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Abstract—Although policy compliance testing is generally
treated as a binary decision problem, the evidence gathered
during the trust management process can actually be used
to examine these outcomes within a more continuous space.
In this paper, we develop a formal model that allows us
to quantitatively reason about the outcomes of the policy
enforcement process in both absolute (i.e., user to ideal case)
and relative (i.e., user to user) terms. Within this framework,
it becomes possible to quantify, e.g., the robustness of a
user’s proof of authorization to possible perturbations in the
system, how close an unauthorized user is to satisfying a
particular policy, and relative “top-k” style rankings of the best
users to carry out a particular task. To this end, we explore
several interesting classes of scoring functions for assessing
the robustness of authorization decisions, and develop criteria
under which these types of functions can be composed with
one another. We further show that these types of functions
can be extended to quantify how close unauthorized users are
to satisfying policies, which can be a useful risk metric for
decision making under unexpected circumstances.
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I. INTRODUCTION

In many widely distributed systems, enforcing access
control policies based upon user identity alone is a tricky
proposition, as the set of users authorized to access a
given resource may not be known a priori. Over the past
decade, a plethora of trust management techniques have been
developed that enable any principal to access any resource,
provided that she can generate one or more machine veri-
fiable proofs that authorize the requested action (e.g., [2]–
[4], [15], [22]). The structure of the resulting proof trees is
implied by policy assertions made by principals within the
system, while the leaves correspond to certified assertions
regarding principal attributes, role membership information,
or other system state. Like the vast majority of the access
control literature, these systems treat policy enforcement as
a binary process: a principal is either able to generate a
correct proof of authorization and is thereby granted access,
or else she is not.

This binary view of the authorization process has no
impact on the soundness of these systems: any well-formed
proof of authorization is guaranteed to be accepted. How-
ever, this simplified view does reduce the precision of

the information that is gleaned from the process itself. If
examined closely, proofs of authorization can reveal a great
deal of information about the conditions under which some
user u is granted access to a resource r. For instance,
can u produce multiple proofs of authorization for the
resource r? If so, how disjoint are the proofs that she can
produce? Are certain “common case” proofs preferred to
other, less frequently used, “exceptional case” proofs? If the
trust management system being used considers reputation or
QoS history (e.g., as in [7], [20]), how do values of these
attributes vary between users?

These types of information allow us to put the binary
decisions made by trust management systems under the
microscope and consider them within a more continuous
space. If properly quantified, this information can reveal a
great deal about the overall state of the system. For instance,
consider the following questions:

• How robust is user u’s ability to access resource r? The
existence of multiple proofs of authorization implies
that u’s ability to access r is robust against policy
changes or state perturbations, particularly if these
proofs are largely independent of one another.

• How do users within some group compare to one
another? Simply put, a policy is a set of requirements.
By evaluating how well these requirements are satisfied,
it becomes possible to objectively rank a set of users
to find the best subset for a particular task.

• How close is an unauthorized user to satisfying a
policy? In the physical world, exceptions to policies
are very often made based upon the judgement calls
of qualified individuals. A quantitative valuation of
the quality of a partial proof of authorization can
be a useful metric for assessing the risk associated
with granting access to an unauthorized user under
exceptional circumstances.

The information needed to answer the above types of
questions exists within, and is in fact collected by, most
trust management systems. For instance, the credential chain
discovery and resolution proof construction algorithms used
by RT [23] and SecPAL [3], respectively, can be used to



discover any possible proofs of authorization for a particular
action at runtime. However, the baby is to some degree
thrown out with the bathwater, as the internal structure
of a proof of authorization is essentially ignored once its
correctness has been verified. Nonetheless, this structural in-
formation is gathered by existing trust management systems
and can be used to answer the above types of questions.

We note that others have designed various types of
quantitative trust management systems in the past (e.g., [8],
[30]). However, these works tend to focus on degrees of
uncertainty, rather than on providing a means of assessing
the relative quality of valid proofs of authorization. Our
goal in this paper is to articulate a formal understanding of
these types of analyses, and to develop practical mechanisms
for analyzing proofs of authorization generated by trust
management systems. In addressing this challenge, we make
the following contributions:

• Formal Model. We begin by developing a unified
intellectual framework for the quantitative analysis of
proofs of authorization. The scaffolding provided by
this framework allows us to derive a set of necessary
properties that must be possessed by authorization
scoring functions, as well as a set of desirable, though
not strictly requisite, properties. We then provide an
instantiation of this framework for analyzing RT 0

policies, which is used to make the discussion in the
remainder of the paper concrete.

• Scoring Functions. As there is no prototypical dis-
tributed system, we examine situations in which the
principal evaluating proofs of authorization has access
to (i) perfect information about the state of the system;
(ii) perfect information about the state of her security
domain, but only limited external information; and (iii)
only the information that she uncovers during the proof
construction process, which may in fact be simplified
by other principals in the system (e.g., complex proofs
may be collapsed into simple signed assertions). In
every case, we show that interesting classes of useful
authorization scoring functions do in fact exist and can
be used to reliably assess proofs of authorization in
absolute (i.e., user to ideal case) as well as relative
(i.e., user to user) terms.

• Functional Composition. In certain circumstances, it
may be undesirable to use a single authorization scoring
function when considering a collection of proofs of
authorization. For instance, a principal may wish to
use a fine-tuned function for scoring the portions of
proofs generated within her domain, but more general
structural assessments of the portions of a proof gen-
erated outside of her domain. To this end, we identify
the conditions under which two or more authorization
scoring functions can be composed without altering
the properties of the individual functions comprising

the composition. We then show that the authorization
scoring functions defined in this paper can be safely
composed with one another.

• Quantification of Risk. We develop extensions to our
authorization scoring functions that enable the scoring
and ranking of incomplete proofs of authorization. This
allows administrators to assess how close a particular
user is to satisfying a policy, and can serve as a
primitive risk metric that can guide the decision making
process when access exceptions need to be made during
emergencies or other unexpected circumstances.

In addition to motivating the above types of analysis,
we show that these techniques are not just of theoretical
interest, but also practical to carry out in existing trust
management systems. To the best of our knowledge, the
framework and analysis presented in this paper represent the
first comprehensive effort towards a quantitative analysis of
proofs of authorization.

We begin by presenting several motivating scenarios for
this work in Section II. Section III outlines the intellectual
framework within which our discussion will take place
and identifies several necessary criteria for authorization
scoring functions, as well as other desirable (but not strictly
necessary) properties. Section IV discusses several classes
of scoring functions, examines the overheads of evaluating
these functions, and proves that they satisfy the criteria
outlined in Section III. In Section V, these techniques are
extended to properly assess the partial proofs generated by
unauthorized principals. Directions for extensions to the ba-
sic techniques presented in this paper and other future work
are discussed in Section VI. Finally, we discuss related work
in Section VII and present our conclusions in Section VIII.

II. POTENTIAL APPLICATIONS

In this section, we consider a number of potential use
cases that look beyond the standard binary yes/no analysis
of proofs of authorization. These scenarios show that a more
quantitative analysis is useful for considering the proofs
generated by a single user, or the collection of proofs that
can be generated by a group of users; identify the users
who best satisfy a particular policy, as well as those who
are the least qualified; and has uses in both offline analysis
and online proof generation.

