned with the practical concerns
associated with a system’s expressiveness. For these reasons,
parameterized expressiveness is a good fit for our goals.

PE Formalisms. We now summarize key structures used
during parameterized expressiveness analyses. Interested
readers can refer to [9] for full details.

• An access control model defines how protection state is
encoded and interpreted. Given model M = 〈S,R,Q,`〉,
S is a set of states, R is a set of authorization requests, and
Q is a set of queries. Q includes at least auth(r) for each
request r, and the entailment relation `: S × Q → {true,
false} defines which queries are true in each state. We
sometimes denote S as States(M) and Q as Queries(M).
A theory, an assignment for each query in state x, is
denoted Th(x). The subset of Th(x) consisting of only
auth queries is Auth(x). The set of all possible theories in
M is denoted Th(M).

• An access control system refines a model by defining meth-
ods for transforming the state. A system is thus a state
machine 〈M,L, next〉 which defines its parent modelM, a
set of labels L (representing access control commands), and
the transition function next : States(M)×L → States(M).
We sometimes denote the set of states, theories, and
queries in model M of system Y as States(Y), Th(Y),
and Queries(Y), respectively.

• An access control workload describes the access control
demands of an application. This is accomplished by de-
scribing an idealized access control system encoding re-
quired functionality, and the set of allowable traces of
labels through that system. A workload W = 〈A, T 〉 thus
defines access control system A and set of traces T . Each
trace is a pair 〈s1, τ〉, where s0 ∈ States(A) is the initial
state and τ = `1 ◦ `2 ◦ · · · is a sequence of labels in A:
∀i, `i ∈ Labels(A).

Given these formalisms, we now define the particular sys-
tems and workloads inspired by g-SIS, with respect to which
we will evaluate dissemination-centric systems.

3. INSTANTIATIONS OF G-SIS
In this section, we describe the g-SIS systems and work-

loads that form the basis of our analyses in Sections 4 and 5.
We describe these systems in the formalism described above
to facilitate these analyses.

3.1 The g-SIS0 Model
The g-SIS0 model defines the state representation and

queries for our g-SIS systems. It defines structures for storing
the records for all combinations of the basic g-SIS strict and
liberal actions (join, leave, add, remove). The authorization
request is defined for non-restorative joins. In the g-SIS0

model, states are comprised of the following fields.

• Sets S,O,G, and T of subjects, objects, groups, and times

• >T , the total order on T

• T ime ∈ T , the current time

• StrictJoin ⊆ S ×G× T , the record of strict joins

• LiberalJoin ⊆ S ×G× T , the record of liberal joins

• StrictLeave ⊆ S ×G× T , the record of strict leaves

• LiberalLeave ⊆ S ×G× T , the record of liberal leaves

• StrictAdd ⊆ O ×G× T , the record of strict adds

• LiberalAdd ⊆ O ×G× T , the record of liberal adds

• StrictRemove ⊆ O ×G× T , the record of strict removes

• LiberalRemove ⊆ O×G×T , the record of liberal removes



authForward(s, o, g) , ∃t1, t2.( authBackward(s, o, g) , ∃t1, t2.(
Join(s, g, t1)∧ LiberalJoin(s, g, t1)∧
Add(o, g, t2)∧ LiberalAdd(o, g, t2)∧
t2 > t1∧ t1 > t2∧
∀t3.( ∀t3.(

Leave(s, g, t3) ⇒ (t1 > t3 ∨ t3 > t2)∧ Remove(o, g, t3) ⇒ (t2 > t3 ∨ t3 > t1)∧
StrictLeave(s, g, t3) ⇒ t2 > t3∧ StrictLeave(s, g, t3) ⇒ t1 > t3∧
StrictRemove(o, g, t3) ⇒ t2 > t3 StrictRemove(o, g, t3) ⇒ t1 > t3

) )
) )

auth(s, o, g) , authForward(s, o, g) ∨ authForward(s, o, g)

Figure 2: The authorization procedure for g-SIS0.

The g-SIS0 model defines queries Member(s, g) for whether
subject s is currently a member of group g and Assoc(o, g) for
whether object o is currently associated with group g. These
are answered in the obvious way. Authorization requests
are answered as described in Figure 2. Here, authForward
applies in cases where the user joined the group before the
object was added, and authBackward applies when the user
joined after the object was added.

3.2 Extrema Systems
Top, bottom, and role-like g-SIS are systems of the g-SIS0

model. Each of these systems contains a subset of the full
set of actions supported in g-SIS0, and represents a different
extreme in terms of resulting behavior.

Top g-SIS Top g-SIS contains only strict actions. Since all
adds and joins are strict, there is no need for authBackward.
Newer users to a group always have a subset of accesses of
older users, users who leave retain no permissions to group-
associated objects, and objects that are removed are no
longer accessible by group members. We describe top g-SIS
in full in Appendix A.

Bottom g-SIS Bottom g-SIS contains only liberal actions.
Thus, a subject is granted access to an object as long as
they belonged to a group at the same time at some point
(currently or in the past), however briefly. Access to added
objects is granted to current and new users, but once an
object is removed no new users are granted access. Thus,
new users tend to have fewer accesses than older users.

Role-like g-SIS Finally, role-like g-SIS is an approximation
of a role-based access control system within g-SIS. It allows
liberal join and add actions and strict leave and remove.
Thus, all current members have access to all current objects,
but users who leave lose all access, and objects that are
removed are revoked from all users.

3.3 Workloads
In addition to the above extrema systems, we also study

several more realistic parameterizations that reflect how g-SIS
might be used in practice. Conceptually, these lie somewhere
in the g-SIS spectrum between the extrema systems defined
above, and represent real-world usages of group-centric tech-
niques. We formalize these as workloads.

