
Towards Standards-Compliant Trust
Negotiation for Web Services

Adam J. Lee and Marianne Winslett

Abstract Web services are a powerful distributed computing abstraction in that they
enable users to develop workflows that incorporate data and information process-
ing services located in multiple organizational domains. Fully realizing the poten-
tial of this computing paradigm requires a flexible authorization mechanism that
can function correctly without a priori knowledge of the users in the system. Trust
negotiation has been proposed as a viable solution to this problem, but doing so
within the framework provided by existing web services standards remains an un-
solved problem. In this paper, we show how existing web services standards can
be extended to enable fully standards-compliant support for trust negotiation. We
also show that it is possible to compile trust negotiation policies specified using
the WS-SecurityPolicy standard into a representation that is suitable for analysis by
CLOUSEAU, a highly-efficient trust negotiation policy compliance checker. Lastly,
we show that the TrustBuilder2 framework for trust negotiation can be parameter-
ized to act as a trust engine that can be used by the WS-Trust standard to facilitate
these negotiations.

1 Introduction

Web services and other service oriented architectures stand poised to usher in a
new era of distributed computing. Standards such as WSDL [8] and UDDI [20] en-
able entities to describe and deploy computational services that can be searched
for, discovered, and utilized by other entities. Furthermore, languages such as
BPEL4WS [7] can be used to describe potentially complex workflows that uti-
lize data and computational services spread across multiple administrative domains.
Fully realizing the potential of this computing paradigm requires a flexible autho-

Adam J. Lee and Marianne Winslett
Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin
Ave., Urbana, IL 61801, e-mail: {adamlee,winslett}@cs.uiuc.edu

1



2 Adam J. Lee and Marianne Winslett

rization mechanism that can function correctly without a priori knowledge of the
users in the system, as this would allow for the discovery and composition of new
services at runtime. Unfortunately, existing web services security mechanisms are
largely identity-based; this requires that a user be, in some sense, “hard-wired” into
every administrative domain that they wish to access services from. This severely
hinders the full potential of the web services model.

Trust negotiation [21] has previously been proposed as an appropriate autho-
rization model for use in a web services context. In trust negotiation, resources are
protected by attribute-based access policies. Entities use digital credentials issued
by third-party attribute certifiers (e.g., professional organizations, employers, gov-
ernment bodies, etc.) to prove various characteristics about themselves and their
surrounding environment. Because these attributes might also be considered sensi-
tive, they can optionally be protected by release policies constraining the individuals
to whom they can be disclosed. As such, a trust negotiation session evolves into a
bilateral and iterative exchange of policies and credentials with the end goal of de-
veloping new trust relationships on-the-fly. Because these types of systems allow
resource administrators to specify the intension of a policy, rather than its logical
extension (i.e., an explicit access control list), authorized entities can gain access to
available resources without requiring that their identity be known a priori.

The decentralized and expressive nature of trust negotiation makes it a natural
fit for web services computing environments. As a result, previous research has ex-
plored this connection to some extent [4, 10]. While this work has made important
contributions to the fields of trust negotiation and authorization architectures for
web services, it has not addressed one important consideration: compliance with
existing web services standards. There are currently a myriad of security-oriented
standards in the web services domain that aim to enable many advanced security
features. Rather than further cluttering this space with yet other standards, it is im-
portant to consider how existing standards might be used to support more advanced
authorization paradigms, such as trust negotiation. In this paper, we consider exactly
this problem. Specifically, we make the following contributions:

• We show how the existing token-based security model described by the WS-
SecurityPolicy [16] standard can be used to specify trust negotiation policies.
We then describe a standards-compliant claims dialect that can be used in con-
junction with WS-SecurityPolicy to enable the specification of more expressive
authorization policies.

• We propose extensions to WS-Trust’s challenge/response framework [17] that
can be used to facilitate trust negotiation sessions in a fully standards-compliant
manner. These extensions do not limit the strategies, policies, or credential types
that can be used during the trust negotiation process.

• We present a procedure for compiling trust negotiation policies specified using
the WS-SecurityPolicy standard into a format suitable for analysis by
CLOUSEAU [13], a highly efficient and language-agnostic policy compliance
checker for trust negotiation systems.



Towards Standards-Compliant Trust Negotiation for Web Services 3

• We show that the TrustBuilder2 framework for trust negotiation can be param-
eterized to act as a trust engine—as defined by WS-Trust—that is capable of
driving standards-compliant trust negotiation sessions.

The rest of this paper is organized as follows. In Section 2 we discuss related
efforts in using trust negotiation within a web services context, as well as overview
important web services security and trust standards. Section 3 describes how trust
negotiation policies can be specified using the WS-SecurityPolicy standard. In Sec-
tion 4, we show how to execute trust negotiations through extensions to the WS-
Trust standard. Section 5 focuses on systems issues, including a correct and com-
plete compilation procedure that enables policies specified using WS-SecurityPolicy
to be translated into a format suitable for analysis by the CLOUSEAU compliance
checker. We further describe how the TrustBuilder2 framework for trust negotiation
can be parameterized to function as the trust engine used by WS-Trust during these
negotiations. We then present our conclusions in Section 6.

