
1

Secured histories for presence systems
Eleanor Rieffel∗, Jacob Biehl∗, Bill van Melle∗, and Adam J. Lee†

∗FX Palo Alto Laboratory, †Univ. of Pittsburgh
Email: {rieffel,biehl,billvm}@fxpal.com, adamlee@cs.pitt.edu

Abstract—As sensors become ever more prevalent, more and
more information will be collected about each of us. A long-
term research question is how best to support beneficial uses
while preserving individual privacy. Presence systems are an
emerging class of applications that support collaboration. These
systems leverage pervasive sensors to estimate end-user location,
activities, and available communication channels. Because such
presence data are sensitive, to achieve wide-spread adoption,
sharing models must reflect the privacy and sharing preferences
of the users. To reflect users’ collaborative relationships and
sharing desires, we introduce CollaPSE security, in which an
individual has full access to her own data, a third party processes
the data without learning anything about the data values, and
users higher up in the hierarchy learn only statistical information
about the employees under them. We describe simple schemes
that efficiently realize CollaPSE security for time series data.
We implemented these protocols using readily available crypto-
graphic functions, and integrated the protocols with FXPAL’s
myUnity presence system.

I. INTRODUCTION

As sensors become ever more prevalent, more and more
information will be collected about each of us. This wealth
of data has many benefits, such as advancing medicine and
public health, improving software and services through user
pattern analysis, and enabling each of us to gain greater
insight into our own habits and tendencies. At the same
time, the potential for misuse of such data is significant,
and simply the possibility that such data are being collected
can “lessen opportunities for solitude and chill curiosity and
self development” [1]. A long-term research question is how
best to support beneficial uses while inhibiting less desirable
effects. For emerging classes of technologies such as presence
systems, addressing this concern is critical to adoption.

Presence systems fuse physical sensing capabilities with
social and communication software. Because sensor and pres-
ence data are sensitive, users’ sharing preferences must be
considered by the designers of such systems, especially for
stored data. FXPAL’s myUnity presence system (Fig. 1), which
has been in continuous use by more than 30 participants for
over a year, was designed with these issues in mind. This paper
describes the layer we added to myUnity to address many of
our users’ privacy concerns while enabling the benefits that
come with storage and analysis of presence data.

Feedback from myUnity users indicates strong correlation
between the extent to which a user is comfortable sharing
data with a given person and how closely the user works with
that person. Users were most comfortable sharing presence
data with their closest collegues, expressed some comfort
sharing data with their direct manager, and much less comfort
with higher-level managers. We recently performed a formal

Fig. 1. myUnity Dashboard.

survey that confirms these observations more generally [2].
Our work supports an inverted hierarchical sharing structure
that enables sharing of more detailed information with close
colleagues, and less detailed information with people higher
up in the hierarchy. This structure, which reflects collaboration
relationships among users, is broadly applicable to social
information sharing technologies.

In order to support collaboration in a wide variety of
settings, presence systems must provide ubiquitous access to
presence information. Therefore, a fundamental system design
challenge is how to give users ubiquitous access on a variety
of devices while also allowing them a high degree of control
over and protection for their data. MyUnity users, for example,
need access from mobile phones and tablets as well as laptops
and desktops. For this reason, data must be stored by a third
party, perhaps a server at their company or a cloud provider.
To preserve privacy, and to enable the users themselves to
maintain full control of how their data are shared, the data
must be encrypted using keys controlled by the users and not
shared with the third party.

In most instances, users are not interested in seeing raw

2

historical data, only the trends derived from the data. A
particularly useful case is when users are interested in statistics
for a group of people. A high-level manager may be interested
in statistics across all employees under her. An employee may
want to determine times when people in the systems support
group are less busy so she can ask an involved but not urgent
question. Users of myUnity and participants in our survey [2]
expressed greater willingness to contribute their data to group
statistics than to share their individual values.

To support these needs, we developed a mechanism to main-
tain confidentiality of user data while enabling contribution
to a statistic. We propose CollaPSE (Collaboration Presence
Sharing Encryption) security in which,
• at each time step, each member of a group encrypts her

presence values under her own key. Each individual has
full access to her own data,

• a third party that stores this encrypted data can compute
encrypted statistics, even over data encrypted under dis-
tinct user keys, without learning anything about individual
data values or the statistic computed, and

• entities equipped with the appropriate keys can decrypt
the group statistics without learning partial statistics or
individual values.

We designed simple means to provide CollaPSE security for
sums of time series data using off-the-shelf cryptographic
components efficient enough to meet our real-time needs.

Because users are not always online, all of our protocols are
non-interactive in that, after the initial setup, users do not need
to communicate with each other to encrypt or decrypt time
series data. Moreover, to compute, the third party does not
need to communicate with users (other than receiving the en-
crypted values). The protocols use a symmetric-key, additively
homomorphic encryption scheme [3]. The more sophisticated
protocols combine this encryption scheme with extensions of
Chaum’s DC-nets [4] to provide stronger privacy guarantees.
CollaPSE security complements differential privacy, which
limits what can be learned from the statistics.