Group Formation. The ability to score proofs of autho-
rization enables the calculation of top-k style rankings of
users within a system based upon the quality of the proofs
that they can generate. For instance, consider the case in
which an administrator is organizing a long-lived working
group. Given a scoring function that lends preference to
users who can generate multiple and largely independent
proofs of authorization, the administrator can find the k most
robust users to be members of this long-lived group.

Individual Analysis. A quantitative analysis of proofs
of authorization is also useful for considering the quality



proofs generated by a single user. For example, consider an
anomaly-based intrusion detection system that checks the
actions taken by authorized users. Such systems often suffer
from high false positives, and may require heavy human
intervention to separate the good from the bad. The ability
to analyze the quality of the proofs used to initiate the
actions in question can help guide the human investigator
toward the most likely actual threats first. For instance, a
proof scoring function that gives preference to short chains
of delegations may help investigators identify users gaining
access to a resource by means of long chains of poorly
maintained policy delegations.

Offline Policy Analysis. Authorization scoring can also
be useful during offline policy analysis. By considering both
the identities of role members and the scores of their proofs,
policy administrators may identify weak points in policies
that enable large numbers of users to satisfy a policy through
poorly-maintained sub-clauses or improper definitions. This
long term mining/clustering of (activity, proof score) pairs
may help identify policies in need of revision.

Degree of Non-Membership. Authorization scoring can
also be useful for assessing the quality of the incomplete
proofs produced by unauthorized individuals. In the physical
world, blanket policies are often subject to exceptions during
unexpected circumstances. These exceptions are the result
of risk/reward analyses weighing the benefits of permitting
an exception against the potential costs associated with
potential abuses. The ability to score partial proofs of
authorization can provide a type of risk metric that quantifies
how close a partial proof is to being complete, relative to
the metrics embodied by the scoring function used. In the
event that no user is authorized to take a particular action,
this technique can also be used to help locate the principal
who would require the least privilege elevation in order to
complete the task; that is, this can help minimize the risk
associated with completing some necessary operation.

The above examples clearly show that there is no universal
proof scoring function, but rather the function to be used will
depend largely on application context. At the same time,
it is clear that not every function would make for a good
authorization scoring function. To this end, we now develop
a formal framework within which we consider this problem.
We then identify both necessary properties for authorization
scoring functions, as well as other desirable properties.

III. INTELLECTUAL FRAMEWORK

In this section, we first present a general framework
to model the types of information available to trust man-
agement systems for the purpose of quantitative analyses.
We then materialize this framework in the context of RT 0

trust management system. The remainder of the paper is
built upon this materialized framework. Although RT 0 is a
relatively simple system, we note that it is representative of a
larger class of Datalog-based trust management systems and

provides a concrete substrate for the analysis of authorization
policies. Later in the paper, we discuss how our mechanisms
can be extended to work within richer policy languages.

A. General Framework
Trust management systems are designed to make au-

thorization decisions in a decentralized environment where
principals from multiple security domains may interact. Each
domain autonomously specifies its security policy regarding
access to its local resources. In particular, to facilitate cross-
domain collaboration, the security policy of one domain may
also grant resource access to principals from other domains.
This is typically done through various forms of delegations.
In general, a trust management system can be modeled to
include the following components:

• P: a set of principals. In most trust management
systems, a principal is represented by her public key.

• S: a set of resources. The concept of resources can be
used to encode a variety of things whose availability
needs to be controlled, such as privileges, capabilities,
or memberships to roles. Each resource s is owned by
a principal, denoted as owner(s).

• C: a set of credentials, each of which is issued by
some principal p ∈ P . A credential can be abstracted
to be in the form s ← q, while s ∈ S and q is an
opaque policy construction, which shall be materialized
by specific trust management systems. This credential
indicates that this statement controls access to resource
s. Here we require that only the principal owner(s)
can issue credentials about resource s. It is possible
that multiple credentials control access to a resource s.
Note that the concept of credentials here is not re-
stricted to traditionally digitally signed certificates.
As long as a statement in the above form can be
authenticated and verified (i.e., it is actually issued
by the owner of s), it can be considered a valid
credential. Also, as typical in most trust management
systems, credentials include not only statements about
the properties of a principal but also inference rules.
This will become clear when we present RT0 as an
example trust management system.

• F : an inference scheme which takes as input a prin-
cipal, a set of credentials (which include both facts
and inference rules as mentioned above), and a target
resource, and determines whether the target resource
is available to the principal, i.e., F : P × S × 2C →
{TRUE, FALSE}.

Note that traditional centralized authorization systems
can also be represented by the above model (when all the
credentials are issued by a single principal). However, trust
management systems in general include credentials issued by
multiple principals. Similarly, the inference scheme should
also have the capability to infer over credentials from
different principals to reach a decision.



Figure 1. Graphical representation of a system view.

The protection state of a trust management system can be
completely described by the (countable) sets of principals P ,
credentials C, and resources S. In reality, the sets P , C, and
S are time dependent and should thus be parameterized by
the time at which the system is examined. In this paper,
we will assume that policy evaluation is conducted in a
consistent manner (e.g., see [18]), and thus obviate the need
for considering time explicitly.

The existence of disclosure policies [25], the overheads
of state collection, and other practical constraints are likely
to prevent any one principal from discovering the sets P ,
C, and S in their entirety. As a result, it is necessary to
represent the information that a given principal does have
regarding the (partial) state of the system. To accomplish
this, we define functions res : C → S and ac : S → 2C , and
then formally define a principal’s view of the system.

res(s ← q) %→ s (1)
ac(s) %→ {c ∈ C | res(c) = s} (2)

Definition 1 (View): The view that some principal p ∈ P
has of the protection state of a trust management system is
defined as a three tuple vp = 〈S ⊆ S, C ⊆ C,A〉, where
for each s ∈ S, ac(s) ⊆ C, and A is the abstraction of any
auxiliary information that p has about the system.

Intuitively, res identifies the resource that a credential
protects, while ac returns all the credentials that protect a
resource s. Definition 1 then states that for every principal
p ∈ P , there are some resources that p has complete knowl-
edge about how they are protected, and that p may also have
partial information about other resources. For instance, if p
is the security administrator for some domain, she is likely to
know (at least) all of the credentials that protect resources in
that domain, as well as some credentials from other domains.
Figure 1 shows an intuitive graphic representation of a view
v, in which nodes may be interpreted as resources and edges
represent direct authorization as well as delegations among
accesses to resources. White nodes represent resources in
v.S, while grey nodes represent resources not in v.S.

A principal’s auxiliary information A might encode
knowledge about the number of principals having access

to some resources, the importance of each credential in the
context of specific applications, or the correlation between
accessibility of different resources. For simplicity, in the rest
of our discussion, we assume that for any given principal,
A is fixed. That is, given two views created by the same
principal, these two views will have the same auxiliary
information A. Meanwhile, the views of different principals
may have different auxiliary information A.

Given a view v = 〈S, C,A〉, one may wonder—since
all credentials protecting resources in S are in C—why S
is necessary to be included in v. One subtlety is that the
principal not only knows all credentials protecting resources
in S, but also knows that this set is complete (i.e., no other
credentials protecting s ∈ S exist in the system). Therefore,
it is possible that two views have the same credential set C
but different resource set S, and they do not correspond to
the same knowledge of the system. When comparing two
views, we need to consider both S and C.