2 Related Work

In this section, we provide background information on a number of relevant web
services security standards, as well as discuss related work involving the use of trust
negotiation in the web services domain.

2.1 Web Services Security Standards

At their most basic level, web services are nothing more than software components
that communicate with one another by sending XML messages enclosed in SOAP
envelopes. Each of these envelopes consists of a header containing routing infor-
mation and other meta-data, as well as a body that encapsulates the “payload” of
the message. Since these messages are often routed over public networks, such as
the Internet, they are susceptible to observation and tampering by unauthorized en-
tities. The WS-Security standard [18] defines a number of useful primitives that can
help protect against these types of threats. This standard defines an optional security
header that can be used to transport key material, message authentication codes, and
various types of security tokens that can be used to authenticate users or protect the
confidentiality or integrity of messages.

In order to take full advantage for the security features enabled by WS-Security,
service administrators need some means of defining the security requirements for
a web service. The WS-SecurityPolicy standard [18] defines policy assertions that
allow administrators to place constraints on the types of authentication tokens that
need to be presented to gain access to a service, the portions of incoming and out-
going messages that need to be encrypted or authenticated, suites of cryptographic
algorithms that are supported, and other security-relevant properties of their service.



4 Adam J. Lee and Marianne Winslett

The basic policy structures and connectives defined by WS-Policy [19] are then used
to combine these policy assertions into comprehensive security policies.

The final web services standard that we will leverage in this paper is WS-
Trust [17]. Properly exchanging and using the types of security tokens defined in
the WS-Security standard requires that each party involved can assess the trustwor-
thiness of each security token that it acquires. WS-Trust leverages the security prim-
itives defined in WS-Security along with additional extensions to enable services to
carry out protocols designed to issue, renew, and validate security tokens, as well
as broker trust relationships. In Section 4, we will describe how the negotiation and
challenge extensions to WS-Trust can be used to carry out trust negotiation sessions
in a standards-compliant manner.

2.2 Trust Negotiation for Web Services

While much research effort has been placed into the foundations of trust negotiation—
such languages for expressing resource access policies (e.g., [2, 3, 9, 15]), protocols
and strategies for conducting trust negotiations (e.g., [4, 11, 12, 23]), and logics for
reasoning about the outcomes of these negotiations (e.g., [6, 22])—only a few re-
search groups have investigated the applications of trust negotiation within the web
services domain.

Bertino et al. describe Trust-X [4], an XML-based framework for supporting
trust negotiations in peer-to-peer systems. In Trust-X , each user creates an X -
profile that stores X -TNL certificates [3] describing their attributes, uncertified
declarations containing information about the user (e.g., preferences, phone num-
bers, or other such information), and X -TNL policies to protect their sensitive
resources. Since these data are all specified using XML, they can be queried or
constrained using standard query languages, such as XQuery [5]. To allow users to
optimize various aspects of the trust negotiation process, Trust-X supports a vari-
ety of interchangeable trust negotiation strategies. Another particularly innovative
feature of the Trust-X framework is its support for trust tickets, which are receipts
that attest to the fact that a user recently completed some negotiation with another
party that be presented within some limited lifetime to bypass redundant portions
of future negotiations. Although Trust-X makes heavy use of XML, it was not de-
signed specifically for the web services environment. In particular, the authors do
not specify how these trust negotiations might be carried out within the framework
provided by other web services protocols and standards.

In [10], Koshutanski and Massacci describe a trust negotiation framework de-
signed for web services. This framework facilitates the composition of access poli-
cies across the constituent pieces of a workflow, the discovery of credentials needed
to satisfy these policies, the management of the distributed access control process,
and the logic to determine what missing credentials must be located and provided
to satisfy a given policy. This work operates at the business process level by de-
termining and satisfying the composite access control policy for a workflow prior



Towards Standards-Compliant Trust Negotiation for Web Services 5

to its execution; as a result, existing web services security standards are not used.
Furthermore, policies are represented using a datalog-based language, rather than
an existing standards-compliant language.

3 Specifying Trust Negotiation Policies

During a trust negotiation session, attribute-based policies are used to describe the
characteristics of the entities authorized to access a given resource. Digital cre-
dentials are then used to satisfy these policies; in a web services context, these
credentials can be represented using the formats specified in WS-Security and its
extensions. In this section, we address the problem of representing trust negoti-
ation policies for web services. We first show that policy assertions defined in
WS-SecurityPolicy can be used to specify basic trust negotiation policies, and then
present a standards-compliant claims dialect that extends WS-SecurityPolicy to en-
able the specification of more expressive trust negotiation policies.