PC This is an instance of the “secure message room” ex-
ample use case of g-SIS [11, 12] that is defined to model
academic program committee discussions. It is also based
on the g-SIS0 model, and includes commands for liberal join-
ing PC groups, as well as resigning via strict leave. The

workload requires conflict-of-interest handling, so members
can liberal leave before a discussion with which they have
a COI, and strict join after it concludes. All discussion is
liberal added. Traces restrict execution of this workload to
sequential phases. In the creation phase, program chairs
create PC groups. In the joining phase, PC members join
PC groups. In the discussion phase, PC members discuss
(add objects to groups) and execute COI patterns.

PSP The Playstation Plus premium gaming service [15]
uses temporal constraints to decide accesses, and is thus a
natural fit for modeling in g-SIS. PSP uses a g-SIS model
with an extension over g-SIS0: the auth query supports
restorative joins. Subscribers liberal join, and strict leave
when canceling. If a user cancels and later joins again, she
is re-granted access to all objects she had before leaving
(except those which have been strict removed). Managers
liberal add promotions (free games and discounts). When a
promotion is complete, free games are liberal removed (users
who are members at the time a free game is available may
continue to access it as long as they are a member), while
discounts are strict removed and thus become inaccessible
to all users. Trace restrictions allow users to subscribe in
3-month increments. The managers add and remove several
promotions each week, maintaining the same total number
for each group.

4. EXPRESSIVENESS ANALYSIS
In this section, we describe the details of our expressiveness

analysis using parameterized expressiveness and present a
summary of the results. Full details, including full specifica-
tions of workloads, systems, implementations, and reductions,
are deferred to a companion technical report [8].

A fundamental construction in parameterized expressive-
ness is the access control implementation, the set of mappings
constructed to prove that a workload can be satisfied by a
system. An implementation of W in Y, 〈α, σ, π〉, defines a
state mapping σ : States(W)→ States(Y), a label mapping
α : States(Y)× Labels(W)→ Labels(Y)∗, and a query map-
ping π which contains, for each q ∈ Queries(W), a function
πq : Th(Y) → {true, false} which maps a set of system
query values to a value for the workload query q. Thus, each
πq is a procedure for answering workload query q given the
value of each system query in the current state.

An access control reduction, then, is a set of mappings
allowing us to prove that a system Z is at least as expressive
as system Y with respect to a particular set of security guar-
antees G. This is written Y ≤G Z, and indicates that any
workload W that can be implemented in Y with guarantees



G can also be implemented in Z with G. Making this type of
statement is the goal of conducting parameterized expressive-
ness, and is a more precise and pragmatic view of a system’s
capabilities than other expressiveness techniques provide. A
reduction from Y to Z, 〈σ, π〉, defines a state mapping σ and
a query mapping π where the state-mapping preserves the
query-mapping (∀s ∈ States(Y) Th(s) = π(Th(σ(s)))). The
conditions put on the reduction differ based on the set of
security guarantees it preserves.

4.1 Security Guarantees
In this work, we consider the following security guarantees.

Correctness Correctness is a bare minimum requirement
for any implementation. Intuitively, correctness says the
following: a workload state’s image in a system answers
mapped queries exactly as the original state answers the orig-
inal queries; and the same resulting system state is reached
by executing a workload action and mapping the result into
the system as is reached by mapping the initial state and
executing the action’s image in the system. More precisely,
given a workload,W = 〈A, T 〉, a system Y, and an implemen-
tation 〈α, σ, π〉, the implementation is correct if σ preserves
π (i.e., for every workload state w, Th(w) = π(Th(σ(w)))
and α preserves σ (i.e., for every workload state w and label
`, σ(next(w, `)) = terminal(σ(w), α(σ(w), `))).

Weak AC-Preservation This guarantee is a weaker ver-
sion of AC-preservation [9]. Intuitively, AC-preservation says
that πauth(r) must map authorization request r from work-
load state w to system state σ(w) directly, checking whether
σ(w) ` auth(r). This forces the workload and system to
have the same format for requests. However, this is not the
case with the workloads and systems we consider in this
work. Specifically, g-SIS requests ask whether a subject has
access to an object in a particular group, while, e.g., RBAC0

requests ask whether a subject has access to a permission.
We define weak AC-preservation which captures the spirit of
AC-preservation (ensures the use of the authorization proce-
dure of the system) but that allows us to answer a workload
authorization using the system’s authorization procedure,
even if their requests use different formats. Thus, we allow
the use of a request transformation function f , so we can ask
auth(f(r)) for some function f . Formally, we require the
following: For any workload state w and workload request
r, πauth(r)(Th(σ(w))) = true ⇒ σ(w) ` auth(f(r)); and,
for any workload state w and system request r′, σ(w) `
auth(r′)⇒ ∃r.(πauth(r)(Th(σ(w))) = true ∧ f(r) = r′).

Homomorphism The homomorphic property eliminates
implementations that abuse system state by encoding work-
load state in a way that is fragile to string substitutions.
Without this requirement, an implementation can, e.g., store
unbounded state in a single user name by encoding whole
relations as a single string. A homomorphic mapping f is
one in which f(x)[v] = f(x[v]) for any constant string substi-
tution [v]. A homomorphic implementation is one in which
each mapping is homomorphic. Intuitively, this requires that
data elements be opaque, and that the symbol representing
any element (e.g., user, object, role) can be substituted for
any other without affecting the behavior of the system.

Safety A safe implementation is one that does not grant
or revoke unnecessary permissions during the execution of
the image of a single workload label. That is, if execut-
ing workload label ` in the implementing system yields

the state sequence 〈s1, . . . , sk〉, then for all si in the se-
quence, Auth(si) \ Auth(s0) ⊆ Auth(sk) \ Auth(s0) and
Auth(s0) \Auth(si) ⊆ Auth(s0) \Auth(sn). Intuitively, safety
ensures that the intermediate states through which a system
travels while implementing a single workload label do not
add or remove granted requests except those that must be
added or removed as determined by the start and end states.
We consider safety for implementations only, as there is no
known metatheorem for proving safety via reduction.