Definition 2 (Dominates): Given two views v1 =
〈S1, C1,A1〉 and v2 = 〈S2, C2,A2〉, we say v1 dominates
v2 if S2 ⊆ S1, C2 ⊆ C1 and A1 = A2.

The above definition of views has three interesting cases:
S = ∅ (no information), S = S (omniscient information),
and S ⊂ S (partial information). As the first case is to some
degree degenerate, our goal in the remainder of this paper is
to develop mechanisms for quantitatively scoring the quality
of proofs of authorization given only partial information
about the state of the system.

Definition 3 (Authorization Scoring Function): A autho-
rization scoring function in a trust management system is
defined to be score : P × S × V → T , where V is the
domain of views in a trust management system, and T is
some total ordered domain.

Intuitively, given a principal p, a target resource s, and
a view v, score(p, s, v) measures the “strength” of p’s
proofs of authorization for s. Note that our definition of
authorization scoring functions does not necessarily require
p to be authorized to access s according to the underlying
inference scheme F . Therefore, it is meaningful to discuss
the strength of a principal’s access even when she is not
authorized to access the resource. Note also that v is not
the view of p. Rather, it is the view of the principal who
initiates the evaluation of an authorization scoring function.
For example, if Alice wants to know how strongly Bob has
access to a resource s, then Bob’s trust score is calculated
as score(Bob, s, vAlice). In other words, Alice’s knowledge
of the system (i.e., her view) affects Bob’s trust score.

Clearly, the meaning of access strength largely depends
on specific applications that a trust management system
supports. Therefore, it may not always make sense to discuss
whether one scoring function is better than another. In fact,
it is unlikely that a single authorization scoring function is



sufficient for analysis purpose. Instead, a system might adopt
multiple scoring functions, each of which reflects a different
aspect of a user’s authorization proofs. For example, a
system may employ two scoring functions: one evaluating
the number of independent proofs of authorization for a
given resource, and another evaluating how “direct” the
proof of authorization is. Given this interpretation, we can
easily extend Definition 3 to include scoring functions that
output a partially ordered vector of values, rather than a
single value from a total order domain. In other words, an m-
dimensional scoring function can always be represented as
m scoring functions, each of whose output is from a different
dimension of the vector respectively. For simplicity, in this
paper we focus on scoring functions whose outputs are from
a single total order domain, as defined in Definition 3.

B. Properties of Authorization Scoring Functions

The properties of authorization scoring functions can
be divided into two categories: necessary and desirable
properties. Necessary properties are those that we argue all
authorization scoring functions should possess. Otherwise,
they will appear to be semantically incorrect (or at least
counter-intuitive), and thus are unlikely to be used to support
meaningful applications. Desirable properties are those that
will make authorization scoring functions more practical,
e.g., properties that might optimize the evaluation of these
functions. Unless explicitly stated otherwise, all views in our
discussion belong to the principal initiating the evaluation of
authorization scoring functions, which also means that all the
views will have the same auxiliary information A.

We have identified the following necessary properties.
Deterministic. A scoring function should be determin-

istic. This property is directly required from Definition 3.
Although a user’s view may not be complete, this and other
uncertainty can be captured by the auxiliary information.
The final output of an authorization scoring function should
be definite so that it is easy to interpret when comparing the
scores of different principals.

Simple ordering. Given two principals A and B, if
A is authorized to gain access to a resource s while B
is not, then A’s authorization score should be no lower
than that of B in terms of access to s. Intuitively, an
authorized principal should be able to produce higher
quality proofs than an unauthorized one. Formally, let
score be an authorization scoring function and C be all
the credentials contained in a view v. If F (A, s, C) =
TRUE and F (B, s, C) = FALSE, then we should have
score(A, s, v) ≥ score(B, s, v).

Authorization relevant. Though the specific ways to
score the trust of principals depend on applications, it should
nevertheless tie back to how a principal is authorized to
access a resource. Therefore, if a credential is not relevant
to authorization decisions for a principal, it should not affect

the authorization score of that principal either. To formally
describe this property, we first have the following definitions.

Definition 4 (Proof of Access): We say a set C of cre-
dentials is a proof for a principal p to access resource s
in a trust management system if F (p, s, C) = TRUE. If
no proper subset of C is a proof, then we say that C is a
minimal proof.

Definition 5 (Relevant Credentials): Given a set C of
credentials, let C1, . . . , Cn be all the minimal proofs for a
principal p to access a resource s. We say a credential c ∈ C
is relevant to p’s access to s if there exists a Ci, 1 ≤ i ≤ n,
such that c ∈ Ci. Otherwise, we say c is irrelevant.

Let v1 = 〈S, C1,A〉 and v2 = 〈S, C2,A〉 be two views
where C1 and C2 have the same minimal proofs for p to
access s. We say an authorization scoring function score is
authorization relevant if score(p, s, v1) = score(p, s, v2).
In other words, if the difference between two views only
includes irrelevant credentials, they should not affect a
principal’s authorization score.

In addition to the above necessary properties, we have
also identified a set of desirable properties:

Interpretable. The score returned by a scoring function
should have some reasonable meaning about certain security
aspects of a principal’s authorization. In other words, from
an authorization scoring function, we should not only be
able to say a principal’s authorization score is a particular
value, but also be able to interpret this score in terms of
some useful features (e.g., robustness or direct vs. delegated
authorization) of its authorization in a system.

Bounded. We say an authorization scoring function is
bounded if its output domain is a bounded total ordered
domain. Given a bounded authorization scoring function, we
can possibly identify an “ideal” principal in terms of access
to a resource s. By comparing a principal with this ideal
principal, we may further observe interesting features of
individual principals as well as the trust management system
as a whole.

Monotonic. Most trust management systems are mono-
tonic in the sense that discovering more credentials may
possibly make a principal change from being unauthorized
to authorized, but not vice versa. One benefit of this property
is that once a proof of authorization is established, a system
may just stop further evaluation. A similar property may
also be desirable for the evaluation of authorization scoring
functions. To this end, we say that an authorization scoring
function score is monotonic if for any two views v1 and
v2 such that v2 dominates v1, we have score(p, s, v1) ≤
score(p, s, v2).

Note that we classify monotonicity to be a desirable,
rather than necessary, property. To understand why, consider
that one natural measurement of authorization robustness is
the ratio between the number of existing minimal proofs



and the total number of all possible minimal proofs in a
system. In this case, adding new credentials may actually
increase the number of possible minimal proofs (e.g., by
introducing new delegation paths) but not increase the num-
ber of minimal proofs for a particular principal. This would
cause a decrease in this principal’s trust score. Although
this is a reasonable authorization scoring function, it is not
monotonic in the general case.

Given the above properties, one may wonder whether we
can define practical functions that satisfy the above proper-
ties. To make the remainder of this paper more concrete, we
now materialize the above framework through RT0. Based
on the materialized concrete system, we then present the
design of two interesting classes of authorization scoring
functions and analyze their properties.