The most significant contributions of this paper include:
• Definition of CollaPSE sharing structures that reflect the

collaboration relationships among the participants.
• Simple, non-interactive CollaPSE protocols for the case

of sums over arbitrary subsets of time series data.

II. OVERVIEW OF MYUNITY

The past few years have seen a rapid expansion of tech-
nologies that fuse physical sensing capabilities with social and
communication software. One such system is myUnity [5], a
presence system for the workplace that supports collaboration
by increasing workers’ awareness of their colleagues’ physical
presence, activities, and preferred communication channels.

MyUnity was designed to expand collaboration opportuni-
ties by building group awareness. MyUnity collects data from
cameras, bluetooth device sensors, mouse and keyboard ac-
tivity, network connectivity, IM availability, and the employee
calendar (Fig. 2). At regular intervals, the data are aggregated
and summarized into one of five presence states. A sixth state
indicates there is insufficient data on the user. Users run clients

Sensors/Data
Sensor Input
Processors

Computer
Activity

Bluetooth Devices

Chat/IM Status

Calendars

Vision Processing

Location Processing

In-Office Cameras

Fusers

FUSION VIA RULE BASED LOGIC

IF CAMERA_STATE == VISITOR
FUSED_STATE = WITH VISITOR

ELSE IF …
…
...
RETURN FUSED_STATE

Feed Server

Clients

Fig. 2. Architectural overview of the myUnity presence system.

that display presence states for colleagues as photo tiles within
an awareness dashboard (Fig. 1). Each tile’s color indicates the
user’s presence state:
• Purple: the person has visitors in her office.
• Green: the person is in her office.
• Yellow: the person is in the building.
• Blue: the person is actively connected remotely.
• Orange: the person is connected via mobile client.

The system represents each presence state as a five-bit string,
in which each bit corresponds to one of the five positive
presence states. The six legal presence values are 10000,
01000, 00100, 00010, 00001, and 00000, corresponding to
in office, has visitor, in building, active online remotely,
connected via mobile client, and insufficient information. The
interface displays presence information for groups, such as the
admin group, the support group, and the myUnity research
group, as well as for individuals.

MyUnity provides means for each participant to tailor which
feeds she will allow; a user can turn off any particular sensor
feed whenever she likes. If, for instance, a user does not
want a camera in her office, this data feed can be left out,
and a presence state can still be computed. MyUnity uses
fusion rules that adapt to missing information by degrading
the system’s resolution of the user’s state. When a colleague
is visiting a user without a camera, for example, the system
will not report a visitor, but can report ‘In Office’ if she is
actively using her computer, or ‘In the Building’ if she carries
a detectable wireless device.

MyUnity users are interested in sharing their presence
histories or trend data with their closest colleagues, but prefer
that only aggregate statistics are available to managers and
employees outside their team. This trust structure leads to the
question of how to support a different type of hierarchical
structure than is usually considered in the access control
literature, one in which higher levels in the hierarchy have
access only to summary statistics across a group of users, but
do not have access to data for individual users.

To avoid concerns about misuse, the system initially did not
store any data. Users consistently expressed interest, however,
in seeing personal trends, activity patterns of coworkers, and
data pooled across groups of users. They gave many examples
of how access to historical data would support collaboration,

3

such as knowing when a colleague usually returns from lunch
on a Friday or whether the support team tends to have many
visitors Monday morning. At the same time, users expressed
concern about misuse if data were stored, and a strong desire
for complete control over any stored data. Many were willing
to contribute data to statistical analyses so that the designers
could analyze the usage of the system or other users could get
statistical information about a group as a whole.

MyUnity has been well received by its users, who have
incorporated it into their daily routine to help coordinate
collaboration with colleagues. A field study [5] showed an
increase in face-to-face communication, most users’ preferred
means of communication, after adoption of myUnity. Nearly
all users have continued using the system after the trial run.
The popular press, while recognizing myUnity’s benefits in
supporting collaboration, has presented a creepy view of the
system with headlines such as “Someone’s watching you” [6].
Such a viewpoint illustrates that to achieve widespread adop-
tion, presence systems must address user privacy concerns.

III. SECURED HISTORIES

Feedback from users indicates significant value in storing
historical data, but only if secured and equipped with an appro-
priate sharing structure. This section defines the problem more
precisely and describes components used in our solutions.

A. Problem definition

We state more precisely the requirements for CollaPSE
security: (i) at each time step, each user encrypts her own
data under her own key, (ii) a third party can compute
encryptions of sums over arbitrary subsets of a user’s data
without learning anything about the values, (iii) the third party
can compute encryptions of sums over data contributed by
multiple users encrypted under different keys, and (iv) users
with the appropriate set of keys can decrypt a sum without
learning anything about the contributing values other than what
can be deduced from the sum.

We formalize the problem in terms of the following players:
• n team members, each of whom has a value, such as a

presence state, to contribute at each time step,
• an analyst who wishes to obtain a statistic over these

values, and
• an honest-but-curious third party who contributes to the

computation without learning anything about the values.
There may be one or more analysts. Analysts may be managers
or may be one or more of the team members. We use the term
in the formal definition so as not to prejudice which entities
have those capabilities. A user may be an analyst for one group
and a team member of another.