3.1 Basic Policy Specification

WS-SecurityPolicy takes a token-based approach to security, in that policies identify
specific security tokens that must be presented in order to gain access to a particular
service. The WS-SecurityPolicy specification defines policy assertions that can be
used to require the use of Kerberos tickets, SAML assertions, and X.509 certificates,
as well as other security token formats. As an example, the following policy asser-
tion requires the use of an X.509 certificate issued by the Better Business Bureau’s
(fictitious) security token service:

<sp:X509Token xmlns:sp="..." xmlns:wsa="...">
<sp:IssuerName>C=US/O=Better Business Bureau/CN=sts.bbb.org</sp:IssuerName>

</sp:X509Token>

Trust negotiation policies are typically more complicated than this, however, as
they can include multiple attribute constraints. Requiring the use of multiple security
tokens can be accomplished through the use of the basic policy connectives defined
by WS-Policy. WS-Policy defines the ExactlyOne and All connectives, which
require that either one or all subclauses of a particular clause in a policy be satisfied
in order for that clause of the policy to be satisfied. Although these two connectives
can be used to express any arbitrary policy structure, the WS-Policy specification
recommends that policies be expressed in disjunctive normal form (DNF).

Combining the security token policy assertions from WS-SecurityPolicy with the
policy connectives defined in WS-Policy allows us to specify a range of interesting
trust negotiation policies. For example, consider a service that wishes to be protected
by a policy requiring that users present X.509 certificates issued by the registrar
of State University and the ACM; this would indicate that authorized users of the



6 Adam J. Lee and Marianne Winslett

<wsp:Policy xmlns:wsp="..." xmlns:sp="...">
<wsp:ExactlyOne>

<wsp:All>
<sp:X509Token xmlns:wsa="...">
<sp:IssuerName>

C=US/O=State University/OU=Registrar/CN=sts-reg.stateu.edu
</sp:IssuerName>

</sp:X509Token>
<sp:X509Token xmlns:wsa="...">
<sp:IssuerName>

C=US/O=ACM/CN=sts.acm.org
</sp:IssuerName>

</sp:X509Token>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

Fig. 1 An example trust negotiation policy requiring users to present X.509 certificates from the
State University registrar, as well as the ACM.

service need to be students of State University and members of the ACM. Assuming
that State University’s registrar and the ACM each run an online security token
service (STS) that manages the credentials issued within their respective domains,
Figure 1 illustrates how such a policy could be written in a standards-compliant
manner.

3.2 Encoding Advanced Attribute Constraints

While the above, strictly token-based approach to trust negotiation policy specifi-
cation works in some circumstances, it is inadequate for others. For example, con-
sider complex credentials such as driver’s licenses that contain information about the
type of vehicles the bearer is authorized to drive and the date of birth of the bearer,
or employee IDs that indicate the employee’s rank, department, and year of hire.
The policies used in the previous section can only determine whether an entity has
an employee ID or driver’s license, but cannot constrain the attribute fields—also
known as claims—encoded in the certificate.

The authors of the WS-SecurityPolicy and WS-Trust standards recognize that
placing constraints on the claims encoded in a security token is an important aspect
of security policy specification. As such, these standards define an optional Claims
element that can be included in the security token policy assertions that make up a
given security policy. These standards do not specify the contents of given Claims
element; to allow for maximum extensibility, third parties can define claims dialects
that specify the format and contents of these elements.

To facilitate the use of more expressive—yet standards-compliant—trust negotia-
tion policies within the WS-SecurityPolicy framework, we have developed one such
claims dialect. Our claims dialect allows policy writers to place an arbitrary num-
ber of (attribute name, comparison operator, value) constraint triples on the claims
encoded in a security token. This format was chosen because it is sufficiently ex-



Towards Standards-Compliant Trust Negotiation for Web Services 7

Element Description
/cl:Claim This element is used to encode a constraint on some claim encoded in the security

token to which it refers. These constraints take the form of (attribute, operation,
value) triples.

/cl:Claim/cl:Attribute The name of the attribute or claim to which this constraint refers.
/cl:Claim/cl:Op The operation portion of a constraint triple. Acceptable values for this field are

EQ, GT, LT, GTEQ, and LTEQ. These values denote “equals,” “greater than,” “less
than,” “greater than or equal to,” and “less than or equal to,” respectively.

/cl:Claim/cl:Value The value field of the constraint triple.
/cl:Ownership This element is used to indicate whether proof of ownership of the security token

to which it refers needs to be demonstrated when the token is disclosed.
/cl:Ownership/@Status This optional attribute may be set to either true or false depending on whether

proof of ownership is required. If this attribute is not present, a default value of
true is assumed.

Table 1 Descriptions of the elements making up our claims dialect.

pressive to represent instances of the constraint checking problem. For example, the
constraint triple (License Type, EQ, CDL) would require that the “License Type”
field of a particular driver’s license security token be set to the value “CDL.” Fur-
thermore, our claims dialect provides a mechanism through which policy writers can
require not only the disclosure of a particular security token, but also a demonstra-
tion of proof-of-ownership. This enables explicit differentiate between credentials
that must be owned by the individual requesting access to a particular service and
other supporting credentials that must be presented. The XML elements defined
by this claims dialect are summarized in Table 1; a more detailed treatment of this
claims dialect can be found in the XML schema defining the dialect (see Appendix A
of [14]).