C. RT0 Overview

RT 0 is the most basic language in the RT family of trust
management languages [22]. As in all of the RT languages,
principals are identified by means of identity certificates.
RT 0 roles are then defined as strings identifying the name
of the role and cannot be parameterized. Policy statements in
RT 0 are expressed as one or more role definition credentials
signed by the author of the role definition. There are four
basic types of role definition credentials in RT 0:

• Simple Member. A role definition of the form A.R ←
B encodes the fact that principal A considers principal
B to be a member of the role A.R.

• Simple Containment. A role definition of the form
A.R ← B.R1 encodes the fact that principal A defines
the role A.R to contain all members of principal B’s
role B.R1.

• Linking Containment. A role definition of the form
A.R ← A.R1.R2 is called a linked role. This defines
the members of A.R to contain all members of B.R2

for each B that is a member of A.R1.
• Intersection Containment. The role definition A.R ←

B1.R1 ∩ · · · ∩ Bn.Rn defines A.R to contain the
principals who are members of each role Bi.Ri where
1 ≤ i ≤ n.

These four basic types of role definitions can be used to
define a wide range of access control policies. For example,
the following RT 0 role definitions express a policy requiring
that entities accessing a given resource be graduate students
in one of a university’s technical departments.

Univ.auth ← Univ.techDept.gradStudent

Univ.techDept ← CS

If a principal, Alice, could provide a credential proving
the statement CS.gradStudent ← Alice, then she could
satisfy the above policy.

D. A Materialized Model Using RT0

We now materialize the general framework using RT0. It
is not hard to see that the general framework can also be
easily materialized through other trust management systems
such as SD3, KeyNote, and SDSI/SPKI. We focus on RT0

due to its simplicity, as well as its influence in the research
of decentralized trust management.

Clearly, the set P of principals required by the framework
can be defined as the set of all principals in the RT0 system.
The set S of resources can then be defined as the set of all
RT 0 roles defined by all principals in P . Given a credential
C = A.R ← body, principal A is said to be the owner
of A.R. Since each credential must be digitally signed,
a principal may only define her own roles. As a result,
a principal A is trivially aware of all definitions for any
role A.R. The inference scheme F in RT0 is well defined
through its set semantics for role memberships [23].

Given the set of all RT 0 roles R and the set of all RT 0

credentials C, the view of a principal in an RT 0 system can
be defined in accordance with Definition 1, as follows.

Definition 6 (Views in RT0): The view in RT0 for a prin-
cipal p ∈ P is defined as a three tuple vp = 〈R ⊆ R, C ⊆
C,A〉, where for each A.R ∈ R, all the credentials with head
A.R are in C, and A defines any auxiliary information that
p has about the system.

IV. SCORING ROLE MEMBERS

In this section, we show that it is indeed possible to
develop authorization scoring functions that meet the re-
quirements set forth in Section III-B. Recall from Section II
that there is no single authorization scoring function that
makes sense to use in every scenario. To this end, we explore
several example constructions that may be used under a
variety of assumptions regarding the information available to
the evaluator. Note that the scoring functions that we present
below are by no means meant to be the only functions
that trust management systems should use. Instead, they just
serve as representative functions that may be useful for the
quantitative analysis of authorization proofs. To simplify
our discussion, we consider scoring functions of the form
score : P ×R× V → R in this section.

A. One Step Lookahead

Perhaps the simplest case within which to consider the
authorization scoring problem is that in which the principal
A evaluating some other principal’s membership in the
role A.R has no information about roles other than A.R.
In terms of the framework presented in Section III, the
system view used by principal A can be defined by the
tuple vA.R = 〈{A.R}, ac(A.R),A〉. This view gives the
principal A access to exactly the set of credentials defining
the role A.R. Role memberships defined in terms of simple
membership credentials (A.R ← P ) can be evaluated locally



Algorithm 1 A simple recursive scoring scheme.
1: Function score(p ∈ P, A.R ∈ R, v ⊆ V) : R
2: // Filter credentials and initialize storage vector
3: C = {ci | ci ∈ v.C ∧ head(c) = A.R}
4: Discard all ci ∈ C of the form A.R ← P ′, P ′ %= P
5: s = [1, 0, . . . , 0] // vector in R|C|+1

6:
7: for all ci ∈ C do
8: wi = v.A.weight(ci) // weight vector for ci

9: if ci = A.R ← P then
10: t = [1, 1]
11: else if body(ci) = B1.R1 ∩ · · · ∩ Bk.Rk then
12: t = [1, B1.score(p, B1.R1), . . . , Bk.score(p, Bk.Rk)]
13: else if body(ci) = A.R1.R2 then
14: Find B ⊆ A.R1 such that ∀Bj ∈ B : P ∈ Bj .R2
15: t = [1, maxBj∈B(Bj .score(p, B.R2))]

16: if t contains any 0 entries then
17: s[i] = 0
18: else
19: s[i] = t · wi

20:
21: // Get master weight vector and combine all weights
22: w = v.A.weight(A.R)
23: return s · w

by A, while information regarding roles other than A.R is
obtained by recursively issuing requests to the principals
defining these roles.

This naive authorization scoring scheme can be viewed
as a simplification of the RT proof construction process
that only builds proofs of height 1. Specifically, the root
of each proof tree is a node representing the role A.R
and the leaves of the proof tree are credentials asserting
a simple membership in the roles directly used to define
membership in A.R. This allows principals to hide the
details of exactly how membership in roles that they define is
determined from other principals in the system by replacing
sub-proofs encoding proof structure with simple membership
credentials asserting that membership has been verified. This
is similar in spirit to the proofs of authorization constructed
in the Minami-Kotz distributed proof system [24], which
hide the structure of a proof from unauthorized users.

Scoring Construction. Evaluating role memberships
given only this limited information can be viewed as a
process similar to the recursive resolution of DNS queries
or the lazy proof construction process used within the Grey
distributed proof system [2]. Algorithm 1 shows how such an
authorization scoring function can be designed. This naive
algorithm assumes that each credential ci defining some role
A.R is associated with a weight vector wi described in A’s
auxiliary information A. The first entry of this vector is a
constant factor and the remaining entries are scaling factors
for the scores computed for each role in the body of ci. the
score for a given credential is then computed as the linear
combination represented by the dot product of this vector
with the vector of scores gathered recursively for each role
in the body of ci.1 We require that every such wi contains

1The constant factor can be used to adjust the “baseline” score for a
proof of access generated using a given credential. Setting this term to
zero scores the proof using only the scores returned for each sub-proof.

only non-negative entries and that ||wi||1 = 1.
We further assume that each role A.R is associated with

another weight vector w, the first entry of which is, again, a
constant factor. The second entry in this vector is a scaling
factor that is associated with principals who are defined
through simple membership to be a member of A.R. The
remaining entries in w are scaling factors for the scores
computed for each credential ci that defines membership in
A.R The final score for the role A.R is then computed as
the linear combination represented by the dot product of w
and the scores calculated for each ci defining A.R. Again,
w is assumed to be encoded in the additional information
A maintained by the principal A, and we require that w
contains only non-negative entries and that ||w||1 = 1.