We define CollaPSE protocols for sums over time series
data. From sums, many important statistics can be determined.
To obtain the average, the user divides by the number of terms,
which the user may know, or may be supplied by the third
party. Because presence states in our case are Boolean values,
the variance can be computed directly from the average: V =
A − A2. In a non-Boolean case, the square of each value v2

i

can be encrypted and stored, and the decryption of the sum
of such values, together with the average, gives the variance.

A CollaPSE security protocol for sums with respect to time
series data contains the following algorithms:
Setup: Establishes public parameters and constants used by
all parties in the protocol.
Generate Keys: Establishes the key structure. It is run once,
prior to any of the data generation time steps.
Encrypt: At each time step, each individual encrypts her
values under her own key or keys and sends the encrypted
values to the third party for storage.
Compute Encrypted Sum: The third party can compute an
encryption of the sum over any specified set of data.
Decrypt Individual Sum: Any individual with access to
individual A’s keys can decrypt the sum over an arbitrary
subset of individual A’s values.
Decrypt Group Sum: An analyst with the appropriate set
of keys can decrypt the sum over all values, at a given time
step, for a group of users. As we will see in Section V, the
“appropriate set of keys” with which the analyst can decrypt
varies from protocol to protocol, as does the key structure.

A CollaPSE protocol is secure if (i) an honest-but-curious
third party can learn nothing about the data values, (ii) an
analyst learns nothing about individual users’ values other than
what she can deduce from the statistics, and (iii) each user
learns nothing about other users’ values.

A CollaPSE protocol for time-series data is non-interactive
if, after the setup phase, the users do not need to communicate
with each other, and each user only communicates with the
third party to deliver the encrypted data at each time step.

A CollaPSE protocol is secure against k-collusion if for
any set of k or fewer parties, whether consisting of team
members, outsiders, or analysts, the colluding group cannot
learn anything about another person’s data other than what
can be deduced from the colluding members’ data and the
full statistic (if an analyst is part of the colluding group).

B. Secured histories architecture
The system architecture (Figs. 2, 3) includes raw data

sources, such as cameras, bluetooth device sensors, and key-
board monitors. These send their data, along with metadata,
such as source ID and timestamp, to sensor-input processors
that process the data and send it to the Feed Server. A video
feed processor, for example, takes in raw video streams, but
sends to the Feed Server only compact descriptions of events
observed. In some cases, raw data sources may talk directly
to the Feed Server. The Feed Server forwards data to the
appropriate fuser, which computes the presence states.

The following components play a role in our protocols:
TRUSTED (partial access to keys)

Fusers: There is one fuser per individual. It has access to
the keys used to encrypt its individual’s data. It computes its
individual’s presence state from data received from the Feed
Server, encrypts this presence state using the individual’s keys,
and returns the encrypted presence state to the Feed Server,
which routes it to the Encrypted Data Store.
Client: A given individual may run multiple clients on differ-
ent desktops or mobile devices. Each client has access to that

4

individual’s keys, and the keys for any other individuals who
wish to share their historical presence data with that individual.
Clients decrypt and present information in the client interface,
and pass user queries to the Feed Server.

UNTRUSTED (no access to keys)
Encrypted Data Computation Engine: The Encrypted Data
Computation Engine computes on encrypted data and returns
the results to the Feed Server to be sent to the clients.
Encrypted Data Store: The Encrypted Data Store stores the
encrypted data, together with its metadata. It also keeps a list
of missing data ranges. When the store returns aggregated
results, it includes a list, often empty, of any missing data.
Feed Server: The Feed Server routes information between the
various components of the system.

Instead of having one fuser per individual, members of a
team who trust each other could share a fuser. The untrusted
components could reside in a public cloud. More than one of
each of the untrusted components may be needed to support
a large organization.

C. Underlying encryption scheme

To meet property (i) of the problem definition, any efficient
encryption scheme could be used. Presence states are Boolean
values, so schemes that encrypt Boolean values compactly
will support more efficient storage and transmission. To meet
(ii), any additively homomorphic encryption scheme can be
used. Most homomorphic encryption schemes are public key
schemes that do not encrypt Boolean values compactly. We
selected Castelluccia et al.’s symmetric-key based scheme
[3] in part because of its compact and efficient encryption.
Property (iii) is more challenging to meet, because most
existing homomorphic encryption schemes do not support
combining values that have been encrypted under distinct keys.
Castelluccia’s scheme does support homomorphic addition of
values encrypted under distinct keys. To obtain property (iv),
we devised a complex key structure with which to augment
Castelluccia’s scheme.

In Castelluccia et al.’s cryptosystem, values are encrypted
by adding a pad, obtained from a pseudorandom function and
a nonce nt, mod M , and decrypted by subtracting it. More
specifically, in our setting, let Xi denote a user, where i is
an index over the user population. Individual Xi with key
ki encrypts value vi at time t by evaluating a pseudorandom
function gki at nonce nt and adding it to vi to obtain

ci = vi + gki
(nt) mod M.

