
Towards an Efficient and Language-Agnostic Compliance
Checker for Trust Negotiation Systems

Adam J. Lee
adamlee@cs.uiuc.edu

Marianne Winslett
winslett@cs.uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801

ABSTRACT
To ensure that a trust negotiation succeeds whenever possi-
ble, authorization policy compliance checkers must be able
to find all minimal sets of their owners’ credentials that can
be used to satisfy a given policy. If all of these sets can
be found efficiently prior to choosing which set should be
disclosed, many strategic benefits can also be realized. Un-
fortunately, solving this problem using existing compliance
checkers is too inefficient to be useful in practice. Specifi-
cally, the overheads of finding all satisfying sets using exist-
ing approaches have been shown to rapidly grow exponen-
tially in the size of the union of all satisfying sets of creden-
tials for the policy, even after optimizations have been made
to prune the search space for potential satisfying sets.

In this paper, we describe the Clouseau compliance
checker. Clouseau leverages efficient pattern-matching al-
gorithms to find all satisfying sets of credentials for a given
policy in time that grows as O(NA), where N is the number
of satisfying sets for the policy and A is the average size
of each satisfying set. We describe the design and imple-
mentation of the Clouseau compliance checker, evaluate
its performance, and show that it vastly outperforms exist-
ing approaches to finding all satisfying sets of credentials.
We then present a method for automatically compiling RT
policies into a format suitable for analysis by Clouseau and
prove its correctness and completeness.

Categories and Subject Descriptors: D.4.6 [Operating
Systems]: Security and Protection—access controls, authen-
tication; K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms: Algorithms, Performance, Security

Keywords: Compliance checker, policy, satisfying sets, trust
negotiation

1. INTRODUCTION
In trust negotiation approaches to authorization (e.g. [5,

9, 18, 23, 24, 25]), resources are protected by attribute-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’08, March 18-20, Tokyo, Japan
Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

based access policies, rather than explicit access control lists.
Entities use cryptographic credentials issued by third-party
attribute certifiers (e.g., professional organizations, employ-
ers, or government bodies) to prove various attributes about
themselves. Since these attributes might themselves be con-
sidered sensitive, they can optionally be protected by release
policies placing constraints on the individuals to whom they
can be disclosed. As such, a trust negotiation session evolves
into a bilateral and iterative exchange of policies and creden-
tials with the end goal of developing new trust relationships
on-the-fly. Because these types of systems allow resource ad-
ministrators to specify the intention of a policy, rather than
its logical extension (i.e., an access control list), authorized
entities can gain access to available resources without re-
quiring that their identity be known a priori.

The design of robust and highly-available trust negoti-
ation systems hinges on the availability of efficient policy
compliance checkers. Given a policy p and a set C of cre-
dentials, the compliance checker is responsible for determin-
ing one or more minimal subsets of C that satisfy p. We
call these minimal subsets satisfying sets of credentials. To
ensure that trust negotiation protocols establish trust when-
ever possible, the compliance checkers used must be capable
of finding all satisfying sets of credentials for a given pol-
icy. This enables the negotiator to attempt alternate means
of establishing trust in the event that the initially-chosen
negotiation tactic leads to a deadlock or other dead end.

Trust negotiation is intrinsically a strategy-driven pro-
cess in which the participants each attempt to advance the
state of the protocol while maximizing their own particular
goals [28]. For instance, the so-called eager and parsimo-
nious negotiation strategies allow negotiation participants
to balance a trade-off between negotiation speed and privacy
by choosing to disclose either all credentials that a remote
party is authorized to view or only those that have been
deemed relevant to satisfying the policy at hand, respec-
tively [24]. If a negotiation participant is able to determine
all satisfying sets of credentials for a given policy a priori,
then much finer-grained strategies can be employed. For
example:

• If entities assign point values to individual credentials
that indicate each credential’s level of sensitivity (e.g.,
as in [27]), the negotiation process can respond to a
given policy by disclosing the satisfying set with the
lowest overall sensitivity.

• In the event that an entity has digital credentials rep-
resenting memberships in organizations that may lead

to various types of discounts or preferential treatment
(e.g., AAA, AARP, or frequent flyer credentials), they
could employ a negotiation strategy that discloses sat-
isfying sets containing these types of credentials first.