Example. To more concretely demonstrate the scoring
function defined in Algorithm 1, consider the following RT 0

role definitions:

Univ.auth ← CS.student ∩ACM.member (3)
Univ.auth ← Univ.techDept.gradStudent (4)

This policy states that computer science students who
are ACM members, and graduate students within technical
departments at Univ to be members of the role Univ.auth.
Assume that the weight vector for credential (3) is defined
as [0, 0.7, 0.3], which gives more weight to the role defined
by the CS department at Univ than to the role defined by
the ACM. Further, assume that the master weight vector
for Univ.auth is defined as [0, 0.5, 0.25, 0.25], where the
entries in this vector reflect a constant factor of 0, and the
weights assigned to simple members of Univ.auth, creden-
tial (3), and credential (4), respectively. This implies that
simple membership in Univ.auth is strongly preferred over
proofs that involve delegation to other principals, and that
both types of delegated proofs are given equal preference.

Properties. Although extremely simple to implement, this
naive scoring function can be shown to satisfy a number of
the properties identified in Section III-B. In particular, we
have the following theorem:

Theorem 1: The function score : P×R×V → R defined
in Algorithm 1 satisfies the deterministic, simple ordering,
authorization relevant, bounded, and monotonic properties.

Proof: To prove the above claim, we address each
property one at a time:

• Deterministic. Note that the score function does not
make use of any randomized information. Provided that
system policies and weight vectors do not change, two
invocations of score(p, A.R, v) will always return the
same value.

• Simple Ordering. The check on Line 16 of Algo-
rithm 1 ensures that non-zero scores are only recorded
for members of a role, while non-members of a role



always receive a zero score. This trivially gives us the
simple ordering property.

• Authorization Relevant. Line 3 of Algorithm 1 en-
sures that only credentials defining the role A.R will be
considered. This implies that all credentials considered
by Algorithm 1 are relevant to proving membership
in the role A.R by Definition 5. Therefore, irrelevant
credentials will not influence the score computed by
Algorithm 1.

• Bounded. Because we require that ||w||1 = 1 for all
weight vectors used by Algorithm 1, the maximum
score that can be computed for a set of proofs of
authorization is bounded above by 1. Since these vec-
tors must also contain only non-negative entries, the
minimum score that can be computed for a set of proofs
of authorization is bounded below by 0.

• Monotonic. Since no weight vector wi used by Algo-
rithm 1 can contain negative entries, learning additional
role memberships for a principal cannot decrease the
score calculated by Algorithm 1. As a result, the score
function is monotonic.

Given the above arguments, we can conclude that the
function score : P ×R × V → R defined in Algorithm 1
satisfies the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties.

We note that the interpretation of the value returned by
the score function defined by Algorithm 1 is entirely deter-
mined by the weight vectors used. For instance, consider
the scenario in which the master weight vector for A.R
is defined as [0, 1

n , . . . , 1
n ] and the weight vectors for each

credential ci are defined as [1, 0, . . . , 0]. In this case, a higher
score implies that more proofs of authorization have been
produced. Specifically, a score of k

n implies that a principal
has produced k proofs of membership for A.R; if the score
computed is 1, then all possible proofs have been produced.

B. Deep Structural Information

At the other end of the information disclosure spectrum lie
the system models used in the credential chain discovery and
resolution-based proof construction algorithms used by the
RT [23] and SecPAL [3] systems, respectively. Essentially,
these systems make two similar assumptions: (i) principals
can discover all information needed to construct a proof
of authorization at runtime, and (ii) any information in the
system can be freely disclosed between principals (i.e., there
are no credential release policies in place). Together, these
assumptions imply that principals need not know anything
about the protection state of the system initially, but can
learn any relevant information that they need to know in
order to build a proof (or proofs) of authorization on-
demand. In the notation from Section III, this means that
a principal’s initial view can be defined as v = 〈∅, ∅, ∅〉.

Under the above assumptions, it becomes clear that the
class of scoring functions described in Section IV-A is
undesirable for at least two reasons. First, the computation
of proof scores must proceed iteratively: credentials must
first be discovered, then be analyzed offline by a human
to construct appropriate weight vectors for each role, and
finally be used to compute the score associated with a given
proof. Second, this class of scoring functions essentially
ignores the overall structure of a given proof by making
scoring decisions one level at a time. For these reasons,
we now explore an alternate class of authorization scoring
functions that better make use of the information that is
available during the proof construction process.

Scoring Construction. Note that the structure of an RT 0

proof of authorization is entailed by the set of credentials
used to construct the proof. We have particular interest in
the set of minimal proofs for the role A.R. Given a function
sets : 2C × R → 22C to enumerate the set of minimal
proofs discovered for a particular role2, we can define an
authorization scoring function as follows:

score(p, A.R, v) =
|sets(v.C,A.R)|∑

i=1

1
2

i

(5)

At a high level, the interpretation of this scoring function
is that if score(p1, A.R, v) < score(p2, A.R, v), principal
p2 can generate a larger number of proofs of authorization
for role A.R than principal p1. An interesting side effect of
this function is that the contribution that each proof of au-
thorization makes to the final score decreases exponentially.
Intuitively, this makes sense, as the difference between one
and two proofs of authorization is more significant than,
e.g., the difference between eight and nine proofs. While
interesting, the scoring function defined in Equation 5 makes
only limited use of the information encoded in the structure
of each proof that is discovered.

In reality, principals may wish to leverage different
notions of authorization robustness. To enable this, we
first assume that the notion of robustness of interest to
a principal can be encoded by a scaling function ω :
2C × 22C → [0, 1] that quantifies the robustness of a
proof of authorization when compared with other proofs.
The function ω can then be used to parameterize a func-
tion osetsω : 2C × R → 22C×R that computes an
ordered list 〈(C1, w1), . . . , (Cn, wn)〉 such that ∀Ci ∈
sets(C, A.R),∃wi : (Ci, wi) ∈ osetsω(C, A.R) and
∀(Ci, wi), (Cj , wj) ∈ osetsω(C, A.R) : i ≤ j ↔ wi ≥ wj .
That is, osetsω orders the proofs for a particular role in

2We do not comment further on the implementation details of the sets
function. It is well known that this functionality can be achieved through
iterative distributed search (e.g., [3], [23]) or the efficient analysis of
previously gathered credentials (e.g., [19]).



decreasing order of their robustness as reported by ω.

score(p, A.R, v) =
∑

(Ci,wi)∈osetsω(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ω. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ω function:

ωlen(Cs, ) = γmaxp∈paths(Cs)(length(p)) (7)

ωind(Cs, C) = 1−
maxCi∈C\{Cs}(|Cs ∩ Ci|)

|Cs|
(8)

ωli(Cs, C) = α · ωlen(Cs, ) + β · ωind(Cs, C) (9)

In particular, the function ωlen defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant γ ∈ [0, 1] to this
power. Since longer paths will produce lower scaling factors,
ωlen gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ωind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ωind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ωlen and ωind

using the constants α,β ∈ [0, 1] chosen such that α+β = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth ← CS.student ∩ACM.member (10)
Univ.auth ← Univ.techDept.gradStudent (11)

Univ.techDep ← CS (12)
CS.student ← CS.ugrad (13)

CS.student ← CS.gradStudent (14)
CS.gradStudent ← Alice (15)
ACM.member ← Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student ← CS.gradStudent ← Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent ← Alice). If we let C =
{C1, C2}, v = 〈∅, {(10), . . . , (16)}, ∅〉, and γ = 0.9, we
have the following:

ωlen(C1, C) = 0.93 = 0.729
ωlen(C2, C) = 0.92 = 0.81

ωind(C1, C) = 1− |C1 ∩ C2|
|C1|

= 1− 1
4

=
3
4

ωind(C2, C) = 1− |C2 ∩ C1|
|C2|

= 1− 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 ·

1
4 = 13

24 ≈ 0.5417.
Properties. The class of scoring functions described by

Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ω( , ) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ×
R × V → R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
ω : 2C×22C → [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ω function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ω is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osetsω(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant



to the proof of membership in A.R. Since osets only
ranks and returns minimal proofs for A.R, Equation 6
does not consider any irrelevant information when
scoring proofs of authorization. As such, irrelevant
information cannot influence the score produced by
Equation 6.