4.2 Dissemination-Centric Systems
We choose several dissemination-centric access control sys-

tems as candidates for implementing the group-centric work-
loads described in Section 3. In particular, we focus on
role- and group-based models. While these access control
models are dissemination-centric, they provide a level of in-
direction between subjects and objects that enables greater
expressiveness than models based on the access matrix or
access control lists [14, 16]. Comparing to group-enabled
dissemination-centric access control systems enables our anal-
ysis to more directly compare the effect of the group-centric
paradigm, whereas comparing to non-group-enabled systems
would be more likely to highlight simply the advantage of
the additional level of indirection provided by groups. Thus,
we evaluate the following dissemination-centric systems.

RBAC RBAC0 is the most basic role-based access control
system proposed in the RBAC standard [18]. States contain
the set of users U , set of roles R, and set of permissions P , as
well as relations between them: UR ⊆ U ×R describes users’
membership in roles, and PA ⊆ R×P describes permissions’
assignment to roles. A user u is authorized to permission p
if ∃r.(〈u, r〉 ∈ UR ∧ 〈r, p〉 ∈ PA). Labels allow adding and
removing from all of U , R, P , UR, and PA.

Hierarchical RBAC While RBAC0 grants a level of indi-
rection between users and permissions, RBAC1 includes a
hierarchical structure over roles to further extend this ab-
straction. RBAC1 includes all state elements of RBAC0 as
well as the role hierarchy RH ⊆ R × R, a binary relation
over R whose transitive closure is the Senior partial order
(we sometimes designate the transitive, reflexive closure ≥).
In hierarchical RBAC, a user inherits all permissions from
roles junior to roles she is explicitly assigned. That is, a user
u is authorized to permission p if ∃r1, r2.(〈u, r1〉 ∈ UR ∧ 〈r2,
p〉 ∈ PA ∧ r1 ≥ r2). Labels allow full manipulation of all
state elements. We fully define RBAC1 in Appendix A.

UNIX Permissions Finally, the ugo system is based on
the user, group, other system of access control in UNIX. Thus,
if RBAC0 and RBAC1 fill the need for a commonly-used
industrial standard system, ugo fills the role of a common
consumer system. In ugo, objects can be associated with an
owner user and group, and permissions are then granted to
the user, the group, or everyone else.

Thus, we evaluate standard, widely-deployed access control
systems, in both the industrial and consumer spaces. These
systems are likely candidates for a system administrator who
desires to implement a group-centric workload using available
and trusted access control mechanisms.

4.3 Expressiveness via System Reductions
We now present a summary of the system reductions

proving expressiveness statements comparing the chosen
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dissemination-centric systems and the g-SIS extrema sys-
tems. A summary of the expressiveness reductions, including
a key to our shorthand for denoting the guarantees a re-
duction satisfies, is shown in Figure 3a. We now describe
the major results depicted in this figure. A sample proof is
provided in Appendix A, with the remainder deferred to a
companion technical report [8].

First, we note that it is simple to construct a reduction from
role-like g-SIS (rgSIS) to RBAC0 that satisfies all consid-
ered security guarantees (correctness, weak AC-preservation,
homomorphism). Role-like g-SIS has only liberal add and
join operations and strict leave and remove operations, and
thus its auth only depends on the current group members
and associated documents. In this scenario, RBAC0 can
simply simulate groups using roles.

Theorem 1 rgSIS ≤CaH RBAC0.

Furthermore, RBAC1 can trivially simulate RBAC0 by
ignoring the role hierarchy, yielding the following.

Lemma 2 RBAC0 ≤CAH RBAC1.

Corollary 3 rgSIS ≤CaH RBAC1.

We are able to construct a reduction from top g-SIS (tgSIS)
to RBAC1 by identifying the pseudo-hierarchical structure of
the authorization set in tgSIS: since all operations are strict,
new members of a group will have a subset of the permissions
of older members. The hierarchy is invoked by the fact that
older members thus “inherit” access to all added objects,
while new members only receive access to objects added after
they joined. We simulate this structure in RBAC1’s role
hierarchy by creating a chain in RH for each group. When a
g-SIS group g is created, the top of the chain, a role named
g, is created in RBAC1. Objects newly added to the group
should be available to all users, and thus the corresponding
permission in RBAC1 is added to the bottom of the chain,
ensuring all users in the chain will be authorized. Finally,
when a new user joins group g, they create a new “view” of
the g, since they are not authorized to any existing objects
(due to strict join). Thus, we create in RBAC1 a new role
(named randomly) and link it to the bottom of g’s chain.

Theorem 4 tgSIS ≤CaH RBAC1.

We provide a proof sketch for this theorem in Appendix A.
We build a reduction from bottom g-SIS (bgSIS) toRBAC1

using a similar hierarchy-chain solution to tgSIS. Since
bgSIS contains all liberal actions, we still have a pseudo-
hierarchy of Auth(bgSIS). In this case, users who leave a
group maintain access to objects from this group, so users
who leave earlier have a subset of the authorizations of users
who leave later (or are still members). An exception is made
for removed objects, since these are not granted to new users
after removal. Thus, we again create a hierarchy chain for
each group. In this case, the chain grows upward. When a
user is removed, a new role is created at the top of the chain
and all users remaining in the group are added to this new
role. Objects are added to this top role, granting access to
all current members. Removed objects, being the exception
to the hierarchy rule, are added to orphaned roles, along
with all users who should maintain access to them.

Theorem 5 bgSIS ≤CaH RBAC1.

We utilize a non-homomorphic helper reduction from
RBAC1 to RBAC0 (and expressiveness transitivity) to prove
reductions from tgSIS and bgSIS to RBAC0. This reduc-
tion, in order to store hierarchical accesses in a “flat” roleset,
expands the set of roles to include a role named for every
path through the hierarchy in the downward direction. Thus,
if RBAC1’s hierarchy says A ≥ B, B ≥ C, and A ≥ D, then
this is represented in RBAC0 with roles {A,B,C,D,AB,
ABC,AD,BC}. For every role r a user is assigned to in
RBAC1, she will be assigned to each role starting with r in
RBAC0. In the previous example, if 〈u,A〉 ∈ UR in RBAC1,
then in RBAC0 this maps to {〈u,A〉, 〈u,AB〉, 〈u,ABC〉, 〈u,
AD〉} ⊂ UR in RBAC0.