• In some cases, entities might wish to minimize the cu-
mulative number of credentials disclosed over multiple
rounds of a given trust negotiation session; a simple
greedy algorithm could be used to determine the sat-
isfying set that minimizes the overall number of cre-
dentials disclosed.

• A party might wish to steer the negotiation in the
direction most likely to minimize its duration. For ex-
ample, a server may wish to lead the negotiation in the
direction that the analysis of logs of past negotiations
has shown to be the way that most users gain access.

Existing compliance checkers designed for trust negotia-
tion policy languages find at most one satisfying set of cre-
dentials at a time, but can be operated in an iterative man-
ner to discover alternate satisfying sets in the event that
the first set found leads to a negotiation path that fails to
establish trust. While this iterative approach to discover-
ing satisfying sets is sufficient to ensure the completeness
of trust negotiation protocols, it is a very slow way to dis-
cover all satisfying sets at once. As a result, it is unrealistic
to use this approach as the basis for the types of strategies
discussed above. Specifically, the overheads of finding all
satisfying sets using such an approach have been shown to
grow exponentially in the size of the union of all satisfying
sets of credentials for the policy, even after optimizations
have been made to prune the search space for potential sat-
isfying sets [22].

In this paper, we describe the design and implementa-
tion of Clouseau, a highly-efficient and policy language-
agnostic compliance checker for trust negotiation systems.
Rather than discovering satisfying sets of credentials using
a top-down proof construction system, Clouseau solves the
policy compliance checking problem by compiling policies
into a format that can be efficiently analyzed using solutions
to the many pattern/many object pattern match problem.
Given a set of patterns and a set of objects, algorithms for
solving this problem find all patterns matched by subsets of
the provided objects. Internally, Clouseau represents ac-
cess control policies as patterns specifying constraints on the
credentials, credential chains, and uncertified claims (e.g.,
phone numbers, addresses, etc.) that must be presented to
gain access to a particular resource. The Rete algorithm [13]
is then used to find all satisfying sets by efficiently matching
objects representing a user’s credentials and claims against
these patterns. Overall, Clouseau makes several important
contributions related to the compliance checker problem for
trust negotiation systems:

• Clouseau requires only tens of milliseconds, on av-
erage, to determine every satisfying set of credentials
associated with a reasonably-sized policy; this is com-
parable to the time required by existing trust negoti-
ation compliance checkers to find one satisfying set.

• To the best of our knowledge, Clouseau represents
the first trust negotiation compliance checker capable
of finding all satisfying sets of credentials for a given
policy with time overheads that scale as O(NA), where
N is the number of satisfying sets for a policy and

A is the average size of each satisfying set. Previous
solutions to this problem have running time overheads
that grow exponentially in the size of the union of all
satisfying sets. As a concrete example, the iterative
solution presented in [22] takes over 10 seconds to find
two overlapping satisfying sets containing a total of 20
credentials, while Clouseau finds the same satisfying
sets in approximately 40 ms.

• In the worst case, the number of satisfying sets for a
given policy can be exponential in the size of the pol-
icy. However, Clouseau’s performance remains rea-
sonable even when policies become inordinately com-
plex. For example, Clouseau can find 512 satisfying
sets each of size 18 in approximately one second; we
have not found policies of this complexity being used
in practice or mentioned elsewhere in the research lit-
erature. In Section 6, we show that policies as complex
as even the most complicated policies used in Becker’s
formalization of the security requirements for the UK’s
electronic health records service [2] can be analyzed by
Clouseau in under 100 ms.

• Since it can efficiently find all satisfying sets of cre-
dentials for a given policy, Clouseau makes the use
of “smarter” trust negotiation strategies practical. In
Section 6, we show that Clouseau is very fast at find-
ing the minimum-weight (e.g., least-sensitive) satisfy-
ing set of credentials for a given policy.

• The design of a single highly-optimized compliance
checker capable of analyzing policies written in any
policy language would allow entities to write policies
without worrying about the costs of analyzing them.
Clouseau compiles policies written in high-level pol-
icy languages into an intermediate representation that
specifies constraints on the actual credentials used to
satisfy a given access control policy, which it can then
efficiently analyze. We present a process for automati-
cally compiling RT [19] policies into a format that can
be analyzed by Clouseau and prove the correctness
and completeness of this compilation procedure. Since
policies written in all existing trust negotiation policy
languages are satisfied by the same types of evidence,
we conjecture that equivalent compilation mechanisms
could be specified for the other languages as well.