Figure 2 contains a more complex version of the policy presented in Figure 1.
This version of the policy leverages our claims dialect to restrict service access to
graduate students of State University who have been members of the ACM since
at least 2006. The use of the Ownership element inside each of the Claims
elements requires that proof of ownership be demonstrated for both tokens.

4 Trust Negotiation Using WS-Trust

Now that we have described how trust negotiation policies can be specified in a
standards-compliant manner, we must show how trust negotiation protocols can be
executed within the framework provided by existing web services standards.

4.1 WS-Trust Basics

As described in Section 2, the WS-Trust standard focuses on the brokerage of trust
relationships between entities in a web services environment. In the trust model
articulated in the WS-Trust standard, trust relationships are represented as security
tokens. For example, if Alice runs a web service that she would like to allow Bob’s



8 Adam J. Lee and Marianne Winslett

<wsp:Policy xmlns:wsp="..." xmlns:sp="...">
<wsp:ExactlyOne>

<wsp:All>
<sp:X509Token xmlns:wsa="...">
<sp:IssuerName>

C=US/O=State University/OU=Registrar/CN=sts-reg.stateu.edu
</sp:IssuerName>
<wst:Claims Dialect="http://dais.cs.uiuc.edu/claim.xsd">

<cl:Claim>
<cl:Attribute>Type</cl:Attribute>
<cl:Op>EQ</cl:Op>
<cl:Value>Graduate Student</cl:Value>

</cl:Claim>
<cl:Ownership Status="true"/>

</wst:Claims>
</sp:X509Token>
<sp:X509Token xmlns:wsa="...">
<sp:IssuerName>

C=US/O=ACM/CN=sts.acm.org
</sp:IssuerName>
<wst:Claims Dialect="http://dais.cs.uiuc.edu/claim.xsd">

<cl:Claim>
<cl:Attribute>MemberSince</cl:Attribute>
<cl:Op>LTEQ</cl:Op>
<cl:Value>2006</cl:Value>

</cl:Claim>
<cl:Ownership Status="true"/>

</wst:Claims>
</sp:X509Token>

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

Fig. 2 A more complex example trust negotiation policy that makes use of our claim dialect.

friends to use, she would protect her web service with a WS-SecurityPolicy policy
requiring a security token issued by Bob. This type of token would serve as formal
proof of the fact that Bob is friends with a certain individual. The WS-Trust standard
then goes on to define the protocols that can be used to issue, renew, revoke, and
check the validity of security tokens; later in this section, we will show that the
token issuance protocol described by WS-Trust can be extended to enable native
support for trust negotiation. As a means of introduction to this protocol, we now
discuss an example execution of the basic protocol.

Figure 3 illustrates how the scenario described in our previous example might
make use of the WS-Trust standard to control access to Alice’s web service. When
a user Charlie tries to access Alice’s service, he is returned a WS-SecurityPolicy
policy indicating that he must present a security token that identifies him as a
friend of Bob’s before he can access the service in question. Charlie does not have
such a token, so he contacts Bob’s STS and sends a SOAP message containing a
RequestSecurityToken element indicating that he would like to be issued a
security token identifying him as a friend of Bob’s. This message includes a copy of
Charlie’s public key certificate—which is attached as described in the WS-Security
standard—and is digitally signed to ensure its authenticity. Bob’s STS then checks
to see if Charlie is on the access control list (ACL) containing the names of Bob’s
friends. Since Charlie is on this list, the STS generates a security token for Charlie,



Towards Standards-Compliant Trust Negotiation for Web Services 9

Bob’s STS Charlie Alice’s Service
Access?

“Bob’s Friend” Token?

RequestSecurityToken
“Bob’s Friend”

RequestSecurityTokenResponse

Check

ACL

Fig. 3 An example of the WS-Trust token issuance mechanism.

embeds the token in a RequestedSecurityTokenResponse element, and in-
cludes this element in the body of a SOAP message. This message is then signed,
encrypted, and returned to Charlie, who can then use the encapsulated token to ac-
cess Alice’s service.

4.2 Trust Negotiation Extensions to WS-Trust

Since the issuance of a security token might not always fit within a single request
and response, WS-Trust includes a negotiation and challenge framework that en-
ables support for more complex token issue protocols. After a requestor discloses
an initial RequestSecurityToken message, this framework allows the re-
questor and STS to send any number of RequestSecurityTokenResponse
messages containing arbitrary XML structures to one another before the final
RequestSecurityTokenResponse message containing a new security token
is disclosed (or a fault is generated). While these extensions were intended to sup-
port basic challenge/response protocols and legacy key exchange protocols, they can
also be used to support trust negotiation.

