
Effective Trust Management Through a Hybrid Logical and
Relational Approach

Adam J. Lee†
adamlee@cs.pitt.edu

Ting Yu‡

yu@csc.ncsu.edu
Yann Le Gall†
ygl2@pitt.edu

†Department of Computer Science, University of Pittsburgh
‡Department of Computer Science, North Carolina State University

ABSTRACT
Despite a plethora of recent research regarding trust man-
agement approaches to authorization, relatively little atten-
tion has been given to exactly how these technologies can be
effectively deployed. In this paper, we investigate one way
in which well-established logical trust management systems
described in the literature can be deployed within enterprise
environments. Specifically, we develop a framework within
which logical trust management policies can be managed
using a relational DBMS. We describe a correct and com-
plete procedure for compiling CTM credentials into dynamic
views within a database, and show how the resulting system
can be used to perform role membership checks or to enu-
merate the members of a given role. We then propose a
hybrid algorithm that leverages the logical ruleset and the
underlying DBMS to efficiently enumerate the capabilities
ascribed to a given user. We also present an evaluation of
a prototype implementation of our framework that demon-
strates the practicality of our approach. As CTM extends
the RT family of trust management languages—which are
representative of a large class of Datalog-based trust man-
agement systems—our work is likely generalizable to other
trust management approaches.

Categories and Subject Descriptors: D.4.6 [Operating
Systems]: Security and Protection—access controls, authen-
tication; K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms: Security

Keywords: Credentials, databases, policy, reputation, trust

1. INTRODUCTION
Today’s organizations bear little resemblance to the highly

centralized monoliths of old, having instead embraced the
pervasiveness and reliability of the Internet to become ever
more distributed entities. For example, it is the norm for an
organization to be comprised of many logically and phys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’10 April 13–16, 2010, Beijing, China.
Copyright 2010 ACM 978-1-60558-936-7 ...$10.00.

ically decentralized divisions acting autonomously, compa-
nies are increasingly forming virtual organizations to carry
out a range of short- and long-term goals, and the rise of
Web 2.0 has involved users in content development and dis-
semination like never before. Unfortunately, legacy identity-
based access control technologies are ill-suited to meet the
needs of these emerging dynamic organizations.

As a result, the past decade has seen much research on
trust management [2,3,5,20], trust negotiation [19,27,29,30],
and distributed proof construction [1, 12, 15, 24] approaches
to authorization. More recently, researchers have begun to
combine these types of systems with the decentralized rep-
utation and recommendation systems used in P2P and so-
cial networks [4, 7, 9, 10, 18] to take a more comprehensive
approach to managing trust. These types of trust manage-
ment systems allow administrators to manage and query the
protection state of a distributed system in a manner that
leverages—rather than works around—the decentralized na-
ture of the system.

In order to be a viable solution for emerging networked
environments, a trust management system must be capa-
ble of efficiently answering queries over the protection state
of the environment, even when handling policies with rich
structures and complex reputation functions. Existing re-
search [1,2,6,8,17,23] has done an admirable job of address-
ing the proof of compliance question (Can user u satisfy pol-
icy p?), but relatively little attention has been given to the
policy satisfaction question (Which users can satisfy the pol-
icy p?) and the capability question (What permissions does
user u have?). The latter questions are intrinsically difficult
to solve in many trust management systems, but are neces-
sary if administrators are to fully understand the protection
state of the system. Furthermore, efficiency is not the only
concern when considering the deployment of trust manage-
ment systems in commercial environments: these systems
must also be deployable on top of existing IT infrastruc-
tures. To this end, De Capitani Di Vimercati et al. show
that a bare-bones trust management system can be imple-
mented entirely within a DBMS [11]. While this is a step in
the right direction, it says little about the adoption of the
myriad logical trust management systems proposed in the
research literature.

In this paper, we further pursue this line of work by de-
veloping an implementation of the composite trust manage-
ment system CTM [18] that is capable of efficiently answer-
ing proof of compliance, policy satisfaction, and capability
queries by leveraging both logical inference, as well as an
open-source DBMS substrate. CTM extends the RT fam-

ily of role-based logical trust management systems [20] with
support for aggregate horizontal trust calculations (e.g., rep-
utation functions or QoS metrics). Because RT—and there-
fore CTM—is representative of a broad class of logical trust
management systems and has been well-studied in the re-
search literature, our work takes a step beyond [11] to show
that we need not resort to special-purpose solutions to re-
alize the benefits of trust management within commercial
IT infrastructures. In addressing this challenge, this paper
makes the following contributions:

• We describe the design of a framework for trust manage-
ment policy management built upon a commercial rela-
tional DBMS substrate. This framework automatically
synchronizes an organization’s logical policy ruleset with
the underlying database, and uses these complimentary
views of an organization’s protection state to efficiently
answer many types of trust management queries.

• Within the context of this framework, we describe a cor-
rect and complete compilation procedure for transform-
ing a set of CTM policy credentials into a collection of
dynamic views over a standard relational database. The
resulting database provides an efficient mechanism for an-
swering proof of compliance and policy satisfaction queries.

• We present a novel algorithm for answering capability re-
view queries over a composite trust management system;
i.e., given a particular user, enumerate the set of rights
possessed by this user. Our algorithm takes advantage of
our framework’s logical rule set to forward-chain from the
user’s set of base rights whenever possible, while simul-
taneously leveraging the database’s ability to quickly ag-
gregate horizontal trust assessments and perform complex
joins over role memberships to answer more difficult mem-
bership queries. This hybrid forward-chaining/top-down
processing approach increases the efficiency with which
capability review queries can be answered.

• To assess the efficiency of our framework, we present a
comprehensive evaluation of a prototype implementation.
In particular, we describe several microbenchmarks that
gauge the core costs involved with processing queries over
basic trust management policies. We then discuss the re-
sults of evaluating a larger workload that simulates the
use of our framework within the context of a set of hier-
archically organized virtual organizations.

When viewed collectively, the above contributions provide
further insight into questions surrounding the deployment of
trust management systems. First, we demonstrate that even
complex CTM policies can be evaluated efficiently in central-
ized systems, a challenge that was left as an open problem
in [18]. Second, our framework shows that existing commer-
cial technologies form a viable substrate for the realization
of feature-rich trust management in complex systems.

The rest of this paper is organized as follows. Section 2
provides a brief introduction to the CTM composite trust
management policy language, and then discuss the types of
queries that a trust management framework should be capa-
ble of efficiently answering. In Section 3, we describe the de-
sign of a centralized framework for processing CTM queries
using off-the-shelf relational DBMS technologies. Section 4
describes how this framework can be used to efficiently pro-
cess trust management queries. In particular, we present a
compilation procedure for transforming a collection of CTM

policy credentials into a set of dynamic views over a re-
lational database, and describe a novel hybrid algorithm
for processing capability review queries over trust manage-
ment policies. In Section 5 we present a comprehensive per-
formance evaluation of our framework. Finally, Section 6
presents an overview of related research efforts, while Sec-
tion 7 discusses our conclusions and promising directions for
future research.