Theorem 6 RBAC1 ≤CA RBAC0.

Corollary 7 tgSIS ≤Ca RBAC0; bgSIS ≤Ca RBAC0.

We were also able to construct a homomorphic helper
reduction from RBAC1 to RBAC0. This reduction makes
use of an encoding technique which stores the information
in the three binary relations (UR, PA, RH) of RBAC1 in
the two binary relations (UR, PA) of RBAC0. Using this
encoding, each tuple in RBAC1 is stored using three to four
tuples in RBAC0. Thus, the resulting state encodes the
required information in an unnatural, convoluted scheme
which requires deeply nested looping to decode. For exam-
ple, the originally straightforward authorization procedure of
finding an r such that 〈u, r〉 ∈ UR and 〈r, p〉 ∈ PA must be
carried out in this reduction by searching for a set of values
r, v, x, y, z such that {〈v, x〉, 〈u, v〉, 〈r, x〉} ⊆ UR and {〈y, z〉,
〈y, r〉, 〈z, p〉} ⊆ PA. These vast, compounding inefficiencies
prevent this reduction from having any practical applica-
tion. We conjecture that it is impossible to construct an
asymptotically more efficient implementation than using this
helper reduction while satisfying the given guarantees, which
restricts us to storing the required workload state using only
tuples in two relations, and using only existing constants
(new constants must be information-less). We discuss this
reduction further in Appendix B.

Finally, although ugo has the inherent disadvantage that
each object is owned by only a single user and group, we can
show RBAC0 ≤Ca ugo since ugo can simulate RBAC0 im-
plementations by mapping a permission assigned to multiple
roles to an object with a single group owner, which represents



all roles with authorization and includes as members all users
in the RBAC0 roles. Though the implementation is weakly
AC-preserving, it is not homomorphic since it requires the
manipulation of strings for group names.

Theorem 8 RBAC0 ≤Ca ugo.

Corollary 9 rgSIS ≤Ca ugo; tgSIS ≤Ca ugo; bgSIS ≤Ca

ugo.

4.4 Expressiveness via Implementations
We now present a summary of the implementations of

group-centric workloads in dissemination-centric systems. A
summary of these implementations and their corresponding
strengths is shown in Figure 3b. As in the previous section,
we now describe the major results of these implementations.

The PC workload uses liberal join for users joining a
program committee group and strict leave for resignation
(permanent leave). Liberal leave is used for conflicts-of-
interest (temporary leave), and strict join is used to re-join
after a COI. We implement this workload in RBAC1 using
techniques from the reductions of both tgSIS and bgSIS in
RBAC1. Like in our reduction from tgSIS, each group uses a
hierarchy chain building downward, adding a node (and thus
a new “view” of the group) each time a user executes a strict
join and assigning newly added objects to the bottom role
of the chain. Like in the reduction from bgSIS, we use the
orphan role concept, in this case for users who liberal leave;
the departing user and permissions she should continue to be
authorized to are added to a new role. We implement u strict
leaving g by removing u from all roles connected to g, and u
liberal joining g by assigning u directly to g (so she inherits
permission to all current objects). This implementation is
correct, weakly AC-preserving, homomorphic, and safe.

Theorem 10 There exists a correct, weakly AC-preserving,
homomorphic, and safe implementation of PC in RBAC1.

The PSP workload supports liberal (restorative) join, strict
leave, liberal add, and both strict and liberal remove. Rather
than use a role hierarchy chain, this reduction uses a single
role for each group that is assigned to all current members
and objects in the group. Two types of orphans are used,
one for objects that are liberally removed (along with the
users who should remain authorized to the object), and one
for strict leave, to support the restorative join operation. On
a strict leave of u from g, we create in RBAC1 an orphan
role pair r, s, where s ≥ r, and assign u to r and all of
u’s permissions from g to s. Since u is in a role junior to
the permissions, she is no longer authorized to them. On a
re-join to the group, we simply assign u to s, re-enabling u’s
access to these permissions. This implementation is correct,
weakly AC-preserving, homomorphic, and safe.

Theorem 11 There exists a correct, weakly AC-preserving,
homomorphic, and safe implementation of PSP in RBAC1.

We use helper reductions from the previous section to
establish correct, weakly AC-preserving implementations of
PC and PSP in RBAC0 and ugo. We independently prove
these implementations are safe, since there is no known meta-
theorem for using reductions to prove safety.

Corollary 12 There exist correct, weakly AC-preserving,
and safe implementations of PC & PSP in RBAC0 & ugo.

4.5 Summary of Results
Observing the results of Figures 3a and 3b, it is clear that

dissemination-centric systems are able to meet basic security
guarantees when operating within group-centric scenarios.
RBAC1 is the most successful, simulating the extrema sys-
tems and workloads with all security guarantees. RBAC0

was able to implement rgSIS with strong guarantees, but for
other g-SIS parameterizations (those with multiple “views”
of a single group), RBAC0 had to sacrifice homomorphism
to admit feasible implementations. Finally, ugo was also able
to satisfy all workloads and systems, but (due to each object
being associated with only a single group) did not admit any
homomorphic implementations.

We note that we also considered the π-system, a g-SIS
system defined over the g-SIS0 model with support for all
action varieties [11], but were unable to construct a reduction
from π-system to (or implementation of 〈πgSIS, T 〉 in) any
dissemination-centric system that was AC-preserving. Thus,
although there was some success among dissemination-centric
systems in implementing specific parameterizations of group-
centric workloads, these systems do not admit as readily
implementations of the fully expressive form of g-SIS without
the sacrifice of basic security guarantees.

5. COST ANALYSIS
Now that we have a clear picture of each dissemination-

centric system’s expressiveness with respect to group-centric
scenarios (which, recall, reflects their theoretical capability),
we investigate a second dimension of these systems’ suitability
to this set of workloads: efficiency and costs. To consider all
of the candidate systems in practical contexts, we evaluate
correct, weak AC-preservation implementations, disregarding
the homomorphic requirement, which some systems can not
always satisfy feasibly (see Section 4.3). We conduct cost
analysis via Monte Carlo simulation driven by the structures
built during expressiveness analysis.