The rest of this paper is organized as follows. We begin
with a discussion of related work in Section 2. We then
formally define the specific instance of the more general pol-
icy compliance checking problem solved by Clouseau in
Section 3. Section 4 describes the Rete algorithm, presents
the design and implementation of the Clouseau compliance
checker, and discusses the internal representation of policies
and evidence used by Clouseau. We present a procedure
for automatically compiling RT policies into a format suit-
able for analysis by Clouseau in Section 5. In Section 6 we
conduct a series of experiments to evaluate the performance
of Clouseau and compare its benefits and limitations to
those of other compliance checking approaches. Lastly, we
present our conclusions and interesting directions for future
work in Section 7.

2. RELATED WORK
In [21], the authors broadly classify policy compliance

checkers for trust management and trust negotiation sys-
tems into three categories. They first define type-1 com-
pliance checkers as functions that return only a Boolean
result indicating whether the policy in question was sat-
isfied. Compliance checkers for the PolicyMaker [7, 8] and
KeyNote [6] trust management systems are included in this
first category, as the non-iterative nature of these systems
makes the discovery of why a particular access was permit-
ted superfluous; simply knowing that the compliance checker
can construct a formal proof of authorization is sufficient.
The CPOL compliance checker [10] is a highly-optimized
compliance checker designed to enforce access policies on
centralized resources in high-throughput environments, such
as location-detection systems. CPOL uses aggressive caching
and other optimizations to achieve incredible performance,
but does not return evidence supporting the binary deci-
sions that it makes. Lastly, the compliance checker for Pon-
der [12], which is used for policy-based network administra-
tion, also falls into this first category.

Type-2 compliance checkers return one satisfying set of
credentials in addition to a Boolean value in the case that a
policy is found to be satisfied. The compliance checker used
by the REFEREE system [11] is capable of returning such
justifications, though it need not do so. It is important to
note that the ability to associate at least one satisfying set of
credentials with a compliance checker decision is required by
the trust negotiation process, as otherwise individuals could
not determine which credentials should be sent to their ne-
gotiation partner after they determine that a remote policy
can be satisfied. As such, the compliance checkers for the
XML-based policy languages X -TNL [4] and the IBM Trust
Policy Language [15] fall into this category, as do compliance
checkers for existing logic-based trust negotiation policy lan-
guages, such as Cassandra [3] and the language presented by
Koshutanski and Massacci in [16].

Lastly, type-3 compliance checkers are defined as func-
tions that return every minimal set of credentials that can be
used to satisfy a particular policy. To date, no trust negoti-
ation compliance checkers have been developed expressly for
this purpose, although significant strategic benefits could be
recognized by such a compliance checker. In [22], Smith et
al. discuss several important uses of this type of compliance
checker and describe the Satisfying Set Generation (SSgen)
algorithm for discovering all satisfying sets for a given pol-
icy using a type-2 policy compliance checker as a black box.
They show that when policies are expressed in disjunctive
normal form (DNF), then a number of clever optimizations
can be made to prune the state space that must be searched
for satisfying sets of credentials. They then evaluate the
performance of an implementation of the SSgen algorithm
that used the IBM TE compliance checker [15] as the base
type-2 compliance checker.

Figure 1 is a reproduction of the results presented in [22]
depicting the running times of the SSGen algorithm. The
three most interesting cases in which the SSgen algorithm
was evaluated include the cases in which (i) a policy has one
satisfying set of size U , (ii) a policy has U satisfying sets of
size one, and (iii) a policy has two satisfying sets, each of
size 3U

4 . In all cases, U represents the size of the union of all
satisfying sets and was varied between 1 and 24. In case (i),
the SSgen algorithm scaled linearly with U in the sub-second

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

Av
er

ag
e

tim
e

(s
ec

)

Size of the union of all satisfying sets (U)

One satisfying set
U satisfying sets

Two satisfying sets

Figure 1: Running time of the SSGen algorithm as
a function of the size of the union of all satisfying
sets.

time range. In cases (ii) and (iii), the SSgen algorithm’s
running time increased exponentially with U and rapidly
became impractical.