• Bounded. Note that sum of the infinite geometric series∑∞
i=1

1
2

i converges to 1. Since every term in this
summation is positive, we have that ∀1≤j :

∑j
i=1

1
2

i
<∑j+1

i=1
1
2

i. As a result, the sum of any sub-series of
the infinite series will converge to some value in the
range [0, 1). Equation 6 is nothing more than such a
summation in which each term is scaled by a weight
wi ∈ [0, 1]. As a result, Equation 6 is bounded below
by 0 and bounded above by 1.

• Monotonic. To prove the monotonicity of Equation 6,
we proceed by induction. We first assume that principal
p has previously discovered the (ordered) collection of
proofs and weights (C1, w1), . . . , (Cn, wn) for the role
A.R. The base case that we must consider is that a new
pair (Cs, ws) is discovered such that no weight wi is
less than ws. In this case, this new pair will introduce
a new term to the end of the summation calculated by
Equation 6, thereby increasing principal p’s score for
the role A.R.
Assume that (Cs, ws) can be inserted before up
to n terms in the sequence of (ci, wi) pairs while
still preserving the monotonicity requirement. Now,
assume that p has previously found proofs of au-
thorization with the sequence of weights S =
(C1, w1), . . . , (Ci, wi), . . . , (Ci+n, wi+n) and has now
discovered a (Cs, ws) pair such that ws > wi, thereby
needing to be inserted before n + 1 terms in the
sequence S. We first note that replacing (Ci, wi) with
(Cs, w) will generate a sequence S′ that—when used
in conjunction with Equation 6—will produce a score
greater than that produced using S, since ws > wi

and all other terms are the same. By the inductive
hypothesis, (Ci, wi) can then be re-inserted before the
n final terms of S′ while still preserving monotonicity.

We have therefore shown that the class of scoring func-
tions score : P ×R × V → R represented by Equation 6
satisfies the deterministic, simple ordering, authorization rel-
evant, bounded, and monotonic properties, provided that the
scaling function ω : 2C × 22C → [0, 1] used to parameterize
the osets function is deterministic.

As was discussed earlier in this section, it is also possible
for the score function defined by Equation 6 to satisfy the
interpretation property. In particular, when using the trivial
scaling function ω( , ) = 1, a higher score implies that
more paths have been found. Similarly, when other notions
of robustness are encoded by representative ω functions,

r ∈ v.S

r /∈ v.S

Figure 2. One possible scenario in which hybrid authorization scoring
strategies could be beneficial. The oval denotes the security domain of the
principal carrying out the authorization scoring process.

score(p, A.R, v) > score(p′, A.R, v) implies that principal
p can produce more robust proofs of authorization that
principal p′, relative to the notion of robustness encoded
by the particular ω function used.

C. Hybrid Scoring Functions

Although the authorization scoring functions discussed in
Sections IV-A and IV-B are useful, they in fact represent two
opposite extremes in terms of the information available to
the principal scoring proofs of authorization. The recursive
scoring function described by Algorithm 1 assumes that this
principal has access only to credentials defined within her
domain, while the scoring function encoded by Equations 6–
9 assumes that incomplete information is discovered at
runtime. In many cases, the information available to the
principal scoring proofs of authorization is likely to fall
somewhere between these two points.

Figure 2 illustrates one such scenario. In this situation, the
principal (Alice) scoring proofs of authorization is assumed
to have complete knowledge of the set of roles vA.S within
the domain encoded in her view vA. However, she is also
able to use, e.g., credential chain discovery techniques to
discover credentials defining roles outside of her domain,
with the proviso that she may not be able to uncover every
credential defining a particular role. Given that she has
complete knowledge of not only the structure of policies
within her domain, but also of the semantics of the roles
involved in these policies, Alice may wish to fine-tune her
mechanism for scoring membership within these roles to
reflect her “insider knowledge.” For instance, she could
accomplish this by developing very specific weight vectors
for use in conjunction with Algorithm 1.

At the same time, rather than delegating the scoring of
membership in roles outside of vA.S to the parties defining
those roles—as in Algorithm 1—Alice may wish to leverage
her ability to carry out distributed credential discovery



processes. Given that the roles appearing on the “horizon”
of Alice’s domain appear within credentials defined in her
domain, she is likely to be aware of their semantics (e.g.,
that a BestBuy membership is easier to come by than a DoD
clearance). Although she may not be able to reliably interpret
every role used to prove membership in these horizon roles,
her knowledge of the horizon role itself may guide the choice
the particular ω function used reason about the robustness of
proofs of membership of that role. In such a scenario, Alice
may wish to sequentially compose the scoring functions
defined in Sections IV-A and IV-B.

A More General Problem. The above scenario is really
a special case of a more general question: Given two proof
scoring functions that satisfy the requirements set forth in
Section III-B, is it possible to combine these functions in
such a way that the composite function retains the desir-
able characteristics of the original functions? In order to
show that this is, indeed, the case, we must first formalize
the notions of horizon, sequential composition, and order-
preserving homomorphism.

Definition 7 (Horizon): The horizon of a view v is de-
fined as the set of resources horizon(v) = {r | ∃c ∈
ac(v.S) : r ∈ body(c) ∧ r /∈ v.S}. That is, horizon(v)
contains all resources mentioned in the body of policies
protecting resources in v.S that are not themselves in v.S.

Definition 8 (Sequential Composition): Assume that we
have a view v, a principal p, a resource r, and two au-
thorization scoring functions score1 and score2. We say
that score1 is sequentially composed with score2 if there
exists a resource r′ ∈ horizon(v), a principal p′, and a view
v′ such that score2(p′, r′, v′) is calculated when calculating
score1(p, r, v).

Definition 9 (Order-Preserving Homomorphism): Let
score1 : P × S × V → T1 and score2 : P × S × V → T2

be two authorization scoring functions. Let t1 ∈ T1 (resp.
t2 ∈ T2) be a threshold such that if score1(p, s, v) ≤ t1
(resp. score2(p, s, v) ≤ t2) then p cannot access
resource s. Similarly, if score1(p, s, v) > t1 (resp.
score2(p, s, v) > t2) then p can access resource s. A
function f : T2 → T1 is an order-preserving homomorphism
from T2 to T1 if and only if (i) t ≤ t2 → f(t) ≤ t1, (ii)
f(t2) = t1, and (iii) t > t2 → f(t) > t1.