2. BACKGROUND
To make our discussion concrete, in the rest of this pa-

per we give the specific design of the framework to sup-
port CTM, an extension of the RT family of logical trust
management languages. One distinguished feature of CTM
is its support for aggregate trust evaluation (e.g., reputa-
tion functions) and the composition of credential-based and
reputation-based trust. This feature, on the one hand, sig-
nificantly improves the expressiveness of trust management
languages. On the other hand, it imposes challenges to effi-
cient trust policy evaluation. In this section, we give a brief
overview of CTM, and discuss the types of queries that we
expect a trust policy evaluation engine to answer efficiently.

2.1 Composite Trust Management
Two types of trust affect human interactions in a society:

vertical trust and horizontal trust. Vertical trust is a trust
relationship between individuals and institutions or author-
ities (often in the form of credentials). Horizontal trust cap-
tures the trust that can be inferred from the observations
and opinions of other peers (often in the form of reputa-
tions aggregated from individual’s experience). These two
types of trust are complementary and often used in concert
during one’s decision making. Lee and Yu proposed CTM,
a composite trust management language to support flexi-
ble composition of vertical and horizontal trust [18]. The
design of CTM is built on RT with extensions to support
constraints on reputation evaluations.

As in RT and many other trust management languages,
CTM uses the concept of role membership to define a set-
based semantics for policies. Intuitively, a role defines a set
of principals possessing the same properties, while a policy
defines a set of role memberships that must be possessed by
an authorized principal. Like in RT , principals in CTM are
identified by means of identity certificates. A role is defined
simply as strings identifying the name of the role. Policy
statements are expressed as one or more of these role defi-
nitions and are encoded as role definition credentials signed
by the author of the role definition. CTM supports the fol-
lowing four basic types of role definitions in RT .

Simple Member. A role definition of the form KA.R ←
KD encodes the fact that principal KA considers princi-
pal KD to be a member of the role KA.R. For example,
StateU.student ← Alice says that Alice belongs to the role
StateU.student.

Simple Containment. A role definition of the form
KA.R ← KB .R1 encodes the fact that principal KA defines
the role KA.R to contain all members of the role KB .R1,
which is defined by principal KB . For example,
eBook.preferred customer ← StateU.student says that Sta-
teU students are also preferred customers of eBook, an on-
line book store. This is a typical way to specify delegation
in decentralized systems.

Linking Containment. A role definition of the form
KA.R ← KA.R1.R2 is called a linked role. This defines
the members of KA.R to contain all members of KB .R2

for each KB that is a member of KA.R1. For example,
eBook.preferred customer ← ABU.accredited univ.student
says that any student of a university that is accredited by
ABU (Accreditation Board for Universities) is a preferred
customer of eBook.

Intersection Containment. A role definition of the form
KA.R ← KB1 .R1 ∩ · · · ∩ KBn .Rn defines KA.R to contain
the principals who are members of each role KBi .Ri where
1 ≤ i ≤ n. For example, eBook.preferred customer ←
StateU.student∩ACM.member says that an StateU student
who is also a member of ACM is a preferred customer of
eBook.

To support horizontal trust generally, CTM assumes prin-
cipals interact through a series of transactions. Feedbacks
are issued by involved principals after a transaction com-
pletes. A feedback may contain a variety of attributes, in-
cluding the issuer (i.e., the principal who issues the feed-
back), the signer (i.e., the principal who certifies the feed-
back), the subject (i.e., about whose behavior the feedback
applies to), a single rating, and other transaction-specific
properties. A horizontal trust evaluation thus can be mod-
eled as the application of a trust function f : 2F ×P ×P →
R, where F is a set of feedbacks about transactions among
principals in a system, P is the set of principals, and R
is the reputation domain (i.e., the possible trust values for
reputation-based trust). Intuitively, given a principal A and
B, and a set of feedbacks F , f(F, A, B) returns A’s trust
assessment of B based on some evidence, i.e., the set of
feedbacks in F . Here A and B are called the source and the
target of a reputation evaluation respectively.

Given the above formalism, CTM allows a domain to de-
fine roles in terms of reputation evaluation. Note that a
domain may impose flexible constraints on the evaluation
of a reputation function, including the set of feedbacks fed
to the reputation function. Specifically, besides the above
four types of roles as defined in RT , CTM further supports
the concept of aggregate containment roles. For ease of pre-
sentation, we consider the following simplified definition of
aggregate containment:

Aggregate Containment. Let & represent a comparison
operator (e.g., <,≤, =,≥, >, or (=). The role definition
KA.R ← KB .f(issuer = Ki.Ri, output & co) defines the role
KA.R to contain all principals whose horizontal trust level
satisfies the constraint output&co after principal KB invokes
the horizontal trust assessment function f when consider-
ing feedback reports issued by principals in the role Ki.Ri.
For example, Alice.R1 ← Alice.f(issuer = Alice.Friend,
output ≥ 0.8) defines that a principal B is a member of
Alice.R1 if Alice’s trust evaluation of B using the function
f is over 0.8, when considering feedback reports issued by
Alice’s friends.

As is the case for the four basic types of roles in RT , CTM
has a well-defined set-theoretic semantics for aggregate con-
tainment roles. Therefore, they can be flexibly combined
with other types of roles, which enables arbitrary composi-
tion of vertical and horizontal trust. The above example in
fact shows how other roles are used in the definition of an ag-
gregate containment role. Similarly, aggregate containment

roles may also be used in the definition of vertical roles. The
full extent of this potential to arbitrarily compose horizontal
and vertical trust is discussed in detail in [18]; as such we
do not elaborate upon it further in this paper

2.2 Trust Query Types
Many security vulnerabilities in information systems are

caused by the misconfiguration of security policies, which
often results in either giving excessive or insufficient privi-
leges for principals to carry their tasks. Privilege review is
one of the key steps to discover and fix such configuration
mistakes. It is in particular important to decentralized trust
management because one domain’s trust decision may affect
privileges of many principals globally. A trust management
system should not only have the capability to answer access
control decisions, but also have efficient support for various
privilege review requirements.

In this paper we consider the support for the following
three useful types of privilege review queries against a trust
management system.

Proof of compliance query. Determine whether a prin-
cipal is a member of a role. Such queries often correspond
to access control decisions when a principal requests access
to certain resources. They are frequently issued and should
be answered not only correctly but very efficiently.

Role membership query. Determine all the members of
a role. Such queries are useful to check to what extend cer-
tain privileges have been propagated in a system. They are
also often needed for “what-if” type of analysis to determine
the effect of a change of policy.

Capability query. Given a principal, determine all the roles
of which the principal is a member. Such queries are useful
to check whether a user possess excessive privileges.