Table 2 describes the TNInit and TNExchange XML elements that we
have defined to encapsulate trust negotiation sessions within the WS-Trust nego-
tiation and challenge framework. The TNInit element is exchanged by partici-
pants during the first round of the negotiation and contains information used to
parameterize the negotiation that is about to take place. The remaining rounds
of the negotiation consist of exchanges of TNExchange elements containing
PolicyCollection and TokenCollection elements describing the policies
and credentials being disclosed, respectively. Policies are encoded as described in
Section 3, while security tokens are contained in Token elements that include a
token type descriptor (in the form of a URI), the token itself (encoded as described
in the WS-Trust specification), and an optional proof of ownership.

The above two-phase negotiation process enables support for an arbitrary array
of trust negotiation protocols within the WS-Trust framework. Since the entities par-
ticipating in the negotiation use the exchange of TNInit objects to choose which
negotiation strategies and security token formats will be supported, the security to-
ken and policy exchanges that take place during the later phase of the negotiation



10 Adam J. Lee and Marianne Winslett

Element Description
tn:TNInit This element is used to encapsulate initialization information that needs

to be passed between negotiation parties.
tn:TNInit/tn:SignatureMaterial This holds one party’s contribution to the signature challenge used when

proving token ownership.
tn:TNInit/tn:StrategyFamily This element identifies one strategy family [23] supported by the send-

ing entity. This element may occur multiple times in the first TNInit
element, indicating that multiple strategy families are supported. The
TNInit element returned by the second negotiation participant must
include exactly one copy of this element, which indicates the strategy
that was chosen for use during this negotiation.

tn:TNInit/tn:TokenFormat This element identifies one security token type supported by the sending
entity. This element may occur multiple times, indicating that multiple
security token formats are supported.

tn:TNExchange This element is used to encapsulate all information transferred during
one exchange of a trust negotiation session.

tn:TNExchange/tn:TokenCollection This element contains one or more tn:Token elements embodying
the security tokens disclosed during a single trust negotiation exchange.

tn:TNExchange/tn:PolicyCollection This element contains one or more wsp:Policy elements embodying
the trust negotiation policies disclosed during a single trust negotiation
exchange.

tn:Token This element encapsulates information describing a single security to-
ken that is being disclosed.

tn:Token/wst:TokenType This element contains a URI describing the type of security token being
disclosed.

tn:Token/wst:RequestedSecurityToken The security token being disclosed is encoded in this element, which is
defined in the WS-Trust specification.

tn:Token/tn:OwnershipProof This optional element contains a Base64-encoded representation of a
response to a proof of ownership challenge for this security token.

Table 2 Descriptions of the elements making up our extensions to the WS-Trust negotiation and
challenge mechanism.

can occur in accordance with these initial choices. Furthermore, the schema defining
the TNInit and TNExchange elements1 can itself be easily extended to include
support for the exchange of data items other than policies and security tokens (e.g.,
proof fragments [1, 22], uncertified claims [4, 6], or trust tickets [4]). Another ben-
efit of this method of supporting trust negotiation is that the tokens issued by the
STS function in many ways like the “trust tickets” described by Bertino et al. in [4].
That is, after a single successful trust negotiation, a service requestor can access the
protected web service many times within the lifetime of the token issued by the STS.

4.3 An Example Standards-Compliant Trust Negotiation Session

In Figure 4, we see that Charlie is attempting to access a web service that uses trust
negotiation authorization controls. Upon requesting access to the service, Charlie is
told that he must present a security token issued by State University’s STS in order
to access the service. He contacts the STS and sends a SOAP message containing
a RequestSecurityToken element indicating that he needs a security token
to access the protected web service. The STS returns a SOAP message containing
RequestSecurityTokenResponse element that initiates a trust negotiation

1 Please see Appendix B of [14].



Towards Standards-Compliant Trust Negotiation for Web Services 11

State University’s STS Charlie State University’s Service

Access?

Token from STS?

RequestSecurityToken

RequestSecurityTokenResponse

TNInit, TNExchange P
svc

RequestSecurityTokenResponse

TNInit, TNExchange
P

id
RequestSecurityTokenResponse

TNExchange

RequestSecurityTokenResponse

TNExchange

RequestSecurityTokenResponse

Fig. 4 An example illustrating the use of extensions to the WS-Trust negotiation and challenge
framework to facilitate trust negotiation sessions.

with Charlie. This element contains a TNInit element containing initialization
information for the trust negotiation session, as well as a TNExchange element
containing a PolicyCollection element that includes the policy from Figure 2.
Recall that this policy requires users to prove that they are graduate students at State
University and that they have been a member of the ACM since at least 2006.