In the discussion above, Alice desires to sequentially
compose the scoring function defined in Algorithm 1 with
the scoring function defined by Equations 6–9. Furthermore,
the identity function f(x) %→ x is trivially an order-
preserving homomorphism between the (identical) totally-
ordered ranges of these two functions. We now have the
necessary machinery to prove the following theorem:

Theorem 3: Let score1 : P × S × V → T1 and score2 :
P × S × V → T2 be two authorization scoring functions

that satisfy the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties. If there exists
an order-preserving homomorphism f between T2 and T1,
then the sequential composition of score1 with score2 is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Proof: Showing that the sequential composition of
score1 with score2 is deterministic and bounded is straight-
forward. Using the (deterministic) outputs of score2 as
inputs to the (deterministic) function score1 will clearly
result in a deterministic output. Furthermore, since f maps
the outputs of score2 into a range that can be considered
by score1 and score1 is bounded, then the sequential
composition of score1 with score2 is also bounded.

Since score2 is authorization relevant, by Definition 5 it is
not influenced by irrelevant credentials. As a result, score1

will not be indirectly influenced by irrelevant credentials
via score2. Since score1 is authorization relevant, it is not
influenced by irrelevant credentials that it considers directly.
This implies that the sequential composition of score1 with
score2 is also uninfluenced by irrelevant credentials, and
thus authorization relevant by Definition 5. By a similar
argument, the sequential composition of score1 with score2

is also monotonic: relevant credentials considered directly by
score1 or indirectly via score2 can only increase the output
of sequential composition of score1 with score2.

Finally, we must address the simple ordering property.
Note that the order-preserving homomorphism f allows
score1 to reliably use the value f(score2(p′, r′, v′)) to
determine whether P ′ is authorized to access the horizon
resource r′. Given that score2 is assumed to be deterministic
and to satisfy the simple ordering property, this interpretation
of f(score2(p′, r′, v′)) is guaranteed to be correct. Further-
more, since score1 is also assumed to be deterministic and
to satisfy the simple ordering property, the output value
score(p, r, v) that is computed using this information is
also guaranteed to correctly reflect P ’s ability to access the
resource r. As a result, the sequential composition of score1

with score2 satisfies the simple ordering property.

As a result of the above theorem, we immediately have
the following corollary stating that the two classes of autho-
rization scoring functions discussed earlier in this section
can be sequentially composed with one another:

Corollary 1: The result of sequentially composing the
authorization scoring functions defined by Algorithm 1 and
Equations 6–9 using the order-preserving homomorphism
f(x) %→ x is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

It is also interesting to note that Theorem 3 tells us that
principals can make use of any number of authorization



scoring functions to compute authorization scores for each
of the resources along the horizon of their domain. More
concretely, in the scenario described by Figure 2, Alice can
use a different authorization scoring function for each grey
node on the horizon of her domain:

Corollary 2: Let score : P × S × V → T1 be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Lastly, the ability to sequentially compose two authorization
scoring functions inductively gives us the ability to sequen-
tially compose any number of such functions:

Corollary 3: Let score1 : P×S×V → T1, . . . , scoren :
P × S × V → Tn be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let fn−1 : Tn →
Tn−1, . . . , f1 : T2 → T1 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing score1, . . . , scoren using
f1, . . . , fn−1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

V. SCORING NON-MEMBERS OF A ROLE

The ability to construct machine verifiable proofs of
authorization is one of the greatest strengths of trust manage-
ment approaches to authorization. However, the unyielding
reliance on these rigid proofs is also a considerable pitfall.
Since the proof construction process is guided by the policies
within the system, these policies must exhaustively cover
every possible scenario in which access to some resource
should be granted. As a result, these systems can fail during
emergencies or other unexpected circumstances simply be-
cause policy administrators did not consider some particular
case when writing the policies for their domain.

When this type of failure is manifest in the physical world,
policies are often overridden in accordance with judgement
calls made by qualified individuals. However, making these
types of decisions in an automated system can be tricky. The
ability to assess how close some unauthorized principal is to
being granted access to a resource could, to a limited extent,
help to automate this process. At the very least, this can
act as a primitive risk metric that helps classify users who
are “close” to satisfying a policy from those who are “far”
from satisfying the policy. This, in turn, could be useful for
helping to guide the decision making of a human auditor

who can be brought into the process. In this section, we
explore how these types of decisions can be made within
the context of the framework presented in this paper.

Scoring Construction. To describe one possible mecha-
nism for scoring the non-members of a particular role, we
present modifications to the authorization scoring function
described by Equations 6–9. Intuitively, the scoring con-
struction presented in this section builds upon the earlier
construction by also considering partial proofs. In order
to identify partial proofs, we need to first understand what
types of proofs may be produced for a particular role. We
formalize this notion through the use of canonical proofs:

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C from the universe of
all possible credentials such that F (p, A.R, C) = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

Given a canonical proof C for a principal p and a role
A.R, it is entirely possible that some subset C ′ of the
credentials in C are not actually defined within the system.
The existence of the canonical proof C simply implies that
if each credential c ∈ C is discovered, then p will be
granted access to A.R. We also note that, a user need not
be omniscient in order to materialize csets(p, A.R): this
set of canonical proofs is actually uncovered as a side-effect
of the RT credential chain discovery process [23]. Given
csets(p, A.R), we can then construct the set of all partial
proofs regarding p’s membership in A.R using the function
psets : P ×R× V → 2C × 2C defined below:

psets(p, A.R, v) = {(Cp, Cc) | Cc ∈ csets(p, A.R) (17)
∧Cp = v.C ∩ Cc ∧ Cp 4= Cc}

The above function computes all partial matches between
the set of credentials in v.C and the canonical proofs in
csets(p, A.R). Given this set of (partial, canonical) proof
pairs, we can now evaluate the quality of a partial proof. To
do this, we introduce the functions leaves : 2C → 2C and
ψ : 2C × 2C → [0, 1]:

leaves(C) = {c ∈ C | c of the form A.R ← p} (18)

ψ(Cp, Cc) =
|leaves(Cp ∩ Cc)|

|leaves(Cc)|
(19)

The leaves function extracts the simple membership
credentials from a set C of credentials. The ψ function
then calculates the quality of a partial proof by calculating
the percentage of the simple membership credentials in
the corresponding canonical proof that are contained in the
partial proof. To see why credentials other than simple mem-
berships are ignored by ψ, consider the chain of delegation
A.R ← B1.R1 ← · · · ← Bn.Rn. The canonical proof for
principal p in role A.R would contain n simple containment



credentials and one simple membership credential (i.e., the
credential Bn.Rn ← p). Note that of these n+1 credentials,
only one is specific to p. If n is large, then p would appear
“close” to being a member of A.R even though she does
not meet any of the requirements for membership. The ψ
function eliminates this type of bias.

If we let opsets(p, A.R, v) represent the set
{(w, Cp, Cc) | (Cp, Cc) ∈ psets(p, A.R, v) ∧ w =
ψ(Cp, Cc)} sorted in decreasing order of wi, we can then
define an authorization scoring function capable of scoring
non-members of roles:

φ(x) =
{

1 if x ≥ 1
0 otherwise (20)

score(p, A.R, v) = φ(|sets(v.C)|) (21)

+α
∑

(wi,Ci)∈osetsω(v.C,A.R)

wi ·
1
2

i

+β
∑

(w,Cp,Cc)i∈opsets(p,A.R,v)

w · 1
2

i

Under the constraint that α + β = 1, the range of the
above scoring function is [0, 2). Furthermore, this function
has the properties that (i) score(p, A.R, v) ≥ 1 ↔ P is a
member of A.R and (ii) score(p, A.R, v) < 1 ↔ P is not
a member of A.R.