Though role membership queries and capability queries
do not happen as frequently as proof of compliance queries,
it is still desirable to answer them with reasonable efficiency.
Similar to the implementation of the access matrix in tradi-
tional access control, how role information is maintained in
a trust management system greatly affects the efficiency of
query answering.

3. THE DESIGN OF A TRUST EVALUATION
ENGINE

A trust evaluation engine is essentially a reference monitor
that determines whether a principal possesses the necessary
privileges to perform certain actions or access certain re-
sources. In CTM, as privileges are implicitly wrapped as
roles, a trust evaluation engine ensures the correct mapping
between users and roles. It also helps to answer policy anal-
ysis queries as mentioned in the previous section.

Instead of developing a trust evaluation engine as a stand
alone software system from scratch, in this paper we advo-
cate to build such a system on top of commodity relational
database management systems (DBMSs), which we believe
brings at least the following benefits:

1. Easy deployment. DBMSs are arguably one of the
most widely deployed and managed software systems in
enterprises, organizations, and governments. By building
on top of DBMSs, a trust evaluation engine can easily be
integrated with existing IT infrastructures.

DBMS

Policy
Maintenance

Module

Trust
policy

repository

policy update
requests

view update queries

Trust Query
Evaluation

Module

trust queries

DB query DB query
results

trust query
results

Trust
Management

Front End

Policy
Evaluation
Back End

Policy
Analysis
Module

Figure 1: The design of a trust evaluation engine built on
top of database management systems

2. Strong support from DBMSs. Many key features of
trust management systems can be mapped to DBMS con-
cepts in a straightforward manner. For example, simple
membership credentials for the same role can be naturally
grouped together into a relation (table) in a database.
Further, if parameters are involved for roles, they can be
easily added as attributes of a relation.

Trust management systems can also directly benefit from
the mature data processing techniques used in DBMSs.
For example, DBMSs are optimized to handle compli-
cated aggregations over large scale data sets, which is
ideal for supporting horizontal trust evaluation (e.g., rep-
utation calculations). Furthermore, if a horizontal trust
calculation involves an aggregation operation that is not
supported natively, most DBMSs allow these types of
functions to be easily integrated via user-defined aggre-
gation functions.

DBMSs provide rich indexing techniques that can be read-
ily utilized to boost the performance of trust query an-
swering. Further, by treating each trust query and trust
policy update as a transaction, a DBMS guarantees their
atomic execution, which ensures the correctness of trust
queries, as well as the overall consistency of the system
view used to evaluate the query [16], even when multiple
queries and updates are processed concurrently.

3. Lightweight trust evaluation engine. Because of
strong support from DBMSs, a large portion of the trust
query answering can be shifted to the DBMSs. The ac-
tual trust evaluation engine itself thus is lightweight, and
easily verified for correctness.

In [11], De Capitani Di Vimercati et al. proposed to use a
DBMS as a repository of credentials, and designed a SQL-
like language to store and retrieve credentials to and from
a credential database. The goal is to have a trust manage-
ment system completely implemented in a DBMS. However,
we argue that not all the trust management functionalities
are suitable to be implemented in DBMSs. For example, a
security officer often needs to perform policy analysis to ver-
ify that a trust policy preserves certain security properties
such as safety and availability. On the one hand, these types
of analyses are difficult to perform purely by a DBMS. On

the other hand, using a DBMS as only a credential store does
not fully utilize its data processing power. In this paper, we
propose to strike a balance between these two extremes by
using a DBMS as a back-end processing system to facilitate
the evaluation of trust queries.

Figure 1 shows a high-level view of our proposed system
architecture, which is composed of two distinct layers: a
logical trust management front end and a relational query
processing back end. The trust management front end is the
main interface through which users interact with the trust
management system. This layer is comprised of three mod-
ules: the policy maintenance, the policy analysis, and the
query evaluation modules. The policy maintenance module
allows administrators to manage the logical ruleset parame-
terizing the system, and is responsible for synchronizing with
the relational back end. The trust query evaluation module
is used to process the types of trust queries described in
Section 2.2 by interacting with the logical ruleset and the
relational back end. Lastly, the policy analysis module is
responsible for all other logical policy analysis tasks (e.g.,
safety analysis [21]).

The relational back-end database does not store copies
of the logical credentials themselves, but rather manages
auxiliary information corresponding to an interpretation of
those credentials within the context of trust query process-
ing. Specifically, it maintains two tables—base_roles and
reports—that hold role memberships defined by simple mem-
bership credentials (A.R ← B) and feedback reports issued
by users in the system, respectively. The key insight that
we leverage is that all other forms of CTM credentials repre-
sent, in essence, queries that define one role in terms of other
roles in the system. To this end, the policy management
module in the logical front end compiles these credentials
into dynamic views in the relational back end that select
the members of a given role by querying the membership
sets of other roles. As we will see in the next section, such a
relational back end greatly simplifies the processing of proof
of compliance and role membership queries, while a com-
bined logical/relational approach can be used to efficiently
answer capability queries.

Note that the relational query processing back end does
not require any change to the DBMS. In other words, any
commodity DBMS can be used directly with the logical trust
management front end to form a trust policy evaluation en-
gine.

4. QUERY PROCESSING
In this section, we elaborate on how our framework can

be used to answer each of the three query types described
in Section 2.2. We first describe a process through which
CTM credentials can be compiled into dynamic views in a
DBMS, which facilitates efficient processing of proof of com-
pliance and role membership queries. We then present the
details of a hybrid algorithm that uses forward chaining and
top-down query processing to efficiently execute capability
queries. For simplicity, in this paper we do not consider
circular dependent roles; such types of role hierarchy are
extremely uncommon in practice.

4.1 Compiling CTM Credentials
As was described previously, the base_roles and reports

tables of the DBMS are populated with the role member-
ships described by simple membership credentials and the

CREATE TABLE base_roles(
owner varchar(30), # Pricipal defining the role
role varchar(30), # Name of the role being define
subject varchar(30) # Principal defined as a role member

);

CREATE TABLE reports(
issuer varchar(30), # Issuer of the feedback report
target varchar(30), # Target of the feedback report
rating double, # Single rating value
date date # Date that the report was issued

};

Figure 2: Schemas defining the base_roles and reports
tables.

feedback reports issued by principals in the system, respec-
tively. To simplify the presentation in this section, we as-
sume the use of only unparameterized CTM credentials and
feedback reports consisting of a single value. As a result,
the base_roles and reports tables can be defined by the
schemas shown in Figure 2. For a simple membership cre-
dential A.R ← B, a row will be entered into the base_roles
table identifying A as the role owner, R as the role, and
B as a subject. Similarly, if principal A generates a feed-
back report about principal B, the corresponding row in the
reports table will identify A as the issuer of the feedback
report and B as the target. Section 4.2 explains how the
techniques detailed in this section can be extended to sup-
port parameterized CTM or RT1 credentials.