5.1 Trace Generation
Recall from Section 2.2 that in a workload W = 〈A,
T 〉, the set T describes the permissible traces through the
ideal access control system A. In cost analysis, we generate
random traces from T , execute these traces, and record
various costs accrued during execution. Of course, just as it
is infeasible to explicitly enumerate the set of all permissible
traces, it is typically difficult to sample meaningful traces
uniformly at random from this set. Thus, for the purpose of
simulation, we specify a stochastic parameterization of this
set of traces. In particular, we articulate distributions from
which the components of the workload’s initial state (e.g.,
number of users, number of objects, etc.) are drawn, and
specify probabilistic models for the type and frequency of
actions taken by active entities within the system.

During a simulation run, we first generate an initial state by
sampling from the appropriate distributions. We then inspect
this state to determine the set of actors that will execute
labels on that state. Actors can be human users, daemons,
or other entities that act on the access control system. We
construct state machines that describe the order in which
individual actors will execute labels and queries1, and build

1Since queries can not alter the state, they are irrelevant to
traces as they are used in expressiveness analysis. However,
in cost analysis, we include both labels and queries in traces.



constrained workflows that describe actor cooperation. We
execute all of the actors’ state machines in parallel, with
the constraints placed by the workflows and past actions,
to generate traces of actions for each actor. The individual
actor traces are then interleaved to produce global traces.

Once these traces are generated in terms of workload labels
and queries, we translate them into traces of system actions
for each of the implementing systems. This is made simple
thanks to the expressiveness analysis described in Section 4.
When simulating the implementation 〈α, σ, π〉, we map initial
workload states to system states with σ and workload labels
to system labels with α. Finally, π acts as a set of procedures
for answering queries using the mapped system state.

We generate initial states and traces to analyze each of
our group-centric scenarios as follows.

Program Committee To simulate the PC workload, we
select an initial state with 25–75 users. Traces are gener-
ated in three phases. First, PC groups are created. Next,
PC members join groups. Finally, discussion occurs, and
users post objects and execute conflict-of-interest workflows.
Traces simulate an eight month cycle, overall.

Playstation Plus Initial states in PSP have 20–100 users
and 2–5 regions (subscription groups), with 50–400 objects
distributed between them, each representing a current pro-
motion (free game or discount). Traces model users changing
membership and administrators adding and removing objects
to the regions. Each trace models a period of one year.

Extrema Systems To carry out cost analysis of top, bot-
tom, and role-like g-SIS, we must define usage models from
scratch, since these systems are not part of workloads. We
generate initial states with 25–85 users, and a number of
managers between 5 and 1/4 the number of regular users. In
traces, managers create groups and sometimes delete posts
(e.g., those that violate terms of service). Normal users join
groups and share objects, both newly-created and existing
(re-shares). Traces model three days to one week of heavy
activity, with the average user posting multiple times per
day and joining a new group every two days, on average.

5.2 Cost Measures
While the type of expressiveness analysis carried out by

an analyst is defined by a set of security guarantees that
must be upheld, the type of cost analysis is parameterized
by the costs to be examined. There are numerous forms of
cost measures, from the storage needed to maintain state,
to the administrative overhead of executing labels, to the
computational cost of evaluating queries. Some are named
in a recent NIST report [10], which points out the need for a
variety of “evaluation metrics” since no one measure answers
what is necessary across all applications.

We investigate costs representing storage requirements
(maximum state size during a run, number of roles); amount
of data read/written (average I/O per label, proportion of
state changed per label); degree to which atomicity of label
execution is violated (number of stutter steps); and other
application-specific measures of “misuse” of the implement-
ing systems (average number of permission-assignments per
role). To investigate the values of these measures, we plot
them against properties of the trace (e.g., number of users,
maximum number of objects) and against the workload’s
own performance within the scenario (e.g., workload I/O,
maximum workload state size) for comparison purposes.

5.3 Selected Results
We carried out a comprehensive cost analysis of the im-

plementations described in Section 4 using a purpose-built
Monte Carlo simulator that our team developed. Our cost
analysis uncovered a variety of clear drawbacks to imple-
menting group-centric workloads with dissemination-centric
systems. We present several demonstrative examples in Fig-
ure 4, but note that the remaining results do not inspire
us to draw conclusions that are substantially different from
those presented here. Note that each subfigure reports on
the result of 200 runs of the workload being simulated.

Storage measures. Figure 4a shows that, in the PSP work-
load, the amount of storage required in each implementing
system is superlinear in the size of the workload. This is
mostly caused by the blow-up in number of roles/groups
required to safely implement the group-centric workloads in
systems without built-in temporal abilities. Although PSP is
particularly inefficient to implement in dissemination-centric
systems, only rgSIS can be implemented using state size
comparable to the original workload size even in ugo.

Figure 4b shows another aspect of storage, the propor-
tion of the state that is changed on average per simulated
(workload) action, again when implementing PSP. This fig-
ure shows that our implementation in ugo is particularly
inefficient. This is largely due to the cached authorization
table that must be maintained in ugo, making this system
a poor choice in scenarios where writes are costly. This
pattern is seen across all workloads, and implementations
with lower state size generally have the highest proportion
of state changing (up to 10% per action), indicating that
even those with (relatively) low storage requirements are
re-writing large amounts of data to simulate each action.

It is clear that, to support large numbers of users in groups
with high object flux, not even hierarchical roles are an
efficient replacement for time-aware groups.