To decrypt, she computes gki
(nt) and subtracts it from ci:

vi = ci − gki(nt) mod M .
This cryptosystem is parametrized by a pseudorandom func-

tion (PRF) family, a collection Fλ = {fs : {0, 1}λ → {0, 1}λ}
of functions indexed by security parameter λ. Since provably
secure pseudorandom functions are very slow, Castelluccia et
al. [3] advocate using keyed hash functions such as HMAC
followed by a length-matching hash function h that does not
need to be collision-resistant, but must have uniform output
upon uniform input. The simple hash function h : {0, 1}λ →
{0, 1}µ that partitions the λ-bit output of fs into length µ

substrings and adds them together is an example of such a
function. Applying such a function h ensures that if at least
one of the blocks is indistinguishable from random, then the
output of the composition of h with fs is indistinguishable
from random. Applying h is unnecessary with a provably
secure pseudorandom function. In [3], the authors prove this
scheme semantically secure:

Theorem 3.1: Assuming Fλ = {fs : {0, 1}λ → {0, 1}λ}
with s ∈ {0, 1}λ is a PRF, and h : {0, 1}λ → {0, 1}l satisfies
{t← {0, 1}λ : h(t)} is uniformly distributed over {0, 1}l, the
above construction is semantically secure.

The simple h above satisfies the uniformity condition, so
the security reduces to that of the PRF used. HMAC is a PRF
provided the underlying compression function is a PRF [7].

This cryptosystem provides the ability to combine values
homomorphically that are encrypted under the same or dif-
ferent keys. Consider individuals X1 and X2 with keys k1

and k2, respectively. They wish to encrypt the values v1 and
v2, respectively, at time t. Each encrypts by evaluating her
pseudorandom function gki = h(fki) indexed by ki at nt:

c1 = v1 + gk1(nt) mod M
c2 = v2 + gk2(nt) mod M.

Given the aggregate ciphertext c = c1 + c2, an individual
with access to both k1 and k2 can construct the sum r =
gk1(t) + gk2(t) and recover the aggregate value

v = v1 + v2 = c− r mod M.

IV. THE BASE PROTOCOL

This section describes a non-interactive protocol for sums
over time series data that satisfies all of the conditions of
CollaPSE security except that an analyst can decrypt the
individuals’ values. Section V extends this protocol to obtain
full CollaPSE security, in which the analyst can decrypt only
the sum, not any of the individual values.

A. Base protocol description

Each fuser computes, at regular intervals, the current pres-
ence state for its user and sends it to the Feed Server to
send to clients. It encrypts each bit of a five-bit presence
string separately in order to support computation of statistics
restricted to one type of presence state. The fuser encrypts
with the user’s key, taking the timestamp concatenated with
the presence state type as the nonce. At each time step, the
fuser sends a record, consisting of a user ID and timestamp,
both unencrypted, and five encrypted Boolean values, one for
each presence type, to the Feed Server to be placed in the
Encrypted Data Store.
Setup: (i) Establish a modulus M large enough for the
application at hand. The modulus must be larger than the
number of terms that would ever contribute to the computation
of a single statistic. The bit length of encrypted values will
be µ = dlog2(M)e. (ii) Establish a pseudorandom function
family Fλ = {fs : {0, 1}λ → {0, 1}λ}, and choose λ
according to the desired level of security. (iii) Establish a
length-matching hash function h : {0, 1}λ → {0, 1}µ.

5

Feed Server

Encrypted
Data
Store

Encrypted Data Computation Engine

I_RESULTUSER 18, C1 = {∑ (P1, C1,TIMESTAMP i), …, ∑ (P5, C1, TIMESTAMP i)}

G_RESULT = ∑(I_RESULTUSER 18, C2 ,…, I_RESULTUSER n, C2)
Fusers

Ci,UID = f(Ki, FUSED_STATEUID)
C1, USER 18 = f(k1, 0001USER 18)
C2, USER 18 = f(k2, 0001USER 18)

…
Cn,USER 18 = f(kn, 0001USER 18)

SENSOR1_STATEUSER 18 = 0001
Keys {k1, k2, … kn}

Team Member

TRUSTED SERVICES UNTRUSTED SERVICES (NO KEY ACCESS) TRUSTED CLIENTS

DATA TABLE

ID TIMESTAMP P1 … P5

18 127681634 C1=-430447817 … C1= 567456723

18 127681635 C1= 984726244 … C1= 395029294

18 127681636 C1= 409291023 … C1=-109192847

18 127681634 C2= 392028449 … C2=-933712929

18 127681635 C2=-293848595 … C2=-392727839

18 127681636 C2= 728272819 … C2=-293847585 { C1, USER 18, C2, USER 18, …, Cn, USER 18 }

Manager

I_RESULTUSER 18, C1

Team Member

.

.

.

I_RESULTUSER 18, Cn

I_RESULTUSER 18, C1

I_RESULTUSER 18, Cn

G_RESULT

k1

kn

{k1,k2,...,kn}

SENSOR2_STATEUSER 18 = 1101

SENSORn_STATEUSER 18 = 0101

...

Fig. 3. Basic architecture for the Secured Histories system.