We now describe how the set C of intersection contain-
ment, linking containment, and aggregate containment cre-
dentials can be compiled into a collection of dynamic views
defined over these base tables, as well as other views de-
fined during the compilation procedure. In our discussion,
we treat a simple containment credential as an intersection
containment with only one role in its body. We first make
two assumptions:

• The logical component of our framework stores the set
C of CTM credentials as an ordered list, cList . This
list of credentials is arranged such that for any two
credentials ci and cj , cj can be defined in terms of ci if
and only if j > i. That is, cList is arranged such that
if one role depends on other roles, it is defined after its
dependencies are defined.

• We have access to a data structure roleManagers :
String → 2P that maps a role name to the set of prin-
cipals defining this role. For instance, if AliceInc and
BobCorp both define an employee role, roleManagers
will map the role employee to the set of principals
{AliceInc, BobCorp}.

Given the cList = 〈c1, ..., cn〉 and roleManagers data struc-
tures, the compilation of CTM credentials into dynamic views
proceeds according to the following O(n) procedure:

1. Create a map viewDefs : String → String . This structure
will be used during the compilation process to associate a
role name (e.g., A.R) with the SQL view definition com-
mand that will eventually be inserted into the database.

2. For each distinct role A.R defined in the base_roles ta-
ble, generate the following SQL view definition, execute
it, and associate it with A.R in the viewDefs map:

CREATE OR REPLACE VIEW A_R(subject) AS
SELECT subject FROM base_roles WHERE owner=‘A’ AND role=‘R’

This view definition ensures that any query to the view
A_R will consider the role memberships asserted using
simple membership credentials.

3. For each role definition credential ci:

• If ci is an intersection containment credential of the
form A.R ← B1.R1 ∩ · · · ∩ Bn.Rn, generate the fol-
lowing SQL selection statement si:

SELECT subject FROM B1_R1, ..., Bn_Rn WHERE
B1_R1.subject = B2_R2.subject AND
...
B1_R1.subject = Bn_Rn.subject

This selection gathers all principals who are mem-
bers of each role B1.R1, . . . , Bn.Rn.

• If ci is a linking containment credential of the form
A.R ← A.R1.R2, use the roleManagers map to look
up the set {B1, . . . , Bn} of principals defining an R2

role. Then, generate the following SQL statement vi

defining the intermediate view R2:

CREATE OR REPLACE VIEW R2(owner, subject) AS
SELECT ‘B1’ AS owner, subject FROM B1_R2 UNION
...
SELECT ‘Bn’ AS owner, subject FROM Bn_R2;

This intermediate view can then be used to define
the following SQL selection statement si:

SELECT DISTINCT R2.subject FROM A_R1, R2 WHERE
A_R1.subject = R2.owner

Essentially, this selection finds all members of X.R2

such that X is a member of A.R1. As was discussed
in Section 2.1, this is exactly the semantics of the
role definition A.R ← A.R1.R2.

• If ci is an aggregate containment credential of the
form A.R ← B1.f(issuer = B2.R2, output ≥ c),
generate the following SQL selection si:

SELECT target FROM reports, B2_R2
WHERE reports.issuer = B2_R2.subject
GROUP BY target HAVING f(rating) > c

The query si uses the function f—which is executed
as a stored procedure within the DBMS—to aggre-
gate the feedback reports issued about a particular
target user, provided that these reports were issued
by a member of the role B2.R2. Note that only users
whose aggregate feedback score is above the thresh-
old c are eventually selected.

At this point, look up definition di in the viewDefs map
that corresponds to the role A.R. If di is undefined, set
di = CREATE OR REPLACE VIEW A_R(subject) AS ⊕ si,
where ⊕ denotes string concatenation. Otherwise, set
di = di ⊕ UNION ⊕ si. If a temporary view command
vi was generated, set di = vi ⊕ di. Finally, execute the
updated command di and store it back in the viewDefs
map.

Intuitively, the above process provides a bottom-up means
of compiling CTM credentials into a relational database rep-
resentation. Since simple membership credentials and indi-
vidual feedback reports have no dependencies on any other
data items, they can be inserted into base_roles and re-
ports tables straight away. After this basic level of data

CREATE OR REPLACE VIEW AliceInc_employee(subject) AS
SELECT subject FROM base_roles WHERE owner=‘AliceInc’
AND role=‘employee’;

CREATE OR REPLACE VIEW BobCorp_employee(subject) AS
SELECT subject FROM base_roles WHERE owner=‘BobCorp’
AND role=‘employee’;

CREATE OR REPLACE VIEW BBB_member(subject) AS
SELECT subject FROM base_roles WHERE owner=‘BBB’
AND role=‘member’;

CREATE OR REPLACE VIEW ACM_member(subject) AS
SELECT subject FROM base_roles WHERE owner=‘ACM’
AND role=‘member’;

CREATE OR REPLACE VIEW BBB_goodRep(subject) AS
SELECT target FROM reports, ACM_member
WHERE reports.issuer = ACM_member.subject
GROUP BY target HAVING rep(rating) > c;

CREATE OR REPLACE VIEW ePub_trusted(subject) AS
SELECT subject FROM BBB_member, BBB_goodRep WHERE
BBB_member.subject = BBB_goodRep.subject;

CREATE OR REPLACE VIEW employee AS
SELECT ‘AliceInc’ AS owner, subject FROM AliceInc_employee UNION
SELECT ‘BobCorp’ AS owner, subject FROM BobCorp_employee;

CREATE OR REPLACE VIEW ePub_discount AS
SELECT DISTINCT employee.subject FROM ePub_trusted, employee
WHERE ePub_trusted.subject = employee.owner;

Figure 3: A compiled version of the CTM policy described
in Section 4.1

has been entered into the database, Step 2 generates a new
view A_R for each role A.R described by the base_roles ta-
ble. Step 3 compiles each credential in cList into an SQL
selection over previously-defined views. The sort invariant
on cList ensures that only references to previously-defined
views are required as view definitions are inserted or up-
dated. As a concrete example, consider the following CTM
credentials:

BBB.goodRep ← BBB.rep(issuer = ACM.member,

output > 0.9)

ePub.trusted ← BBB.member ∩BBB.goodRep

ePub.discount ← ePub.trusted.employee

This policy asserts that ePub is willing to give a discount
to employees of trusted organizations. ePub considers an
organization trusted if the organization is a member of the
BBB and is rated highly by members of the ACM. Assuming
that AliceInc and BobCorp each define an employee role in
the server’s base_roles table, Figure 3 describes how the
above collection of CTM credentials can be compiled and
represented in a DBMS.

