
Privacy and Robustness for Data Aggregation in Wireless
Sensor Networks

Marian K. Iskander, Adam J. Lee and Daniel Mossé
Deptartment of Computer Science, University of Pittsburgh

{marianky,adamlee,mosse}@cs.pitt.edu

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications
; K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security

Keywords
Fault tolerance, privacy, wireless sensor networks, in-network
aggregation

1. INTRODUCTION
Wireless Sensor Networks (WSNs) consist of small sens-

ing and computing devices that have limited power, storage,
computation, and network bandwidth capabilities. Queries
to the sensor nodes are injected into the network by a data
sink node. The simplest way to respond to a query is for each
sensor node to individually report back its reading to the
sink, at which point all of the readings are processed. This
unicast delivery requires that intermediate sensors route all
such packets to the sink, which can lead to excessive energy
consumption due to the large number of individual responses
that need to be transmitted.

In-network data aggregation improves the energy efficiency
of this process by allowing each node along the routing path
to aggregate all values received from its children into a sin-
gle response value. This avoids the excessive communication
required to route individual sensor readings to the data sink.
In-network aggregation paths can typically be classified into
one of two categories: tree-based or multipath-based. The
tree-based approach provides the minimal communication
overhead by constructing a spanning tree across all sensor
nodes to facilitate routing. However, a single link failure
in this model leads to the loss of all data from the subtree
connected by that link. Given that WSNs are characterized
by high rates of communication failures, this approach can
lead to large errors in the average case. Multipath-based
approaches add robustness to the traditional tree structure
by taking advantage of the broadcast medium, but must be
carried out carefully to avoid overcounting when computing
the aggregate value.

In addition to considering the robustness of the aggrega-
tion process, many applications (e.g., battlefield surveillance

Copyright is held by the author/owner(s).
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
ACM 978-1-4503-0244-9/10/10.

and tracking) require that the confidentiality of individual
sensor readings be preserved. Without such a guarantee,
adversaries within the proximity of the network could infil-
trate the network, eavesdrop, and gain useful information.
Unfortunately, existing mechanisms for carrying out confi-
dential in-network aggregation either require the use of ex-
pensive cryptographic primitives that are unsuitable for use
in resource-limited sensor environments (e.g., [6, 7]), or as-
sume perfectly reliable communication links (e.g., [2, 5]).

In this poster, we develop a protocol for reliably carry-
ing out in-network aggregation in sensor networks exhibit-
ing link failures while also maintaining the end-to-end con-
fidentiality of individual sensor readings. Our protocol uses
a lightweight homomorphic cryptosystem [3] to enable the
in-network aggregation of encrypted values while imposing
small computational overhead on individual sensors. This
aggregation takes place by extending the RideSharing multi-
path aggregation protocol [4] to maintain additional meta-
data that allows the sink node to recover the key needed to
decrypt the hidden aggregate value.

2. PRIVACY AND FAULT TOLERANCE PRO-
TOCOL

In this section, we first describe the network and attacker
models assumed in this poster, then we briefly discuss the
models and building blocks used. Finally we present our
new protocol.

2.1 Network and Attack Model
We assume a multi-hop network that consists of n sensor

nodes and a single trusted sink node. Each sensor node has a
unique identifier ID and shares a unique symmetric key with
the sink. These keys are assumed to be pre-shared at deploy-
ment time. Sensor nodes are small, battery-operated devices
capable of performing simple computations and broadcast
communications. The data sink, on the other hand, is a
more capable node with higher computational and storage
capabilities.

In this poster, we are concerned mostly about the pri-
vacy of the sensor readings. We assume a network of two
types of attackers: (a) Honest but curious sensors that cor-
rectly perform the in-network aggregation process, but wish
to learn information about the readings of other sensors if
at all possible; this is representative of sensor deployments
in which individual sensors may become compromised, but
continue to function in a seemingly correct manner in order
to gather information about the state of the larger network.
(b) Quiet infiltrators that are able to stealthily infiltrate the
network, eavesdrop, and either accumulate the information

699



gathered or send the information in an undetected way. We
assume that an adversary can control any arbitrary number
of (colluding) attacker sensor nodes, and can eavesdrop on
all communication channels. The sink node is assumed to
remain uncompromised.

2.2 Building Blocks
Our privacy preserving scheme makes use of the sym-

metric key, additively homomorphic stream cipher proposed
in [3]. In this cryptosystem, a keyed pseudo-random gener-
ator is used to effectively generate per-user keystreams that
are used to encipher sensor readings stored as integer val-
ues. For example, a sensor node sharing a key k with the
sink and using pseudo-random generator g can encrypt its
jth reading, vj as follows:

cj = vj + gj(k) mod M

The sink can then recover the value vj as follows:

vj = cj − gj(k) mod M

A key feature of this cryptosystem is its ability to homomor-
phically combine values that are encrypted under the same
or different keys.