Generate Keys: Each individual Xi runs a key generation
algorithm to obtain a key ki.
Encrypt: At each time step, each individual Xi encrypts each
of the five bits mj , for j = 1, . . . , 5, of a presence state m as

cj = mj + h(fki
(nj)) mod M,

where the nonce nj is the concatenation of the presence state
type and the timestamp. We refer to rj = h(fki

(nj)) as a pad.
The record that is transmitted includes a header, containing the
user ID and timestamp transmitted in the clear, followed by
the five ciphertexts cj .
Compute Encrypted Sum: The Encrypted Data Computation
Engine adds ciphertexts mod M to obtain a ciphertext sum c.
Decrypt Group Sum: A user with access to the keys for
all users whose values contribute to a sum can decrypt an
encrypted sum c by computing pads for all contributing values
and subtracting them from c mod M .

Sections IV-B and IV-C give example decryptions of a sum.
In order to decrypt a sum, a user with access to the appropriate
keys must also have access to the appropriate nonces. Because
data are collected at regular intervals, users know which
timestamps should contribute to the sum. In order to handle
missing data, the Encrypted Data Computation Engine sends
the client a list of any expected triples (timestamp, user ID,
presence type) that are missing from the sum. Since the system
is robust, usually this list will be empty or very small.

B. Example: queries about an individual

A user can query the Encrypted Data Store about her own
history, receiving encrypted values that she can decrypt using
her key. She can also query the Encrypted Data Computation
Engine to receive encrypted sums. For example, she may want
to understand her typical daily presence pattern by dividing the
day into fifteen-minute intervals and requesting the totals of
each type of presence state for each fifteen-minute interval
over the past three weeks. The Encrypted Data Computation

Engine computes and returns encrypted sums for each type of
state in each interval. She then decrypts each encrypted sum
using her key and the nonces. The semantic security of the
cryptographic construction used to encode each presence state
ensures that the Encrypted Data Computation Engine cannot
learn any information about her presence states.

Instead of estimating her presence state pattern from the
data over the last three weeks, she may wish to use data from
the past six months, but weight the more recent data more
heavily. After receiving the encrypted weighted sum from the
Encrypted Data Computation Engine, she decrypts using the
same weighting to sum the pads. As a simple example, suppose
she wants to obtain the weighted sum v = v1 + 2v2, where
v1 is the sum over the earlier data, and v2 the sum over the
recent data. She asks the Encrypted Data Computation Engine
to compute c = c1 + 2c2 mod M . Knowing that c1 = v1 + r1
and c2 = v2 + r2, she can decrypt by subtracting from c the
similarly weighted sum of the pads, r = r1 + 2r2 to obtain

v = c1 + 2c2 − r1 − 2r2 mod M.

C. Example: queries about a group of users

Suppose each of L team members sends her key to an
analyst. At a given time, and for a given presence type, all
team members’ values are encrypted using the same nonce n,
a concatenation of the timestamp and the presence type. Each
fuser encrypts its team member Xi’s value vi by adding the
pad ri = h(fki

(n)) to vi modulo M : ci = vi + ri mod M .
The analyst can request the sum from the Encrypted Data
Computation Engine, which is

c =
L∑
i=1

vi +
L∑
i=1

ri mod M.

The analyst can compute the pads ri since she has all of the
keys and knows all of the nonces. She can even compute the
sum of the pads prior to receiving c from the Encrypted Data

6

Computation Engine. She subtracts this sum,
∑L
i=1 ri from c

to obtain the total v =
∑L
i=1 vi.

Advantages of this approach over having the client perform
the computation after receiving, decrypting, and summing the
contributing values include (i) more efficient bandwidth use,
and (ii) improved security, in that raw presence values are not
seen in decrypted form.

The amount of computation required to decrypt a group
statistic scales linearly with the number of values contributing
to the statistic, since the computation of the pads forms the
bulk of the computation. The computation of these pads can
be computed prior to receiving the encrypted value, so the
part of the decryption that must take place after receiving an
encrypted sum is constant: only one value, the sum of the pads,
must be subtracted to decrypt, and this subtraction is much
faster than a single decryption by a public key homomorphic
encryption scheme. For this reason, comparison of decryption
times for sums between our protocol and public key based
homomorphic encryption schemes is not straightforward. For
large sums, the computation of the pad sum is expensive,
but can be computed ahead of time, prior to receiving the
encrypted sum. In contrast, the decryption time for public key
homomorphic encryption schemes is constant, no matter how
many terms contribute to the sum, but decryption can start only
after the encrypted sum has been received. In the extensions of
this protocol given in Section V, the cost of decrypting group
sums does not increase with the number of users.

D. Application of the base protocol

Our initial implementation supports the computation of
a rough summary of a single user’s presence pattern from
encrypted stored data. To obtain baseline efficiency estimates,
we used presence data for one individual from a roughly three-
week period. This test set consists of 31, 568 records, collected
once a minute, each with five encrypted values, for a total of
157, 840 encrypted values. For the statistical summary of this
person’s daily presence pattern, we aggregated the presence
states over fifteen-minute intervals, and summed over the 21
days of data, to obtain histograms for each of the five presence
states. We smoothed to further obscure the data and make it
more visually appealing. Fig. 4 shows the graph our system
produced. The colors are the same ones used on the tiles in
Fig. 1) to indicate the presence states.