Upon receiving this message, Charlie creates a new SOAP message to the
STS consisting of a RequestSecurityTokenResponsemessage containing a
TNInit element to finalize the negotiation parameters, as well as a TNExchange
element. The TNExchange contains a TokenCollection element that includes
a copy of his ACM membership token (and its corresponding proof of ownership)
and a PolicyCollection element containing a single Policy element re-
quiring that the STS prove that it is certified by State University. This message is
then sent to the STS, which returns another SOAP message to Charlie containing
a RequestSecurityTokenResponse with an embedded TNExchange ele-
ment containing a TokenCollection element that includes the requested secu-
rity token (and its corresponding proof of ownership). This message satisfies Char-
lie, who then discloses his Student ID token, which identifies him as a graduate
student of State University. At this point, the STS returns a SOAP message con-
taining the final RequestSecurityTokenResponse element, which includes
a new security token indicating that Charlie has satisfied the web service’s policy.
Charlie then discloses this token to the web service and is granted access.

5 Systems Considerations

We now focus on the systems aspects of the trust negotiation process. We first show
that policies expressed as in Section 3 can be compiled into a format suitable for



12 Adam J. Lee and Marianne Winslett

;; This policy is satisfied by graduate students at State University
;; who have been members of the ACM since at least 2006.
(defrule rule-service-access
(credential (id ?istud) (issuer ?issstud) (owned true) (map ?mstud))
(credential (id ?iacm) (issuer ?issacm) (owned true) (map ?macm))
(test (eq ?issstud "C=US/O=State University/OU=Registrar/CN=sts-reg.stateu.edu"))
(test (eq "Graduate Student" (?mstud get "Type")))
(test (eq ?issacm "C=US/O=ACM/CN=sts.acm.org"))
(test (<= (?macm get "MemberSince") 2006))

=>
(assert (satisfaction (resource-name server)

(credentials ?istud ?iacm))))

Fig. 5 The policy presented in Figure 2 specified using CLOUSEAU’s policy syntax.

analysis by CLOUSEAU, an efficient trust negotiation policy compliance checker.
This not only reduces implementation overheads, but also establishes CLOUSEAU as
a general-purpose compliance checker capable of analyzing both Datalog-based and
industry-standard policy languages. We then show that the TrustBuilder2 framework
for trust negotiation can be parameterized to function as a trust engine capable of
driving these types of negotiation sessions.

5.1 Efficient Policy Compliance Checking

Given a policy p and a set of security tokens S, a policy compliance checker finds
one or more minimal subsets of S that can be used to satisfy p. We call such minimal
subsets satisfying sets of security tokens. Compliance checkers are used to find sets
of local security tokens that can be disclosed to satisfy a remote policy, as well as
to determine whether the security tokens disclosed by a remote party can be used
to satisfy some local policy. Before the techniques outlined in this paper can be put
to use, we require a compliance checker capable of analyzing policies written using
the WS-Policy and WS-SecurityPolicy standards.

CLOUSEAU is an optimized policy compliance checker designed for trust nego-
tiation systems [13]. Internally, CLOUSEAU represents policies as sets of patterns
placing constraints on the collection of security tokens that must be presented to
access a given resource. When invoked, CLOUSEAU translates the provided set of
security tokens into an abstract object representation and then leverages efficient
pattern matching algorithms to determine the collection of all satisfying sets of secu-
rity tokens. Space limitations prevent a full discussion of the format of the constraint
patterns analyzed by CLOUSEAU, so we instead refer interested readers to [13] for
more details. As an introduction to CLOUSEAU’s policy syntax, Figure 5 shows the
policy presented in Figure 2 specified using this syntax.

In [13] the authors describe a compilation procedure for translating role-based
policies written in the RT0 and RT1 policy languages [15] into the intermediate pol-
icy representation analyzed by CLOUSEAU. We now describe such a compilation
procedure that can be used to translate policies specified as in Section 3 into a for-
mat suitable for analysis by CLOUSEAU. This translation is actually quite natural, as



Towards Standards-Compliant Trust Negotiation for Web Services 13

the token-based approach to trust and security embodied by WS-Trust maps directly
onto the intermediate policy language used by CLOUSEAU.

In presenting the following compilation procedure, we assume that policies are
expressed in DNF, as recommended by [19]. That is, we assume that policies are a
collection of n All clauses, each identifying one satisfying set of security tokens
for the policy. The ith such All clause in the policy should be processed as follows.
First, a new rule will be created for this All clause:

(defrule rule-<i>

In the above rule, the <i> will be replaced with a counter indicating which All
clause the rule represents. Assume this All clause has m Token elements. The kth
such element will be processed as follows. First, a constraint will be added to the
policy requiring that this token be presented:

(credential (id ?id-<k>) (issuer ?iss-<k>) (owned ?o-<k>) (map ?m-<k>))

If this Token’s Claims element or IssuerName element specifies that the
token must be issued by some specific issuer, <issuer>, the following test will be
added to rule-<i>:

(test (eq ?iss-<k> <issuer>))

If this Token’s Claims element contains the assertion <Ownership
Status="true">, then the following test will be added to rule-<i>:

(test (eq ?o-<k> true))

For all other constraint triples encoded in the Claims element of this token, the
following test will be inserted. Note that <op> is either eq, <, >, <=, or >= depend-
ing on whether the operation encoded in the constraint tuple is EQ, LT, GT, LTEQ,
or GTEQ. Similarly, <name> and <value> are placeholders for the attribute name
and constraint value identified in the constraint triple.