Given this relational representation of a set of CTM cre-
dentials, answering the proof of compliance and role mem-
bership queries becomes trivial. Specifically, determining
all members of a role A.R is a simple matter of executing
the query SELECT subject FROM A_R. Similarly, determin-
ing whether Alice is a member of the role A.R can be an-
swered by executing the query SELECT subject FROM A_R
WHERE subject=‘Alice’; a non-zero recordset indicates that
Alice is a member of A.R, while an empty recordset indicates
that she is not. This leads us to the following theorem:

Theorem 1 (Correctness & Completeness). Let
cList be an ordered collection of CTM credentials, and let

DB be the database resulting from compiling cList using the
above process. DB finds the set U of users belonging to a
role A.R if and only if there exist CTM proofs of compliance
demonstrating that u is a member of A.R for each u ∈ U .

Theorem 1 can be proved using a relatively straightfor-
ward, albeit lengthy, structural induction that demonstrates
a 1-to-1 correspondence between the views generated by our
compilation procedure and the set theoretic semantics of
CTM credentials. In the interest of space, we omit the de-
tails of the proof in this paper.

4.2 Supporting Parameterized Roles
We now provide a brief intuition for how the compilation

procedure described in Section 4.1 can be adapted to support
parameterized CTM role definitions. First, we assume that
the maximum number of parameters to any given role can
be bounded by some integer n. Then, the schema for the
base_roles table can be defined as follows:

CREATE TABLE base_roles(
owner varchar(30), # Pricipal defining the role
role varchar(30), # Name of the role being define
subject varchar(30), # Principal defined as a role member
int1 int, # Integer parameter 1
...
intn int, # Integer parameter n
str1 varchar(30), # String parameter 1
...
strn varchar(30), # String parameter n
double1 double, # Double parameter 1
...
doublen double # Double parameter n

);

Given such a definition for the base_roles table, we can
modify the compilation procedure from Section 4.1 to gener-
ate parameterized views. We now present a simple example
to demonstrate the intuition behind this revised approach.
Consider the following role definition:

History.Trust(area = “Tech”) ←
StateU.faculty(since ≥ 2006)∩

AandS.rep(committee = “Technology”)

The above role definition says that the History department
trusts faculty members at StateU with respect to “Tech”
questions if the faculty member is an Arts and Sciences rep-
resentative on the technology committee and has been a fac-
ulty member since at least 2006. Assuming that roles have
at most one parameter, the above definition can be compiled
into the following dynamic view:

CREATE OR REPLACE VIEW
History_Trust(subject, int1, str1, double1) AS
SELECT subject, "Tech" as str1, 0 as int1, 0.0 as double1
FROM StateU_faculty, AandS_rep
WHERE StateU_faculty.subject = AandS_rep.subject AND

StateU_faculty.int1 >= 2006 AND
AandS_rep.str1 = "Technology";

Note that each view must define columns for each avail-
able parameter, and that view definitions may constrain the
parameter columns of the views that they query. Similar
adaptations can be made to all compilation rules defined in
Section 4.1.

Algorithm 1 Algorithm for resolving capability queries.

1: Function CapQuery(List〈Credential〉cList ,User u) : Set〈Role〉
2: // Query database to determine base role memberships
3: Set〈Role〉 roles = Exec(SELECT CONCAT(owner, ‘.’, role) FROM base_roles WHERE subject = u)
4: Set〈String〉 roleNames = ∅
5: for all A.R ∈ roles do
6: roleNames.insert(R)
7:
8: // Process our order-sorted list of CTM credentials
9: for all c ∈ cList , where c is of the form A.R ← . . . do

10: if A.R /∈ roles then
11: // Forward-chain over simple- and intersection-containment credentials
12: if (c is of the form A.R ← B1.R1 ∩ · · · ∩Bn.Rn) ∧ ({B1.R1, . . . , Bn.Rn} ⊆ roles) then
13: roles.insert(A.R)
14: roleNames.insert(R)
15: // Use the DB to process linking- and aggregate-containment queries
16: if (c is of the form A.R ← A.R1.R2 ∧R2 ∈ roleNames) ∨ (c is an aggregate containment) then
17: int count = Exec(SELECT COUNT(*) FROM A_R WHERE subject=‘u’)
18: if count > 0 then
19: roles.insert(A.R)
20: roleNames.insert(R)
21:
22: return roles

4.3 Answering Capability Queries
The hierarchical collection of dynamic views generated by

the compilation procedure described in Section 4.1 is well-
suited for answering proof of compliance and role member-
ship queries precisely because it takes a role-centric view of
the system. That is, views are explicitly created to manage
role memberships. This is a reasonable design choice, since
these types of queries are the most often executed in prac-
tice: proof of compliance queries are issued to check permis-
sions at each resource access request, and role membership
queries can be used to materialize a concrete ACL for a re-
source. Unfortunately, this organization is sub-optimal for
answering capability queries. Specifically, to determine the
set of roles to which a user A belongs, a proof of compliance
query would need to be issued for each individual role! This
is clearly unacceptable.

To address this issue, we have developed a novel algo-
rithm for answering capability queries that leverages both
the logical ruleset stored by our framework, as well the dy-
namic views maintained within the DBMS. At a high level,
our approach uses the logical ruleset to forward-chain when-
ever possible, while relying on the database to answer role
membership queries that cannot be established efficiently
via forward-chaining. This is similar in spirit to, though in-
trinsically different than, the bidirectional search algorithm
proposed in [23]. Algorithm 1 illustrates this approach in
detail.

Algorithm 1 takes two parameters: the sorted list of CTM
credentials cList , and a user u. The algorithm begins by
querying the database to gather the base permissions as-
signed to the user u and then populating the roles and
roleNames sets. These sets track the roles that a user is
a member of, and are assumed to be implemented using a
data structure with O(1) insert and lookup (e.g., a Java
HashSet). The algorithm then iterates over cList , skipping
any credentials that define roles to which the user is already
a member. If the current role c defines a simple- or intersec-
tion containment, the algorithm forwards chains, using roles

to determine whether the user has the prerequisite roles to
establish membership in the role defined by c. If so, the
roles and roleNames sets are updated accordingly and the
algorithm moves on to the next credential in cList .

We note that forward chaining cannot be used to establish
membership in roles defined by linking containment creden-
tials without also forward chaining the role memberships of
(potentially) all other principals in the system. For exam-
ple, the linking containment A.R ← A.R1.R2 requires infor-
mation not only about u’s membership in X.R2, but also
about X’s membership in A.R1 (for all such X!). Similarly,
forward chaining cannot be used to aggregate feedback re-
ports. As such, line 16 acts as a guard condition determining
whether the database should be used to process a particular
role membership in a top-down manner. Note that a linking
containment credential A.R ← A.R1.R2 is only processed if
u is a member of some X.R2 as indicated by the roleNames
set: if there is not a member of some X.R2, then they are
certainly not a member of A.R1.R2. Finally, we have the
following theorem:

Theorem 2 (Correctness & Completeness). Let
cList be the set of CTM roles parameterizing the system,
u be a user, and R be the set of roles returned by the func-
tion call CapQuery(cList , u). The set R of roles represents
exactly the set of role memberships held by u.