We implemented the core functionality in Java. We ported
some of this code to our .NET clients. We used HMAC as
implemented in javax.crypto and .NET with default security
parameter λ = 128. We wrote a length-matching hash function
that splits a byte array into groups of four bytes and adds
these together. For convenience, we took M = 232, so that
each encrypted value is 32 bits, but we could have used a
considerably smaller modulus. The bit-length of the encrypted
data is an order of magnitude smaller than that needed by a
public key homomorphic encryption scheme with a similar
level of security. Thus, our protocol has more efficient storage
and bandwidth usage than public key solutions.

We benchmarked our protocol on a virtualized Windows
Server 2008 instance, hosted by a Citrix XenServer hypervisor,

Fig. 4. Graph summarizing an individual’s activity history.

which was allocated four virtual CPUs with 8 GB of memory,
an 80 GB virtual disk, and a 1 GB full duplex ethernet port.
The underlying Intel Xeon E5450 hypervisor CPU runs at 3.21
GHz. Our clients vary, but our numbers are from an Intel 2.40
GHz dual core with 2 GB of RAM. We made no attempt to
optimize the code. On our server, each encryption took roughly
2.33 milliseconds. Computation of all 480 sums, 96 fifteen-
minute intervals per day for each of the five presence states,
took 439 milliseconds, or about 0.92 milliseconds per sum
with approximately 2105 contributing values. Computing the
pads for decrypting all 480 sums is slow, taking 11.5 seconds
total, but these pads can be computed prior to receiving the
encrypted sum. The final decryption takes 2.33 milliseconds
per sum, or 1.12 seconds for all sums contributing to the graph.

V. SECURED HISTORIES: COLLAPSE PROTOCOLS

The basic protocol of Section IV enables an individual to
use an honest-but-curious third party to store and compute
on her data. The protocol enables a fully trusted analyst
who has access to all keys to use the third party to aid in
computing sums over values from multiple individuals that
have been encrypted under different keys. This section extends
the basic protocol to a series of increasingly sophisticated non-
interactive protocols in which an analyst can decrypt only
the sum, but not the individual values or any sub-sum. The
more sophisticated schemes guard against k-collusion. As a
side benefit, decryption of group sums is faster than in the
basic protocol: the time for decrypting a sum in the protocol
of Section V-A is constant, whereas in the basic protocol, it
increases linearly with the number of values contributing to
the sum. These schemes can be nested to support an inverted
hierarchical sharing structure in which nodes at higher levels
can decrypt sums over all nodes below them, but cannot
decrypt any partial sums, including individual values.

A. A CollaPSE protocol

Suppose a project team wants a manager to see only pooled
data on the team’s activities. The manager may see the pattern
of availability of the group, for example, without learning

7

Encrypted Data
Store

Encrypted Data
Computation

Engine

I_RESULTUSER 18, C1

G_RESULT

Team Member

UNTRUSTED SERVICES TRUSTED CLIENTS

Manager

I_RESULTUSER 18, C1

Team Member

.

.

.

I_RESULTUSER 18, Cn

G_RESULT

{k0,k1}

{kn-1,kn}

{k0,kn}

Fig. 5. Secured histories architecture with key assignments for the CollaPSE
protocol of Section V-A.

anything about the pattern of any individual, other than what
can be deduced from the statistics for the whole group. We
describe a non-interactive protocol in which N team members
Xi encrypt one value at each time step in such a way that the
manager can decrypt the sum but not the individual values.

Ideally we would solve this problem by providing the
manager with a key k and the team members with keys
k1, . . . , kn such that at each time step, and for each presence
state, the pad computed from the manager’s key k is the sum
of the pads computed from the team members keys k1, . . . , kn.
We are not aware of a method for obtaining n pseudorandom
functions g1, . . . , gN and another pseudorandom function f
such that f(x) =

∑
gi(x) for all x, with the property that the

ability to compute f does not confer the ability to compute
any gi. We take a less direct approach, using an extension of
Chaum’s DC-nets [4]. Whether there is a more direct approach
is an intriguing open problem.

The following algorithms constitute a CollaPSE protocol for
sums with respect to time series data:
Setup: Same as for the base protocol (Section IV).
Generate and Share Keys: Each team member Xi, for 1 ≤
i < N , generates a key ki, and the manager generates a key
k0. Each individual member Xi sends her key to individual
Xi+1 where the indexing is modulo N + 1 and the manager
is considered individual X0.
Encrypt: Each team member Xi encrypts her value vi at time
t by adding the pad ri−1 = h(fki−1(nt)) and then subtracting
the pad ri = h(fki

(nt)) from vi,

ci = vi + ri−1 − ri mod M.

All team members use the same nonce nt, a concatenation of
the timestamp with the presence state type.
Compute Encrypted Sum: The third party can compute an
encryption of a sum over any specified set of data.
Decrypt Individual Sum: Anyone with access to individual
A’s keys can decrypt sums over arbitrary subsets of individual
A’s values.
Decrypt Group Sum: Anyone (e.g. the manager) with the two
keys k0 and kN can decrypt sums over all values, at a given
time step, for the whole team. When the encrypted values ci

at time t are summed over the group, all of the pads cancel
except for r0 and rN :

c =
N∑
i=1

ci = v1 + . . .+ vN + r0 − rN mod M.