As for our robustness model, we have adopted the Cas-
caded RideSharing [4] fault tolerance scheme for duplicate
sensitive functions. Cascaded RideSharing exploits the re-
dundancy in the wireless medium to detect and correct com-
munication link failures. To accomplish this, the sensor net-
work is organized into a track graph topology. In such a
topology, sensor nodes are organized in tracks, with the sink
residing in track 0, sensors one hop away from the sink are
in track 1, and so forth. The aggregation path then forms
a DAG in which each node has access to multiple paths
through the track graph, rather than a simple spanning tree.
Each sensor node has one primary parent and one or more
backup parents in the adjacent track (towards the sink). Pri-
mary parents form a spanning tree that is used in case of
error-free operations, while backup parents help compensate
for errors in the primary links.

In the RideSharing model, every sensor node transmits
its reading to its primary parent according to a predefined
TDMA schedule. If the primary parent does not receive any
data from a child node in its predetermined time slot, it
eventually raises a signal to its neighbors indicating that it
did not hear any values from a specific child. In that case,
backup parents take the responsibility of aggregating the
missing value. Cascaded RideSharing can be thought of as
token delegation in which the primary parent initially holds
the token and delegates the token in case it does not receive
data from a specific child to the next backup parent.

For error detection and correction purposes, each parent
maintains a small bit vector L that has two bits for each
child: r-bit (retransmitted bit) and e-bit (error bit). As long
as no error occurs on the primary edge, the primary parent
receives the values of its child, aggregates it, and sets the
corresponding r-bit in the L vector for this child to ‘1’. If an
error occurs on the primary edge, the primary parent sets the
e-bit to ‘1’ indicating a missing value from this child. Every
parent attaches its bit vector to each message it sends. Other
(backup) parents within the same track can overhear this L
vector and decide whether to take any corrective action by
examining the r- and e-bits.

2.3 Protocol Details
At a high level, our approach to providing fault-tolerant

and privacy-preserving in-network aggregation works by adding
the necessary elements to combine Cascaded RideSharing
with the additively-homomorphic stream cipher described
in [3]. In the event that the readings of all sensor nodes
are included in the final aggregate value, combining these
algorithms is simple: (i) each sensor ni encrypts its value vi

as ci = vi + gi(ki) mod M ; (ii) the resulting ci values are
aggregated using the Cascaded RideSharing protocol, which
results in the sink receiving the value C =

P
i ci mod M ;

(iii) the sink then computes the aggregate key value K =P
i gi(ki) mod M ; and (iv) the sink extracts the final aggre-

gate value V =
P

i vi = C −K mod M .
Unfortunately, it is rarely the case that all sensor nodes

will contribute readings to an aggregate computation. This
can occur either because of node- or link-level failures that
prevent a sensor’s reading from being included in the final
aggregate, or simply because not every sensor will have a
reading to contribute to every query. In this case, the sink
node will compute an incorrect aggregate key K. If the
sink attempts to decrypt the aggregate ciphertext using the
wrong aggregate key, the resulting value will be a random
element from the set {0, . . . , M − 1}. This random and un-
bounded error is due to the semantic security of the cipher,
which ensures that a ciphertext reveals no information about
the corresponding plaintext without the appropriate key.

To account for the above types of problems, our protocol
introduces modifications to the Cascaded RideSharing pro-
tocol that allow the sink node to efficiently determine which
sensors contributed readings to the final aggregate and thus
correctly compute the aggregate key that should be used
to recover the true aggregate value from the ciphertext re-
ceived.

Algorithm 1 contains pseudo-code describing the aggre-
gation protocol as run by sensor nodes that help aggregate
and route readings in the network, and optionally contribute
their own readings to the aggregate being computed. This
algorithm takes four inputs: a set of child nodes for which
this node is the primary parent (PC), a set of child nodes
for which this node is a backup parent (BC), the list of peer
nodes in this track (SP ), and an optional sensor reading to
include in the aggregation (m). In addition to maintaining
the L vector needed by the Cascaded RideSharing protocol,
Algorithm 1 also maintains a privacy vector, called the P
vector, to keep track of nodes that have successfully con-
tributed to the final aggregate.

The protocol proceeds as follows. If the sensor node has
a non-null reading m to contribute to the aggregate, it is
first encrypted and then added to the local aggregate A. At
this point, the node sets the bit corresponding to its ID
in the P vector to ‘1’, indicating that it has contributed to
the aggregate value. The sensor then waits to receive the L
vectors transmitted by the nodes in its track that precede it
in the TDMA transmission order to determine the corrective
action it needs to take for each child. At this point, the
sensor iterates over all of its child nodes and combines the
aggregate values and P vectors reported by these nodes with
its local values as indicated by the received L vector.

After receiving data from all of its child nodes, the sensor
transmits its updated aggregate value A, its updated P vec-
tor, and its local L vector to its parent nodes (primary and
backup) and to the peer (backup) parents.