(test (<op> (?m-<k> get <name>) <value>))

After each Token element in the ith All clause has been processed as above,
rule-<i> will be terminated as follows:

=>
(assert (satisfaction (resource-name rule-<i>)

(credentials ?id-1 ... ?id-<m>))))

This process then repeats for each other All clause defined by the policy. We
now present the following theorem regarding the correctness and completeness of
this compilation procedure, the full proof of which can be found in [14]:

Theorem 1. Assume that a trust negotiation policy p specified using the WS-Policy
and WS-SecurityPolicy specifications is compiled using the above procedure into a
CLOUSEAU policy p′. Given the policy p′ and a set of security tokens S, the satis-
fying sets s1, . . . ,sn returned by CLOUSEAU are exactly the subsets of S that satisfy
the original policy p.



14 Adam J. Lee and Marianne Winslett

5.2 TrustBuilder2 as a WS-Trust Trust Engine

The WS-Trust standard defines a trust engine as “a conceptual system that evaluates
the security-related aspects of a message” [17]. Revisiting the basic WS-Trust token
issuance example from Section 4.1, the trust engine would have been responsible
for checking to see that Charlie was on Bob’s list of friends. To execute the more
complex example from Section 4.3, a more powerful trust engine would be required.
This trust engine would need to determine which policies and/or security tokens
should be disclosed at each round of the negotiation as a function of the existing
negotiation state and the policies and/or security tokens that were received during
the previous round. We now argue that in the future such a trust engine could—with
minimal effort—be implemented using TrustBuilder2, an extensible open-source
framework for trust negotiation.2

To substantiate this claim, we must show that TrustBuilder2 can analyze policies
specified using WS-Policy and WS-SecurityPolicy, and that it is at least as exten-
sible as the trust negotiation extensions to WS-Trust described in Section 4. Recall
from Section 5.1 that trust negotiation policies specified using WS-Policy and WS-
SecurityPolicy can be compiled into a format that is analyzable by the CLOUSEAU
compliance checker. Since TrustBuilder2 supports CLOUSEAU natively, it can ana-
lyze policies specified as described in Section 3. In Section 4.2, we showed that the
extensibility afforded by our extensions to WS-Trust comes from two sources: the
ability to support arbitrary trust negotiation strategies and security token formats,
and the ability to extend the TNExchange element to transport trust negotiation
evidence other than policies and security tokens.

The TrustBuilder2 framework makes use of an extensible data type hierarchy
that users can extend to add support for new security token formats, policy lan-
guages, or trust negotiation evidence types (e.g., trust tickets, etc.). Additionally,
the primary components of a trust negotiation system—including strategies—are
represented as abstract interfaces that can be extended or replaced by users of the
system. TrustBuilder2 also leverages a two-phase negotiation model in which partic-
ipants first exchange InitBrick data structures allowing them to establish a mutually-
acceptable system configuration. The remaining rounds of the negotiation involve
the exchange TrustMessage objects that encapsulate the policies, security tokens,
and other forms of evidence exchanged during the negotiation; note that this mir-
rors the exchange of TNInit and TNExchange elements described in Section 4.2.
As a result, each message exchange during our trust negotiation extensions to WS-
Trust can be translated in a one-to-one fashion into an object that can be parsed
TrustBuilder2. TrustBuilder2 can then examine the state of the negotiation, deter-
mine the next step, and generate an appropriate response. This response can then be
translated into the XML elements described in Section 4.2 and transmitted.

2 TrustBuilder2 is available for download at http://dais.cs.uiuc.edu/tn.



Towards Standards-Compliant Trust Negotiation for Web Services 15

6 Conclusions

Web services are a promising distributed computing paradigm, but fully unlocking
their potential requires flexible authorization techniques that can function correctly
without a priori knowledge of the users in the system. In this paper, we have shown
that the adoption of trust negotiation within this realm can occur within the frame-
work provided by existing web services security standards. In particular, we showed
that after defining a rudimentary claims dialect—which is fully-compliant with the
WS-Trust standard—the WS-Policy and WS-SecurityPolicy standards can be used
to define a range of expressive trust negotiation policies. We also showed that WS-
Trust’s negotiation and challenge framework can be extended to act as a standards-
compliant transport mechanism within which trust negotiation sessions can occur.

We also examined the systems aspects of this process and showed that trust nego-
tiation policies specified using the WS-Policy and WS-SecurityPolicy standards can
be complied into a format that is suitable for analysis by CLOUSEAU, an efficient
policy compliance checker for trust negotiation systems. This not only eases the de-
velopment of trust negotiation solutions for the web services domain, but shows that
it is possible to design a single compliance checker—namely CLOUSEAU—that is
capable of analyzing Datalog-style policy languages, as well as other industry stan-
dard policy languages. Furthermore, we show that the TrustBuilder2 framework for
trust negotiation can be parameterized to act as a trust engine, as described by the
WS-Trust standard, that can be used to drive these interactions.