I/O measures. Figure 4c shows the I/O cost (in number of
state elements accessed) for simulating liberal add operations
in rgSIS. Although RBAC0 is able to simulate role-like
g-SIS fairly naturally, ugo lacks the ability to natively grant
multiple groups access to an object. This missing capability
is necessary in group-centric workloads, and thus we must
simulate it in ugo by assigning each object to a single group
and assigning users to these special, semantics-less groups as
needed. The extra overhead of iterating over the the Member
relation to extract the information from RBAC0’s UR and
PA and rebuild the cached authorization table is evident in
Figure 4c from the superlinear increase in I/O needed to
add objects to groups as the number of total objects in the
system increases. By comparison to RBAC0’s simple lock-
step implementation, ugo’s is much more inefficient. The
consumer-grade ugo system is not practical within even the
most simple group-centric workloads.

Figure 4d demonstrates that high I/O is not restricted to
implementations in ugo. This figure shows I/O for (liberal)
joining groups in bgSIS. Recall that this is the operation
that triggers the role hierarchy chain to expand in RBAC1’s
simulation of bgSIS, and thus as expected demands high I/O.
Specifically, RBAC1 I/O per join is about 1/4 the total I/O
of all commands executed in bgSIS in an average full simula-
tion, and RBAC0 regularly exceeds the workload’s full I/O.
Although bgSIS in particular has expensive implementations
of liberal join, each g-SIS workload (except rgSIS which is
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Figure 4: Group-centric cost analysis results

efficiently implemented in RBAC0) has at least one action
which causes this characteristically high I/O.

We study the amount of “stuttering” per trace in Figure 4e,
which is a description of the number of extra operations that
must be executed in implementing systems to simulate single
workload actions. We see a drastic increase in stuttering
while implementing PC, (especially in ugo) as more objects
are added to the system. This quantifies the loss of atomicity
of operations, and allows us to understand the increasing
frequency with which the data structures must be locked to
guarantee the desired security properties.

Role abuse. Finally, we measure the maximum number of
roles created to accommodate the PC workload. It has been
said that role-based systems lose their administrative value
when the number of roles exceeds the number of users [23].
In Figure 4f, we compare the number of subjects in the
PC workload to the number of roles (groups for ugo) in
the corresponding state of the implementing systems. Roles
vastly outnumber users, starting with RBAC1’s role hierarchy
chain for each group, and getting worse in both RBAC0 and
ugo, each requiring more roles than the previous in order to
guarantee weak AC-preservation.

Summary. We have shown a number of measures for which
dissemination-centric systems RBAC1, RBAC0, and ugo
prove to be very inefficient in implementing group-centric
workloads with strong security guarantees. Even the most
space-efficient implementations use much more state storage
than an equivalent g-SIS parameterization, and require much
more I/O to operate. The number of roles created is often
many times the number of users and several times the number
of objects. With the exception of implementing role-like g-
SIS in RBAC, all implementations also cause large amounts
of stuttering, or non-atomic sequences of labels to simulate a

single workload action. Thus, it seems that in most practical
scenarios one must heavily compromise security guarantees
or suffer vastly inefficient implementations in order to utilize
dissemination-centric systems in the group-centric context.

6. DISCUSSION AND FUTURE WORK

6.1 Dissemination-centric vs. Group-centric
We set out to evaluate the hypothesis stated by the creators

of g-SIS [12]: that the group-centric class of models is equal
in collective expressiveness to the dissemination-centric class,
but that they are pragmatically different approaches and thus
should complement, rather than substitute for, one another.
We found in our experiments that these approaches do indeed
yield pragmatically dissimilar systems, and that even on a
theoretical expressiveness level may not be equivalent.

First, in expressiveness analysis, we displayed the reduction
from rgSIS to RBAC0, the simplest role-based system. It
was not surprising that the reduction achieved strong security
guarantees (rgSIS was, after all, modeled after role-based
systems). However, when we noticed that tgSIS (and, to a
lesser extent, bgSIS) admitted a hierarchical set of authoriza-
tions within each group, and that this allowed the hierarchical
RBAC1 to implement it just as strongly, we realized that
rgSIS is not unique—other parameterizations of g-SIS could
be safely implemented using dissemination-centric systems.

This pair of strong implementations shows that in some
cases a g-SIS parameterization and a dissemination-centric
system can provide the same theoretical capabilities, in part
because of structural similarities between how the group-
and dissemination-centric counterparts manage internal state.
There does not seem to be anything special about these pairs
that leads us to believe they are unique. However, in other
cases we find the dissemination-centric system unable to



fully match the g-SIS system, e.g. RBAC0 and tgSIS. Thus,
although we cannot count out the possibility that there is
some traditional system with the same capabilities as a given
g-SIS system, this is not a claim we can confirm based on our
investigation of several commonly-used traditional systems
and several natural g-SIS parameterizations.

To address the pragmatic differences between
dissemination- and group-centric sharing, we carried
out cost analyses of the implementations that we developed.
Implementations that were bad fits in expressiveness analysis
provided continuing evidence of their poor fit in cost analysis.
State storage was much higher in these systems than in the
ideal systems of the workloads. Executing workload actions
often necessitated many stuttering steps in the implementing
system, required higher I/O within the implementing
system, and changed a high proportion of state for each
action. However, these poorly-matched implementations
were not alone—even the strongly secure, relatively simple
implementation of tgSIS in RBAC1 had inefficiencies that
became evident during cost analysis. Though RBAC0

could not feasibly satisfy the homomorphic guarantee when
implementing tgSIS due to lacking a hierarchy, RBAC1

required as much of a state space explosion as RBAC0. Even
though it had much lower I/O cost than RBAC0, RBAC1

required orders of magnitude greater I/O than in tgSIS to
execute its procedure for simulating a strict join.

Thus, we believe we have validated the second point in the
hypothesis. Although certain dissemination-centric systems
are able to implement group-centric workloads, it does not
mean they should—even when they are theoretically capable,
they are not necessarily pragmatically suitable.