700



Algorithm 1: Aggregator

input : PC, BC, SP , m
A := 0;
P := 0̄;
L.r := 0̄;
L.e := 0̄;
if m NOT NULL then // Aggregate own value

A := A + m + gID(kID) mod M ;
P [ID] := 1;

end
L := rcvL(SP );
foreach Child C in PC ∪ BC do

if rcv(Ac,Pc) from Child C then
if C ∈ PC OR (C ∈ BC AND L[C].e = 1 AND
L[C].r = 0) then // Aggregate the received
values

A := A + AC mod M ;
P := P OR Pc;
L[C].e := 1;

end
else // Propagate the error signal

L[C].e := 1;
end

end

end
Transmit(A,P ,L);

Algorithm 2: Final aggregation and decryption
algorithm used by the data sink

input : PC
output: FinalA
A := 0;
P := 0̄;
K := 0;
FinalA := 0;
foreach Child C in PC do

if rcv(Ac,Pc) from Child C then
A := A + AC mod M ;
P := P XOR Pc;

end

end
foreach bit set to ’1’ in P do

K := K + gi(ki) mod M ;
end
FinalA := A−K mod M ;

Algorithm 2 contains pseudo-code describing the proto-
col run by the sink node requesting the aggregate. This
algorithm takes only a single input: the set of children in
track 1 of the graph (PC). After the sink receives an en-
crypted value and a P vector from each of its responsive
children, it computes the sum of each such A value and the
bitwise OR of every P vector to compute both the final (en-
crypted) aggregate value and the final P vector indicating
which nodes successfully contributed to the aggregate. The
sink then generates the keystreams for each node indicated
in the final P vector and uses the aggregate key to recover
the plaintext aggregate value.

3. SIMULATIONS AND EVALUATION
To understand the costs and benefits of our approach we

implemented four protocols within the CSIM simulator [1]:
(i) a spanning-tree based aggregation protocol that provides
neither fault-tolerance nor data confidentiality; (ii) the Cas-
caded RideSharing protocol, which provides only fault toler-
ance; (iii) the basic version of our protocol described, which
provides both fault-tolerance and data confidentiality pro-
tection; and (iv) an enhanced version of our protocol that

applies run-length encoding (RLE) to the P vector to mini-
mize data transmission overheads.

All protocols were compared against three main metrics:
(a) average relative root mean square error (RMS) of the fi-
nal aggregate normalized to the correct aggregate result; (b)
average energy consumed per node for transmitting, listen-
ing, and receiving data; (c) average message size transmitted
per node.

Extensive simulations show that our new protocol achieves
a high degree of robustness by offering an improvement of
48.2% in the root mean square (RMS) error of the final ag-
gregate result over the traditional spanning tree schemes
for networks with high error rates (up to 35%). The sys-
tem overheads in terms of average energy consumption and
average message size per node are acceptable in represen-
tative network settings. Specifically, our simulations show
that our protocol incurs only an average of 7.1% and 3.6%
increases in the average message size and average power
consumption, respectively for different participation levels
of the sensor nodes. For dense network configurations and
100% nodes participation the maximum incurred power con-
sumption overhead was 25%.

4. CONCLUSION
In this poster, we presented a privacy-preserving and fault-

tolerant in-network data aggregation protocol for wireless
sensor networks. Our protocol allows the aggregation of sen-
sor readings while maintaining end-to-end privacy of both
individual sensor readings and the aggregate result. This
protocol makes use of a simple and efficient additive homo-
morphic cryptographic scheme and further offers robustness
of the aggregation process via modifications to the Cascaded
RideSharing fault tolerance scheme. The data sink is the
only authorized node capable of retrieving the final plain-
text aggregate result. Furthermore, the protocol guarantees
that with high probability every sensor reading will con-
tribute to the final aggregate through error detection and
error correction techniques. In the future, we plan to inves-
tigate ways of extending our protocol to also preserve the
integrity of the aggregation process in the presence of faulty
or malicious sensor nodes.

5. REFERENCES
[1] “CSIM Simulator”, http://www.mesquite.com/.

[2] J. Girao, D. Westhoff, and M. Schneider, “CDA: Concealed data
aggregation in wireless sensor networks”, in Proc. 40th
International Conference on Communiacations, in IEEE ICC,
May 2005.

[3] C. Castelluccia, A. Chan, E. Mykletun, and G. Tsudik,
“Efficient and provably secure aggregation of encrypted data in
wireless sensor networks”, ACM Transactions on Sensor
Networks, Vol. 5, No. 3, Article 20, May 2009.

[4] S. Gobriel, S. Khattab, D. Mossé , J. Brustoloni, and R.
Melhem, “RideSharing: Fault tolerant aggregation in sensor
networks using corrective actions”, IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks,in SECON, 2006.

[5] W. He, L. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher,
“PDA: Privacy preserving data aggregation in wireless sensor
networks”, 26th IEEE International Conference on Computer
Communications, May 2007.

[6] Y. Sang, H. Shen, Y. Inoguchi, Y. Tan, and N. Xiong, “Secure
data aggregation in wireless sensor networks: A survey”, in
Proc. of the Seventh International Conference on Parallel and
Distributed Computing, in PDCAT, 2006.

[7] E. Mykletun, J. Girao, and D. Westhoff, “Public key based
cryptoschemes for data concealment in wireless sensor
networks”, in Proc. IEEE International Conference on
Communications, in IEEE ICC, 2006.

701