Acknowledgments. This research was supported by the NSF under grants IIS-
0331707, CNS-0325951, and CNS-0524695 and by Sandia National Laboratories
under grant number DOE SNL 541065.

References

1. Bauer, L., Garriss, S., Reiter, M.K.: Distributed proving in access-control systems. In: Pro-
ceedings of the IEEE Symposium on Security and Privacy, pp. 81–95 (2005)

2. Becker, M.Y., Sewell, P.: Cassandra: Distributed access control policies with tunable expres-
siveness. In: Proceedings of the Fifth IEEE International Workshop on Policies for Distributed
Systems and Networks, pp. 159–168 (2004)

3. Bertino, E., Ferrari, E., Squicciarini, A.C.: X -TNL: An XML-based language for trust negoti-
ations. In: Proceedings of the Fourth IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY), pp. 81–84 (2003)

4. Bertino, E., Ferrari, E., Squicciarini, A.C.: Trust-X : A peer-to-peer framework for trust es-
tablishment. IEEE Transactions on Knowledge and Data Engineering 16(7), 827–842 (2004)

5. Boag, S., Chamberlain, D., Fernandez, M.F., Florescu, D., Robie, J., Simeon, J., (Editors):
XQuery 1.0: An XML Query Language. W3C Recommendation (2007). http://www.
w3.org/TR/xquery/

6. Bonatti, P., Samarati, P.: Regulating service access and information release on the web. In:
Proceedings of the Seventh ACM Conference on Computer and Communications Security
(CCS), pp. 134–143 (2000)



16 Adam J. Lee and Marianne Winslett

7. Business process execution language for web services version 1.1. Web page (2007). http:
//www.ibm.com/developerworks/library/specification/ws-bpel/

8. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description lan-
guage (WSDL) 1.1. W3C Note (2001). http://www.w3.org/TR/wsdl

9. Herzberg, A., Mass, Y., Michaeli, J., Naor, D., Ravid, Y.: Access control meets public key
infrastructure, or: Assigning roles to strangers. In: Proceedings of the IEEE Symposium on
Security and Privacy, pp. 2–14 (2000)

10. Koshutanski, H., Massacci, F.: Interactive access control for web services. In: Proceedings of
the 19th IFIP Information Security Conference (SEC), pp. 151–166 (2004)

11. Koshutanski, H., Massacci, F.: An interactive trust management and negotiation scheme. In:
Proceedings of the Second International Workshop on Formal Aspects in Security and Trust
(FAST), pp. 139–152 (2004)

12. Koshutanski, H., Massacci, F.: Interactive credential negotiation for stateful business pro-
cesses. In: Proceedings of the Third International Conference on Trust Management (iTrust),
pp. 257–273 (2005)

13. Lee, A.J., Winslett, M.: Towards and efficient and language-agnostic compliance checker for
trust negotiation systems. In: Proceedings of the Third ACM Symposium on Information,
Computer and Communications Security (ASIACCS 2008) (2008)

14. Lee, A.J., Winslett, M.: Towards standards-compliant trust negotiation for web services (ex-
tended version). Tech. Rep. UIUCDCS-R-2008-2944, University of Illinois at Urbana-
Champaign Department of Computer Science (2008)

15. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management frame-
work. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 114–130
(2002)

16. Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., Granqvist, H., (Editors): WS-
SecurityPolicy 1.2. OASIS Standard (2007). http://docs.oasis-open.org/
ws-sx/ws-securitypolicy/200702/

17. Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., Granqvist, H., (Editors): WS-Trust
1.3. OASIS Standard (2007). http://docs.oasis-open.org/ws-sx/ws-trust/
200512/

18. Nadalin, A., Kaler, C., Monzillo, R., Hallam-Baker, P., (Editors): WS-Security Core Specifi-
cation 1.1. OASIS Standard (2006). http://www.oasis-open.org/committees/
download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

19. Schlimmer, J., (Editor): Web Services Policy 1.2 - Framework (WS-Policy) . W3C Member
Submission (2006). http://www.w3.org/Submission/WS-Policy/

20. OASIS UDDI Specifications TC. Web page. http://www.oasis-open.org/
committees/uddi-spec/,

21. Winsborough, W.H., Seamons, K.E., Jones, V.E.: Automated trust negotiation. In: Proceedings
of the DARPA Information Survivability Conference and Exposition, pp. 88–102 (2000)

22. Winslett, M., Zhang, C., Bonatti, P.A.: PeerAccess: A logic for distributed authorization. In:
Proceedings of the 12th ACM Conference on Computer and Communications Security (CCS
2005), pp. 168–179 (2005)

23. Yu, T., Winslett, M., Seamons, K.E.: Supporting structured credentials and sensitive policies
throu gh interoperable strategies for automated trust negotiation. ACM Transactions on Infor-
mation and System Security 6(1) (2003)