6.2 Beyond Expressiveness
Although expressive power analysis has long been the

measuring stick for understanding and ranking access control
systems in the literature (e.g., [1, 3, 5, 7, 9, 13, 14, 17, 19, 20,
22]), the analysis conducted in this paper indicates that
expressiveness alone does not always tell the whole story. For
instance, recall that RBAC1 was able to implement many
interesting g-SIS workloads while maintaining strong security
guarantees. However, the complexity required for these
implementations to maintain this set of properties resulted
in loss of atomicity when executing certain actions, increased
state size and state management overheads, and (ultimately)
a loss of the elegance of the original workload. From a
theoretical perspective, RBAC1 was expressive enough to
encode a variety of group-centric workloads; from a practical
perspective, these implementations are less than ideal.

We believe that this work represents the first comprehen-
sive analysis of expressiveness and cost within the context of
access control systems. Further, the results obtained by this
analysis are significant in that they provide a concrete data
point indicating the potential dangers of relying too heavily
on any one measure of access control suitability when exam-
ining the needs of an application. It would be worthwhile to
develop a generalized framework for carrying out the types
of analysis conducted in this paper while supporting a wide
variety of expressiveness and cost metrics.

6.3 Towards an Expressiveness Taxonomy
One goal of parameterized expressiveness [9] is to allow

one to choose the notion of expressiveness that best matches
the workload in question. Although it is often easy to decide

whether to require a particular PE security guarantee, PE
has not yet enabled the community to break down existing
notions of expressiveness into their component properties.
For example, it is not known whether there is any combina-
tion of parameterized expressiveness properties that yields
expressiveness statements equivalent to those made by, e.g.,
the state matching reduction [22]. For this reason, we identify
as another area of future work the continued investigation of
PE techniques and guarantees, hoping to gain knowledge of
both the properties of and relationships between expressive-
ness notions as well as deeper, more fundamental aspects of
access control and state machine simulations.

7. OTHER RELATED WORK
The need for more general techniques for evaluating access

control systems was discussed in a recent NIST report, which
states that “when it comes to access control mechanisms, one
size does not fit all” [10]. The report bemoans the lack of
established quality metrics for access control systems and lists
numerous possibilities. Several of these metrics relate to state
size, number of actions committed, and other quantitative
measures. The report stops short of explaining how one
might choose between these metrics, or how to effectively
evaluate systems with respect to these metrics. In this work,
we perform what we believe is the first comprehensive access
control evaluation using both expressiveness and quantitative
measures, and thus make a first step toward realizing the
evaluation mechanisms this NIST report hopes for.

For inspiration in generating access control traces (see Sec-
tion 5.1), we turn to trace generation work in other domains.
In the field of disk benchmarking, Ganger [6] observed that
interleaved workloads provided the most accurate approxima-
tion of recorded traces. Thus, mechanisms for representing
access control workloads must be capable of simulating the
interleaved actions of multiple actors. This view is reinforced
by the design of IBM’s SWORD workload generator for
stream processing systems [2,4]. This work also points out
that synthetic workloads need to replicate both volumetric
and contextual properties of an execution environment in
order to provide an accurate indication of a system’s perfor-
mance within that environment. Thus, we conjecture that
access control workloads may also benefit from expressing
not only volumetric statistics such as number of documents
created, but also contextual statistics such as the type of
content in created documents.

8. CONCLUSION
In this work, we examined the capabilities of popu-

lar dissemination-centric access control systems to operate
within group-centric workloads. We formalized several group-
centric workloads as instantiations of g-SIS, a family of infor-
mation sharing models that has been formalized in temporal
logic but not yet implemented. We then conducted a two-
phase analysis that we believe to be the first of its kind. We
first evaluated whether the dissemination-centric systems are
expressive enough to implement the group-centric workloads,
assessing the strength of these implementations by exam-
ining the security guarantees they can preserve. We then
conducted a cost analysis, investigating more pragmatic met-
rics that provide insight into the efficiency of these systems
when implementing group-centric workloads.



We found that while RBAC with role hierarchy was able
to implement the workloads that we considered with strong
security guarantees, a more basic variant of RBAC without
role hierarchies could only implement one of our workloads
without compromising the guarantees to be upheld. Fur-
ther, we found that standard UNIX-style user-group-other
permissions could not implement any of our group-centric
workloads while upholding all required security guarantees.
In cost analysis, we found that, with limited exceptions, even
those implementations upholding strong security properties
suffered from inefficiencies in state size, I/O, and atomicity
of operations. These results indicate that g-SIS is a practi-
cally significant proposal that elegantly satisfies a class of
workloads that existing access control techniques struggle
with. More fundamentally, these results demonstrate the
need for access control evaluation techniques and frameworks
that allow not only theoretical expressiveness analysis but
also the more pragmatic and quantitative cost analysis.
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APPENDIX
A. EXAMPLE PROOF SKETCH

Here, we present an example proof sketch to demonstrate
our techniques. Full definitions of systems, implementations,
reductions, and proofs are deferred to a companion technical
report [8].

First, we present RBAC1, based on the system of the same
name presented in [18]. States in RBAC1 are comprised of
the following.

• U , R, and P , the sets of users, roles, and permissions

• UR ⊆ U ×R, the user-role relation

• PA ⊆ R× P , the role-permission relation

• RH ⊆ R×R, a partially ordered role hierarchy

Requests are of the form u, p for whether user u has
access to permission p. Queries include querying the
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http://www.cs.pitt.edu/~adamlee/pubs/2014/garrison2014proofs.pdf
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relations UR(u, r), PA(r, p), and RH(r1, r2), the tran-

sitive hierarchy relation Senior(r1, r2) , RH(r1, r2) ∨
∃r3.(Senior(r1, r3) ∧ Senior(r3, r2)), and the authorizations

auth(u, p) , ∃r1, r2.(UR(u, r1) ∧ PA(r2, p) ∧ (r1 = r2 ∨
Senior(r1, r2))).

Labels are included for managing the various data
structures: addU(u), delU(u), addR(r), delR(r),
addP (p), delP (p), assignUser(u, r), revokeUser(u,
r), assignPermission(r, p), revokePermission(r, p),
addHierarchy(r1, r2), and removeHierarchy(r1, r2).