Anyone with keys k0 and kN can compute pads r0 and rN to
decrypt c to obtain the sum v =

∑
vi. Sums over the group’s

values at multiple times can be similiarly decrypted.
All players have two keys. The manager has keys k0 and

kN , and each team member Xi has keys, ki and ki−1, as
shown in Fig. 5. The key structure is a chain in which pads
computed from the keys cancel in the desired way in a sum.
Because the manager does not have any of the other keys, she
cannot decrypt any subtotal, let alone any individual value vi.
To decrypt the sum, she needs to compute only two pads; thus
decryption of group sums is more efficient for this protocol
than for the basic protocol of Section IV-C.

A team member can share her data with individuals of her
choice, such as close colleagues, by sharing her keys with
them. A team may choose to give other outsiders the same
keys as the manager, in which case multiple people can decrypt
the statistic, but not the individual values. These examples
illustrate that the hierarchical structure of the keys does
not necessarily correspond directly with the access control
structure, which is determined by who receives which keys.

B. A family of CollaPSE protocols

In the protocol of Section V-A, a manager cannot decrypt
individual team members’ values, but two players can collude
to decrypt another’s data. Players Xi−1 and Xi+1 can together
decrypt team member Xi’s value, where the manager is team
member X0, and the indexing is mod N + 1. We can guard
against s-collusion by increasing to s+ 1 the number of pads
used to encrypt each value and distributing the keys in such
a way that all pads except the manager’s cancel in the sum,
and no subset of the s players knows enough keys to decrypt
another member’s value.
Setup: Same as for the protocol of Section V-A, with the
addition of a graph structure in which every team member
and the manager has exactly s+ 1 neighbors, for s odd.
Generate and Share Keys: Team member Xi generates keys
kij for every j < i such that Xj and Xi are neighbors. Team
member Xi shares kij with neighbor Xj .
Encrypt: Each team member Xi encrypts her value vi at time
t by adding pad rij = h(fkij (nt)) for every neighbor Xj with
j < i and subtracting the pad rij for every neighbor Xj with
j > i, where all arithmetic is done modulo M :

ci = vi +
∑

j∈nbhr(i)

(−1)χi(j)rij mod M,

where χi(j) is 0 for j < i and 1 for j > i.
Compute Encrypted Sum: Same as before.
Decrypt Group Sum: In a sum of ciphertexts over all team
members at a particularly time, all pads cancel except for the
rij with j = 0. Since manager X0 has keys ki0, she can
decrypt sums over the whole team.

8

These protocols generalize to support multi-level inverted
hierarchies in which nodes at higher levels can decrypt only
summary statistics over all leaf nodes below them, and cannot
decrypt lower-level statistics or values.

VI. RELATED WORK

Several commercial and research systems support awareness
in organizations. Most provide awareness of a single channel
of information. In systems such as Portholes [8], workers
observe the activity of co-workers via video feed. Fogarty and
Hudson’s toolkit [9] used computer activity, ambient sound,
and other sensors, to predict a person’s level of interruptibility.
Other systems (e.g., [10], [11], [12], [13]) performed similar
functions with different configurations of sensors. Most of
these systems do not save past state, and none have adequate
mechanisms for protecting and controlling access to historical
data. Shared calendars sometimes provide control over how
long data are retained and how historical information is
accessed, and chat clients often provide user control over
whether chat logs are retained. While we applied our sharing
scheme to the myUnity system, our work could be adapted to
work with other tools.

In Castelluccia et al.’s [3] setting, data aggregation in
wireless sensor networks, no data are stored, and a fixed
computation is carried out as the data traverse the network.
They have essentially one client, whereas we have many. To
the best of our knowledge, our work is the first application of
their symmetric homomorphic encryption scheme outside of
the wireless sensor network area.

Our approach differs from secure multi-party computa-
tion (SMC) in a number of respects. Our approach is non-
interactive in that, apart from key sharing, which is done once
prior to any data storage, and is only updated when sharing
relationships change. After that, unlike in SMC approaches,
all statistics are computed without the team members com-
municating with each other. All computation is done by the
third party, not the team members, who do not even need
to know what statistics are being computed. Our approach is
not restricted to a single round of data, but rather handles
time series data of arbitrary length without requiring further
key generation or key sharing. Furthermore, our approach is
substantially more efficient than general SMC constructions.

Molina et al. [14] study how to enable clinical research
without giving patient records to the researchers. In their
solution, caregivers, who have full access to patient records,
use multiparty computation with public key homomorphic
encryption to answer researcher aggregation queries.

Differential privacy foils deduction of individual attributes
from data such as aggregate statistics, a concern comple-
mentary to our own. In the standard setting, the differential
privacy mechanism is carried out by a trusted curator who has
access to all data. Rastogi and Nath [15] provide differentially
private aggregation of encrypted data using Paillier threshold
homomorphic encryption to achieve differentially private ag-
gregation without a trusted curator. Their decryption, unlike
ours, is multiparty.