Proof. (Sketch) By Theorem 1, we know that the query
on line 3 will always return precisely the base set of permis-
sions assigned to u. Given the order-sort invariant imposed
on cList , we can prove by induction that the forward chain-
ing procedure described on lines 12–14 will determine that
u ∈ member(A.R) if and only if u ∈ member(Bi.Ri) for each
prerequisite Bi. Further, Theorem 1 gives us that the top
down processing procedure described on lines 16–20 will al-
ways accurately determine u’s membership in roles defined
by linking or aggregate containment credentials. So for all
A.R defined in cList , u’s membership is accurately assessed
by CapQuery(cList , u).

This combined logical/relational view of a CTM policy
provides us with a significant speedup in processing capa-
bility queries, since (i) forward-chaining is extremely effi-
cient and (ii) we can leverage prior knowledge regarding
role membership to issue only those database queries that
have a chance at succeeding. Specifically, the brute-force
approach to capability review requires O(N) proof of com-
pliance queries, where N = |cList |. On the other hand, Al-
gorithm 1 requires O(plaN) queries to the database, where
pla is the percentage of credentials in cList defining linking-
or aggregate containments. As we will see in the next sec-
tion, the efficiency gains realized by Algorithm 1 are quite
noteworthy in practice.

5. EXPERIMENTAL EVALUATION
In this section, we discuss the performance overheads as-

sociated with trust management query processing within a
research prototype implementation of our proposed frame-
work. We first explore several microbenchmarks that illus-
trate the relative costs of evaluating role membership and
proof of compliance queries over roles defined by each type
of CTM credential. We then present a more detailed virtual
organization scenario, within which we evaluate the costs
proof of compliance, role membership, and capability queries
in a more meaningful setting. Finally, we conclude this sec-
tion by discussing the trade-offs associated with leveraging
materialized, rather than dynamic, views within a DBMS-
based trust management system.

5.1 Experimental Setup
All experiments discussed in this section were carried out

on a machine equipped with a 2.1 GHz AMD Opteron pro-
cessor and 4 GB of RAM, running Red Hat Enterprise Linux
WS release 4. The core components of our framework—
including the policy compiler, logical credential management
facilities, and query processing algorithms—were written in
Java and compiled using the Sun Java JDK version 1.6.0 14.
A stock installation of MySQL version 5.1.35 was used as
our back-end database. All reputation aggregation func-
tions were written as user-defined functions in C and loaded
by MySQL as shared objects.

5.2 Microbenchmarks
To examine the relative costs of evaluating proof of com-

pliance and role membership queries in a controlled setting,
we first initialized three databases: small (100 users, 10 feed-
back reports per user), medium (500 users, 20 feedback re-
ports per user), and large (1000 users, 30 feedback reports
per user). We then defined 50 roles in the base_roles table
and made each user a member of each role. When then com-
piled roles defined by the following types of CTM credentials
into dynamic views in each database:

• Linear chains of delegation of up to length 5 specified
by simple containment credentials.

• Binary trees of up to height 4 specified by intersection
containment credentials.

• Linking containments of the form A.R1.R2 defined such
that the members of A.R1 could be determined by us-
ing the base_roles table and the X.R2 role is a linear
chain of delegation with height varying from 1 to 5.

• Aggregate containments whose issuer filter role is spec-
ified by a linear chain of delegation with height varying
from 1 to 5.

The result of our experiments are depicted in Figure 4.
Figure 4(a) shows that the cost of evaluating intersection
containment credentials increases exponentially in the height
of the credential. This is expected, as each increase in height
requires evaluating the member sets of twice as many base
roles. Note that across all database sizes, proof of compli-
ance remained very efficient, despite the increased costs of
enumerating all role members. In Section 5.4, we will dis-
cuss some potential avenues for combating these types of
increases. Figures 4(b) and (c) describe the costs of evalu-
ating queries about linking containment and aggregate con-
tainment roles. In both cases, the cost does not increase
with the height of the height of the linear delegation used,
as the cost of evaluating linear chains of delegation is neg-
ligible. Further, processing proof of compliance and role
membership queries takes approximately the same amount
of time due to the joins required to process these queries.

5.3 A Virtual Organization Scenario
While the above microbenchmarks illustrate the relative

costs of querying different types role definitions, they say
very little about the costs of analyzing policies containing
large number of credentials, mixed hierarchies of creden-
tials, or roles defined by multiple credentials. To find the
answers to these questions, we developed a tool that gener-
ates synthetic hierarchical CTM policies within the context
of a set of collaborating virtual organizations (VOs). The
parameters to our tool are similar to those described in the
role-mining literature (e.g., see [25, 26]), and are described
in Table 1. In this paper, we generate the base role assign-
ments for three companies, and then build four layers VOs
on top of these companies. Each layer contains three VOs,
each of which defines its roles by generating CTM creden-
tials that reference the roles defined by the three VOs (or
companies) one level below it.

Within this context, we examined the cost of processing
queries across a range of database sizes and CTM rule com-
plexities. In particular, we considered small (100 users/
company, 10 feedback reports/user), medium (500 users/
company, 20 feedback reports/user), and large (1000 users/
company, 30 feedback reports/user) databases, as well as
low (100% intersection containment), medium (90% inter-
section containment, 5% linking containment, 5% aggregate
containment), and high (70% intersection containment, 15%
linking containment, 15% aggregate containment) complex-
ity rule sets. In all cases, each company defined 30 roles
using simple memberships, while each VO defined 30 roles
according to the other parameters described in Table 1.

Figure 5(a) describes how the time required to answer
proof of compliance queries varies over medium complexity
databases of various size. Figure 5(b) shows how the cost
of answering proof of compliance queries in a medium sized
database is affected by varying CTM rule complexities. In
both cases, we see that changes to the size or complexity
of the database have an observable—but not tremendous—
impact on query execution time. Rather, the variable that
most influences query runtime is the height at which a role is
defined: e.g., all queries at levels 2 and below run extremely
quickly, regardless of how big (resp. complex) the underlying
database (resp. CTM ruleset) is, while higher-level queries

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

4321

A
v
e

ra
g

e
 t

im
e

 (
s
e

c
)

Role Height

Proof of Compliance
RM Small DB

RM Medium DB
RM Large DB

(a) Intersection containment

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

54321

A
v
e

ra
g

e
 t

im
e

 (
s
e

c
)

Role Height

Small DB
Medium DB

Large DB

(b) Linking containment

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

54321

A
v
e

ra
g

e
 t

im
e

 (
s
e

c
)

Role Height

Small DB
Medium DB

Large DB

(c) Aggregate containment

Figure 4: Performance results from microbenchmark scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4321

A
v
e

ra
g

e
 t

im
e

 (
s
e

c
)

Company/VO Level

Small DB
Medium DB

Large DB

(a) Varied database complexity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

4321

A
v
e

ra
g

e
 t

im
e

 (
s
e

c
)

Company/VO Level

Low Complexity
Medium Complexity

High Complexity

(b) Varied rule complexity

 0

 10

 20

 30

 40

 50

 60

 70

 80

HighMediumLow

A
v
e

ra
g

e
 t

im
e

 (
s
e

c
)

Policy Complexity

Brute Force
Hybrid

(c) Capability query

Figure 5: Performance results from evaluation within the VO scenario.

are much more expensive. This is an artifact of the “bushy
tree” dataset that we generated, as queries at level n can be
defined using up to 3 CTM credentials, each of which may
intersect up to 3 roles at level n− 1. In practice, we would
expect to see far less bushy role structures.