Top g-SIS (tgSIS) uses the g-SIS0 model, but utilizes
only strict versions of state elements. It includes the fol-
lowing labels: addS(s), delS(s), addG(g), delG(g), addO(o),
delO(o), strictJoin(s, g), strictLeave(s, g), strictAdd(o, g),
and strictRemove(o, g).

Since tgSIS contains only strict actions, we can utilize a
simplified auth definition:

auth(s, o, g) , ∃t1, t2.(
StrictJoin(s, g, t1)∧
StrictAdd(o, g, t2)∧
t2 > t1∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3∧
StrictRemove(o, g, t3)⇒ t2 > t3

)
)

Theorem 13 There exists a reduction from top g-SIS
(tgSIS) to RBAC1 where:

• σ preserves π, is pseudo-injective, preserves reachability,
and is homomorphic

• π is homomorphic and weakly AC-preserving

Thus, tgSIS ≤CaH RBAC1 (RBAC1 is at least as expressive
as top g-SIS with respect to correctness, weak AC-preservation
and homomorphism).

Proof (sketch) We prove the theorem by construction—
we present the reduction 〈σ, π〉, and prove it satisfies each of
the properties. The state mapping, σ, stores the tgSIS state
in RBAC1 as follows. Subjects are stored as users, each group
is stored as a role, and objects are stored as permissions.
We process the records (strict variety of join, leave, add,
and remove) in time order, and execute the mapped action
for each one. Joins require creation of a new role added
at the bottom of the group’s role hierarchy chain (initially,
directly below the group). Leaves require iterating over the
group’s role hierarchy chain, removing the user from each
role. To add a document to a group, the corresponding
permission is assigned to the bottom role in the group’s role
chain. To remove an object, similar to a user leaving, iterate
over all roles below the group’s role and remove the object’s
permission from each. We define this state mapping in HPL,
a minimal programming language that can only implement
homomorphic mappings [9].

The query mapping, π, is defined as follows.

πMember(s,g)(T ) = ∃r.(UR(s, r) ∈ T ∧ Senior(g, r) ∈ T )

πAssoc(o,g)(T ) = ∃r.(PA(r, o) ∈ T ∧ Senior(g, r) ∈ T )

πauth(s,o,g)(T ) = ∃r1, r2.(UR(s, r1) ∈ T ∧ PA(r2, o) ∈ T ∧
(r1 = r2 ∨ Senior(r1, r2) ∈ T ) ∧
Senior(g, r1) ∈ T )

This query mapping clearly contains no string manipula-
tion, and is thus homomorphic.

We show that σ preserves π (for all tgSIS states x, Th(x) =
π(Th(σ(x)))) by contradiction. We assume that there is some
tgSIS state x and query q such that the value of q in x is
the opposite of the value of π(q) in σ(x). We then show that,
for each of the query forms of tgSIS, this assumption leads
to contradiction, and thus that σ preserves π.

For all tgSIS states x, x′, if x′ is reachable from x, then
there exists a sequence of labels 〈`1, `2, . . . , `n〉 such that
terminal(x, `1 ◦ `2 ◦ · · · ◦ `n) = x′. We prove that σ preserves
reachability by showing that, for any tgSIS state x and label
`, σ(next(x, `)) is reachable from σ(x) via RBAC1 labels.
By induction, this shows that for each intermediate tgSIS
state xi between x and x′, σ(xi) is reachable from σ(x) and
ultimately that σ(x′) is reachable from σ(x). These actions
are mapped in the same way as their corresponding records
in the state mapping.

Finally, we show that σ is pseudo-injective, a property
which allows us to show that the reduction preserves cor-
rectness. We do so by inspecting the state mapping, σ,
and arguing that any two states in tgSIS that map to the
same RBAC1 state can be treated identically by an imple-
mentation’s label mapping—that is, we lose no meaningful
information by mapping a tgSIS state into RBAC1. 2

B. INFEASIBLE REDUCTION
Here, we describe the infeasible reduction from RBAC1 to

RBAC0 mentioned in Section 4.3. The full reduction and
proof are provided in the companion technical report [8].

In this reduction, we must store UR1, PA1, and RH1 from
RBAC1 in only UR0 and PA0 in RBAC0. We accomplish
this using the following homomorphic encoding. For each 〈u,
r〉 ∈ UR1, we generate two new constants a and b and store
in UR0 each of {〈a, b〉, 〈u, a〉, 〈r, b〉}. For each 〈r, p〉 ∈ PA1,
we generate two new constants c and d and store in PA0

each of {〈c, d〉, 〈c, r〉, 〈d, p〉}. Lastly, for each 〈s, j〉 ∈ RH1,
we generate three new constants e, f , and g and store in PA0

each of {〈e, f〉, 〈f, g〉, 〈e, s〉, 〈g, j〉}.
Under this (partial) encoding, the second element of each

tuple in UR0 and the first element of each tuple in PA0 are
generated (information-less) constants. Since constants are
generated to avoid collisions, there is no join over UR0 and
PA0, which would violate AC-preservation. Finally, we add
to the encoding the set of authorized requests, to fully satisfy
AC-preservation. For each request 〈u, p〉 which is authorized
(i.e., for each 〈u, p〉 such that ∃s, j : 〈u, s〉 ∈ UR1 ∧ 〈j,
p〉 ∈ PA1 ∧ 〈s, j〉 ∈ RH1), we generate a new constant h and
store 〈u, h〉 in UR0 and 〈h, p〉 in PA0.

The reduction answers queries (besides authorization re-
quests) by extracting the relevent parts of UR1, PA1, and
RH1. Generated constants are identified by their positions
in tuples. UR1 tuples can be extracted from UR0 by find-
ing sets of three tuples which match the 〈a, b〉, 〈u, a〉, 〈r,
b〉 pattern. Tuples from PA1 and RH1 can be extracted from
PA0 similarly.

Finally, the reduction must update the encoding after each
command. For example, if user u is assigned role r, 〈u,
r〉 is encoded and stored in UR0, then each permission pi
which u gains must be determined and encoded in UR0 and
PA0 to satisfy AC-preservation.
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