Example. To briefly demonstrate the class of scoring
functions defined in this section, consider the following set
of RT 0 policy credentials:

Univ.auth ← CS.student ∩ACM.member (22)
Univ.auth ← Univ.techDept.gradStudent (23)

Univ.techDep ← CS (24)
CS.student ← CS.ugrad (25)

CS.student ← CS.gradStudent (26)
CS.ugrad ← Bob (27)

In this scenario, it is clear that Bob cannot prove member-
ship in the Univ.auth role. However, there exists one canon-
ical proof that overlaps with the simple memberships that
Bob possesses: Cc = {(22), (25), (27), ACM.member ←
Bob}. Bob’s corresponding partial proof is Cp =
{(22), (25), (27)}. Since ψ(Cp, Cc) = 1

2 , we have that
score(Bob, Univ.auth, v) = β

4 . Due to the fact that β ≤ 1,
Bob’s score for the role Univ.auth falls below the mem-
bership threshold of 1.

Properties. The class of scoring functions described in
this section possesses the same properties as each of the
classes of scoring functions described in Section IV. Namely,
we have the following theorem:

Theorem 4: The class of non-member scoring functions
score : P × R × V → R represented by Equations 17–
21 satisfies the deterministic, simple ordering, authorization

relevant, bounded, and monotonic properties, provided that
the scaling function ω : 2C × 22C → [0, 1] used to
parameterize the osets function is deterministic.

We omit the details of the proof of Theorem 4, as it
essentially mirrors the proof of Theorem 2. We further
note that the authorization scoring function described by
Algorithm 1 can also be modified to score the non-members
of a particular role. We do not discuss these modifications,
however, as they present little novelty beyond that which has
already been discussed in this section.

VI. DISCUSSION

This work is a first step towards quantitative analysis of
trust management proofs of authorization. Many interesting
directions can be explored based on the general framework
and the current design of authorization scoring functions.

Extensions to Richer Policy Models. For simplicity, our
discussion so far is based on RT0. However, our general
framework can easily accommodate other trust models with
richer structures and semantics. One natural extension is to
support RT 1, which supports parameterized views, or CTM
which combines credential-based trust and reputation-based
trust [20]. Clearly, parameterized views and reputations
greatly expand the design space of authorization scoring
functions. In particular, besides credential structures, the
strength of a principal’s proofs of authorization may be
further refined in terms of role attributes and reputations. We
may also consider a variety of aggregations of role attributes
when considering disjoint minimal proofs.

Another important extension is to consider other types of
auxiliary information besides weights of roles. One interest-
ing type of auxiliary information is the correlation between
roles. For example, IEEE members and ACM members
might be correlated; i.e., a member of IEEE is more likely
to be a member of ACM, and vice versa. If this relationship
is captured in A, then an IEEE member might be partially
trusted to access resources that are explicitly accessible to
ACM members. Essentially, these types of correlations help
us better model risks when temporarily granting access to
unauthorized principals.

Evaluating Top-k Style Queries. In this paper we focus
on the semantics of authorization scoring functions. One
important issue is to efficiently evaluate these functions.
This is particularly so when answering top-k style queries.
The naive approach, which first computes the authorization
score of each principal and then selects k principals with the
highest scores, is unlikely to be efficient in large decentral-
ized systems. Though top-k queries have been extensively
studied in database research (for a survey see [13]), it is
unclear whether existing database techniques can be applied
in our problem, as authorization scoring functions tend to be
much more complicated than simple linear combination of
multiple attributes. Also, as most trust management systems



are decentralized in nature, how to divide the load of query
evaluation among multiple domains may have a significantly
impact on efficiency. It would be interesting to investigate
the extent to which distributed query answering techniques
can be adopted for trust management queries.

VII. RELATED WORK

Digital credentials are one of the main techniques for ac-
cess control in cross-domain collaboration and resource shar-
ing. A large amount of work has been conducted in the areas
of trust management [3]–[5], [22], trust negotiation [21],
[28], [31], [32], and distributed proofs [2], [15], [24]. Most
existing work focuses on compliance checking, i.e., given
a principal and a set of credentials, determine whether that
principal is authorized to access a resource. Researchers have
also investigated security properties of trust management
policies such as safety, availability, and liveness. None of
the above work takes a quantitative approach to evaluating
the strength of a principal’s proofs of authorization.

Yao et al. [30] proposed an interesting point-based trust
policy model, where each credential is assigned some num-
ber of points. To access a resource, one has to reveal a
set of credentials whose sum of points is higher than a
certain threshold. Yao et al. focus on privacy-preserving
compliance checking of such policies through secure multi-
party computation. By contrast, this paper aims to establish
a formal framework to support a variety of inferences
regarding the strength of a principal’s proofs of authorization
above and beyond simple compliance checking. Quantitative
trust establishment is typically discussed in the context
of reputation-based trust management systems (e.g., [16],
[17], [29]). These systems develop computational models
of reputation based on feedbacks issued between entities.
Reputation models often involve different forms of aggrega-
tion of feedbacks, which are fundamentally different from
credential-based trust that is the focus of this paper.

Risk-based access control [1], [8], [11], [12], [14], [27],
[33] has recently been proposed as a mechanism for pro-
viding flexible authorization in complex and unpredictable
environments. The key idea is to maximize productivity
while bounding risk instead of eliminating risk. Some work
quantifies risk through reputations, while others manually
allocate “risk tokens” to principals that can later be used to
exchange for access rights. On the other hand, the techniques
presented in this paper can be used to automate the risk
assessment process for unauthorized users, and provide
robustness analysis for authorized principals.

Inferences over uncertain information have long been
studied in a variety of application contexts. Techniques such
as Bayesian networks [6], fuzzy logic [9] and Dempster-
Shafer theory [10], [26] seek to determine the strength of a
proposition based on uncertain facts and logical inferences.
In this paper, authorization scoring functions measure the
strength of proofs of authorization using completely certain

information. That is, all credentials considered are digitally
signed and thus known to be true without any level of
uncertainty. Even for unknown information (e.g., credentials
outside of a view) our framework relies on either inquiring
a domain that can answer queries about some credentials
or dynamically discovering credentials. In either case, the
obtained information is certain, rather than probabilistic.

VIII. CONCLUSIONS

In this paper, we argue that the often-ignored structural
information gathered during the construction of proofs of
authorization has a variety of uses in user-to-user and user-
to-ideal analysis tasks. To this end, we develop a framework
for reasoning about the quantitative analysis of trust manage-
ment proofs of authorization, and articulate sets of necessary
requirements and desirable features for authorization scoring
functions. Within the context of the RT 0 policy language,
we develop authorization scoring functions under a variety
of information availability assumptions and prove that these
functions meet all of the aforementioned requirements. We
further identify the conditions under which authorization
scoring functions can be safely composed, and show that
the functions developed in this paper can be composed
with one another. Lastly, we extend our techniques to score
not only complete proofs of authorization, but also the
incomplete proofs generated by unauthorized principals. The
score computed for incomplete proofs of authorization acts
as a primitive risk metric that can be used to automate
and/or guide decision making processes during crises or
other unexpected circumstances.
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