Figure 5(c) describes the average time required to exe-
cute capability queries over medium sized databases of low,
medium, and high complexity. The brute force approach of
carrying out one proof of compliance query for each possi-
ble role in the database is compared against the algorithm
presented in Section 4.3. As expected, our algorithm out-
performs the brute force approach in all cases. In particular,
it does exceedingly well in the event that a higher percent-
age of the roles in the system are defined using intersection
containment, as it can rely more on forward chaining.

5.4 Future Optimizations
While the use of dynamic views described in this paper has

the advantage of seamlessly adapting to changes in underly-
ing policy, the previous experiments show that this comes at
a significant cost as the policies become increasingly nested.
One solution to this problem is to compile logical policies
into materialized, rather than dynamic, views. At a high
level, a materialized view is generated by issuing the query
that defines the view and saving the result set as a table
within the database. Further, a materialized view can be
indexed, while a dynamic view cannot. The result is that
queries to any role managed within the database could be
executed at the same speed as queries to the base tables.
The data shown in Figures 5(a)–(b) suggest that this would
imply large performance gains. Although MySQL currently
does not support materialized views, we plan to explore this
in the future using a DBMS like PostgreSQL or Oracle.

The efficiency gains that can be realized by materialized

views do not come without cost, however. In particular,
materialized views (i) require much more space within the
database (1000s of rows) when compared to dynamic views
(stored as a single query), and (ii) must be regenerated on-
the-fly to remain consistent with changes made to the tables
and views over which they are defined (e.g., when logical
policies are edited). Fortunately, we do not see either of
these issues causing a problem in practice. With respect to
(i), disk and memory space are abundant in even low-end
enterprise servers. Similarly, Figures 5(a)-(b) imply that (ii)
can be addressed, as the cost of carrying out even complete
updates to a materialized view would be very low. Often
times, complete updates are not even needed to keep mate-
rialized views consistent, so Figures 5(a)-(b) could be viewed
as a conservative estimate of update cost within such a sys-
tem.

6. RELATED WORK
Digital credentials are one of the main techniques for ac-

cess control in cross-domain collaboration and resource shar-
ing. Due the decentralized nature of such applications, digi-
tal credentials are largely extended from simple bindings be-
tween public keys and identities to signed statements with
rich semantics, including roles, properties, logical inference
rules and even arbitrary programs. Extensive work has been
done in the areas of trust management [2, 3, 5, 20], trust ne-
gotiation [19, 27, 29, 30], and distributed proofs [1, 12, 15,
24]. These systems consider both centralized credentials
(where credentials are maintained in a well-known repos-
itory) and decentralized credentials (where credentials are
distributed among multiple entities). In terms of trust eval-
uation, a majority of work in the above areas focuses on com-
pliance checking, i.e., determining through logical inferences

Parameter Description Values

c Number of companies or VOs at each level 3
u Number of users in each base company 100, 500, 1000
r The number of roles in each company and VO 30

rpu The number of roles assigned to each user 10
nm The number of companies or VOs making up each VO 3
pi Probability of generating an intersection containment credential 1.0, 0.9, 0.7
pl Probability of generating a linking containment credential 0.0, 0.05, 0.15
pa Probability of generating an aggregate containment credential 0.0, 0.05, 0.15
mi Maximum number of roles comprising an intersection containment 3
mc Maximum number of credentials defining each role 3

Table 1: System parameters for the virtual organization scenario.

whether a principal belongs to a particular role or possesses
certain privileges. Except for [11], no previous work consid-
ered to build trust management systems on top of commod-
ity DBMSs. As mentioned before, the work in [11] focuses on
using databases as credential stores for trust management,
while the focus of this paper is to utilize the data process-
ing capability of DBMSs to improve trust policy evaluation
performance.

Though reputation-based trust has been studied exten-
sively in in the context of agent systems [13], online auc-
tions, pervasive computing and P2P systems [14,28], its in-
tegration with credential-based trust is only considered re-
cently [4,7]. As mentioned above, Lee and Yu [18] proposed
CTM, a formal framework to represent and interpret the
combination of vertical and horizontal trust. They do not
consider how to evaluate trust policies in CTM.

Traditional access control is often identity-based. Most
is implemented through access control lists (ACL), capabil-
ity lists or access control trips. Due to the simplicity of
such access control policies, the checking for a particular
privilege of a principal is straightforward and quite efficient.
The efficiency of policy evaluation becomes important when
access control policies become complicated. One major ef-
fort is CPOL [8], which achieves high-perform policy evalu-
ation through indexing and caching techniques. Though the
policy language in CPOL is relatively expressive, it focuses
on simple delegation and location and temporal constraints.
CTM on the other hands supports more types of delegations
as well as the combination of credentials with reputations.
Therefore, the techniques in CPOL cannot be directly ap-
plied to our problem.

Li et al. [22] designed credential chain discovery algo-
rithms to answer the three types of queries for RT . Their
algorithms do not take advantage of supports from any ex-
isting software systems or tools. In this paper, we try to
utilize as much functionality as possible for DBMSs to make
the trust evaluation engine efficient, lightweight, and easy
to deploy.

As CTM is based on RT , which is based on logical infer-
ences, it is also possible to build a trust policy evaluation en-
gine using logic programming languages such as Prolog and
Datalog. However, such languages are often not well sup-
ported in commercial information systems. In this paper,
we emphasize on utilizing the data processing capabilities in
existing IT infrastructures to make trust evaluation engines
not only efficient but also lightweight and easy to deploy.