VII. DISCUSSION

While the protocols of Section V were designed to support
full CollaPSE security, they have the added benefit of reducing
to a constant the number of pad computations needed to
decrypt. For this reason, in large organizations in which
statistics are desired over a large number of employees, it
may be worth implementing one of the more sophisticated
protocols of Section V even if an analyst is given all keys.

A number of residual risks remain. We were not con-
cerned with protecting the integrity of the data. Because the
encryption is homomorphic, it is malleable, so a separate
mechanism, such as the one Castelluccia et al. [3] provide,
is needed to protect against tampering with encrypted records.
A more significant risk is that, from the release of aggregate
statistics, individual values could be deduced. As mentioned in
Section VI, differential privacy mechanisms address this threat.
The simple structure of our schemes means that they can be
combined with differential privacy techniques to support the
computation of statistics with a differential privacy guarantee
without the need for the individual contributors to share their
individual values with anyone, including a curator.

To increase the minimum number of users who can success-
fully collude to decrypt another user’s values, the protocols
of Section V require each user to use more keys to encrypt
each value. An interesting open problem is how to support a
structure in which a manager can decrypt an aggregate of all
team members values, but none of the individual values, and
in which no group of entities can collude to decrypt any other
individual’s values. A related question, which would provide
a solution to the previous problem, is how to construct n-
tuples of pseudorandom functions {f, g1, . . . gn−1} such that
f(i) = g1(i)+ · · ·+gn(i) for all positive integers i and where
the ability to compute any one of the functions does not imply
the ability to compute any of the other functions.

The current implementation does not use a third party
provider, but its structure means that commodity cloud services
could be used to compute on and store sensitive data. All
untrusted components can be pushed to federated or external
resource providers, which enables scaling to large organiza-
tions. Computation of encrypted sums is easily parallelized,
so can be spread across different cloud nodes, or threads.
Computation of the pad sum by the client is also easily
parallelized to different threads.

VIII. CONCLUSIONS

We defined the requirements for CollaPSE security: that an
individual has full access to her own data, and may obtain help
from the third party to analyze it, that individuals cannot access
each other’s data unless they explicitly share privileges, that
the third party learns nothing about the data values, and that
some users can obtain statistics about a group of individuals
with help from the third party but learn nothing more about
the data values beyond what can be deduced from the statistic.
Such trust structures exist in many settings beyond presence
systems, such as user studies, medical studies, and usage
data from social networking sites. Our family of simple, non-
interactive CollaPSE protocols provides controls that users of

9

myUnity requested, and that are widely applicable in settings
where there is a presumption of privacy or individuals have
the power to opt out of data collection. As our implementation
shows, our protocols are practical.

REFERENCES

[1] M. R. Calo, “People can be so fake: A new dimension to privacy and
technology scholarship,” Penn State Law Review, vol. 114, no. 3, 2010.

[2] J. Biehl and E. Rieffel and A. Lee, Manuscript in preparation., 2011.
[3] C. Castelluccia, A. C.-F. Chan, E. Mykletun, and G. Tsudik, “Efficient

and provably secure aggregation of encrypted data in wireless sensor
networks,” ACM Trans. Sen. Netw., vol. 5, no. 3, pp. 1–36, 2009.

[4] D. Chaum, “The dining cryptographers problem: unconditional sender
and recipient untraceability,” J. Cryptology, vol. 1, no. 1, pp. 65–75,
1988.

[5] J. Biehl et al., “MyUnity: Building awareness and fostering community
in the workplace,” FXPAL-TR-09-21 and arXiv:1006.5024, 2010.

[6] T. Simonite, “Someone’s watching you,” MIT Technology Review, 2010.
[7] M. Bellare, “New proofs for NMAC and HMAC: Security without

collision-resistance,” in Crypto’06, vol. LCNS 4117. Springer-Verlag,
2006, pp. 602–619.

[8] P. Dourish and S. Bly, “Portholes: Supporting awareness in a distributed
group,” in CHI ’92, 1992, pp. 541–547.

[9] J. Fogarty and S. E. Hudson, “Toolkit support of developing and
deploying sensor-based statistical models of human situations,” in CHI
’07, 2007, pp. 135–144.

[10] J. B. Begole et al., “Work rhythms: analyzing visualizations of awareness
histories of distributed groups,” in CSCW’02, 2002, pp. 334–343.

[11] M. Danninger, T. Kluge, and R. Stiefelhagen, “MyConnector: analysis
of context cues to predict human availability for communication,” in
ICMI’06, 2006, pp. 12–19.

[12] J. Fogarty, J. Lai, and J. Christensen, “Presence versus availability: the
design and evaluation of a context-aware communication client,” IJHCS,
vol. 61, no. 3, pp. 299–317, 2004.

[13] E. Horvitz and J. Apacible, “Learning and reasoning about interruption,”
in ICMI’06, 2003, pp. 20–27.

[14] A. D. Molina, M. Salajegheh, and K. Fu, “HICCUPS: health information
collaborative collection using privacy and security,” in SPIMACS’09,
2009, pp. 21–30.

[15] V. Rastogi and S. Nath, “Differentially private aggregation of distributed
time-series with transformation and encryption,” in SIGMOD 2010,
2010, pp. 735–746.