7. CONCLUSION
Despite much promising research into trust management

approaches to authorization, relatively little attention has
been given to exactly how these technologies can be effec-
tively deployed. In this paper, we addressed one potential
avenue for supporting the deployment of logical trust man-
agement approaches by means of leveraging a key fixture
of the IT landscape: the relational database. To this end,
we developed a two-tiered framework comprised of a logical
front end and a relational back end. We showed that simple
role membership credentials and reputation feedback reports
can be efficiently managed in the DBMSs base tables, and we
presented a correct and complete method for compiling col-
lections of logical CTM credentials into dynamic views stored
in the database. This relational representation can be used
to quickly perform proof of compliance checks or enumer-
ate all members of a given role. We also developed a novel
algorithm for answering capability queries that takes advan-
tage of forward chaining across the system’s logical ruleset
whenever possible, while also leveraging the database’s abil-
ity to quickly perform complex joins and aggregations in
situations where forward chaining would be inefficient. An
initial evaluation of an unoptimized prototype implementa-
tion shows that our proposed approach is a viable solution
in even when making pessimistic assumptions regarding cre-
dential complexity.

In the future, we plan to move beyond the research pro-
totype phase and optimize the relational side of our frame-
work. In Section 5.4 we discussed how the use of mate-
rialized, rather than dynamic, views would likely lead to
immense performance gains for our system. We plan to ex-
amine the relative costs involved with using materialized
views—including increased disk and memory utilization, as
well as overheads associated with keeping these views con-
sistent with changes to the underlying ruleset—and carry
out a detailed cost/benefit analysis. We also plan to in-
vestigate effective means applying our proposed framework
within decentralized organizations. In particular, we hope
to leverage information gleaned from centralized query plans
to develop efficient algorithms for processing decentralized
trust queries across multiple domains. Another interesting
problem is to investigate how to support circular dependent
roles in DBMSs through, for example, recursive queries.

Acknowledgments. The research described in this paper
was supported by the National Science Foundation under
awards CCF-0916015 and CCF-0914946.

8. REFERENCES
[1] L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in

access-control systems. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy, pages 81–95, May 2005.

[2] M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL: Design
and semantics of a decentralized authorization language.
Journal of Computer Security, 2009.

[3] M. Y. Becker and P. Sewell. Cassandra: Distributed access
control policies with tunable expressiveness. In Proceedings of
the Fifth IEEE International Workshop on Policies for
Distributed Systems and Networks, pages 159–168, June 2004.

[4] B. K. Bhargava and Y. Zhong. Authorization based on evidence
and trust. In International Conference on Data Warehousing
and Knowledge Discovery, pages 94–103, Aix-en-Provence,
France, Sept. 2002.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In Proceedings of the IEEE Conference on
Security and Privacy, pages 164–173, May 1996.

[6] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance checking
in the PolicyMaker trust management system. In Proceedings
of the Second International Conference on Financial
Cryptography, number 1465 in Lecture Notes in Computer
Science, pages 254–274. Springer, Feb. 1998.

[7] P. Bonatti, C. Duma, D. Olmedilla, and N. Shahmehri. An
integration of reputation-based and policy-based trust
management. In Sematic Web and Policy Workshop, Galway,
Ireland, Nov. 2005.

[8] K. Borders, X. Zhao, and A. Prakash. CPOL:
High-performance policy evaluation. In Proceedings of the 12th
ACM Conference on Computer and Communications Security
(CCS), pages 147–157, Nov. 2005.

[9] B. Carminati, E. Ferrari, and A. Perego. Enforcing access
control in web-based social networks. ACM Transactions in
Information and System Security. to appear.

[10] B. Carminati, E. Ferrari, and A. Perego. A decentralized
security framework for web-based social networks.
International Journal of Information Security and Privacy,
2(4):22–53, 2008.

[11] S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati. Trust management services in relational
databases. In Proceedings of the 2nd ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), pages 149–160, Mar. 2007.

[12] T. Jim. SD3: A trust management system with certified
evaluation. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 106–115, May 2001.

[13] A. Josang, R. Ismail, and C. Boyd. A survey of trust and
reputation systems for online service provision. Decis. Support
Syst., 43(2):618–644, 2007.

[14] S. Kamvar, M. Schlosser, and H. Garcia-Molina. EigenRep:
Reputation Management in P2P Networks. In Twelfth
International World Wide Web Conference, 2003.

[15] A. J. Lee, K. Minami, and N. Borisov.
Confidentiality-preserving distributed proofs of conjunctive
queries. In ACM Symposium on Information, Computer, and
Communication Security (ASIACCS), Mar. 2009.

[16] A. J. Lee and M. Winslett. Enforcing safety and consistency
constraints in policy-based authorization systems. ACM
Transactions on Information and System Security, 12(2),
Dec. 2008.

[17] A. J. Lee and M. Winslett. Towards an efficient and
language-agnostic compliance checker for trust negotiation
systems. In Proceedings of the 3rd ACM Symposium on
Information, Computer and Communications Security
(ASIACCS 2008), pages 228–239, Mar. 2008.

[18] A. J. Lee and T. Yu. Towards a dynamic and composite model
of trust. In Proceedings of the 14th ACM Symposium on
Access Control Models and Technologies (SACMAT), pages
217–226, June 2009.

[19] J. Li, N. Li, and W. H. Winsborough. Automated trust
negotiation using cryptographic credentials. In Proceedings of
the ACM Conference on Computer and Communications
Security, pages 46–57, Nov. 2005.

[20] N. Li and J. C. Mitchell. RT: A role-based trust-management
framework. In Proceedings of the Third DARPA Information
Survivability Conference and Exposition (DISCEX III), pages
201–212, Apr. 2003.

[21] N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond
proof-of-compliance: security analysis in trust management.
Journal of the ACM, 52(3):474–514, 2005.

[22] N. Li, W. Winsborough, and J. Mitchell. Distributed Credential
Chain Discovery in Trust Management. Journal of Computer
Security, 11(1), Feb. 2003.

[23] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed
credential chain discovery in trust management. Journal of
Computer Security, 11(1):35–86, 2003.

[24] K. Minami and D. Kotz. Secure context-sensitive authorization.
Journal of Pervasive and Mobile Computing (PMC),
1(1):123–156, Mar. 2005.

[25] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo.
Evaluating role mining algorithms. In Proceedings of the 14th
ACM Symposium on Access Control Models and Technologies
(SACMAT), pages 95–104, 2009.

[26] J. Vaidya, V. Atluri, and J. Warner. Roleminer: mining roles
using subset enumeration. In Proceedings of the 13th ACM
Conference on Computer and Communications Security
(CCS), pages 144–153, 2006.

[27] W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated trust negotiation. In DARPA Information
Survivability Conference and Exposition, Jan. 2000.

[28] L. Xiong and L. Liu. A reputation based trust model for
peer-to-peer ecommerce communities. In IEEE International
Conference on E-Commerce (CEC), 2003.

[29] T. Yu, M. Winslett, and K. E. Seamons. Supporting structured
credentials and sensitive policies through interoperable
strategies in automated trust negotiation. ACM Transaction
on Information and System Security (TISSEC), 6(1):1–42,
Feb. 2003.

[30] C. C. Zhang and M. Winslett. Distributed authorization by
multiparty trust negotiation. In ESORICS 2008, pages
282–299, Oct. 2008.