Clouseau improves upon this previous work by compil-
ing trust negotiation policies into an intermediate represen-
tation that can be analyzed using efficient pattern matching
algorithms. This non-traditional approach to theorem prov-
ing greatly optimizes the process of finding all possible satis-
fying sets of credentials for a given policy. Further, because
existing trust negotiation policy languages can be compiled
into a format that can be analyzed using Clouseau, devel-
opers can optimize trust negotiation runtime systems while
still allowing policy writers to continue to use existing high-
level policy languages.

3. PROBLEM DEFINITION
At its most basic level, a trust negotiation session is a bi-

lateral and iterative exchange of access policies and evidence
conducted to establish mutual trust between two parties.
For example, a student that wishes to access a resource con-
nected to a computing grid might be returned a policy stat-
ing that only full-time students at accredited universities can
access that resource. Prior to proving her enrollment sta-
tus to the resource operator, the student might first require
that the resource operator prove that it is operated by either
an NSF-sponsored organization or an organization that is a
member of the Better Business Bureau. Digital credentials,
such as X.509 certificates, are the most common form of ev-
idence used by these protocols, although uncertified claims
(as in [5, 9]), proof fragments (as in [1, 26]), or trust tickets
(as in [5]) could also be exchanged. In the remainder of this
paper, we will define E as the set of all such evidence and P
as the set of all policies.

Formally, a compliance checker is defined as a function
cc : 2E × P → R that takes some set of evidence and a pol-
icy and determines whether (and possibly how) this policy
is satisfied by the specified set of evidence. The exact defi-
nition of satisfaction is specific to the policy language being
used. For example, in any language with a model theory, we
say that a set E of evidence satisfies a policy p if in every
model where E is true, p is also true. In Clouseau, a policy

is specified as one or more patterns placing constraints on
the credentials and other evidence that must be presented
to gain access to a particular resource. We say that such
a policy is satisfied if at least one of these patterns can be
matched by the set of objects describing the credentials and
other evidence possessed by a given entity. As we will see in
Section 5, proving the correctness of our RT to Clouseau
policy compilation process involves proving an equivalence
between these two concepts of satisfaction. That is, we must
show that an Clouseau pattern-match occurs if and only if
the RT rules of inference draw the same conclusion.

When a compliance checker is invoked to check the satis-
faction of some policy protecting a local resource r, it will be
given a set of evidence provided by the remote entity wishing
to access r. In this case, the compliance checker need only
return a Boolean value indicating whether the policy was
satisfied (i.e., R ≡ B). However, if local credentials are used

in an attempt to satisfy a remote policy p, then R ≡ 22E .
That is, the compliance checker must return zero or more
sets of local evidence that minimally satisfy p so that the
local entity knows which local evidence can be sent to the
remote entity to gain access to the resource protected by p.
We say that some set E of evidence minimally satisfies a
policy p if no proper subset of E also satisfies p. A compli-
ance checker capable of recognizing all possible subsets of
the local evidence that minimally satisfy a given policy is
required to ensure that a trust negotiation protocol will es-
tablish trust whenever possible and can also afford its user a
number of strategic advantages. Therefore, our focus in this
paper is to efficiently solve the following specific instance of
the more general policy compliance checking problem:

The Type-3 Compliance Checker Problem. Given a
set E ∈ E of evidence and a policy p ∈ P, find all distinct
subsets sets e1, . . . , en of E that minimally satisfy p.

4. DESIGN OF CLOUSEAU
In this section we discuss the design of the Clouseau

compliance checker, which we have designed to efficiently
solve the type-3 compliance checker problem. We begin
by showing that this problem naturally translates into an
instance of the many pattern/many object pattern match
problem. This is followed by a discussion of the technical
details of our implementation of the Clouseau compliance
checker, including an overview of the Rete algorithm, which
is used by Clouseau. Lastly, we conclude this section with
an overview of Clouseau’s internal representation of trust
negotiation evidence and policies.

4.1 Design Approach
To date, most policy languages for trust negotiation are

modeled using logic programming approaches, as the formal
semantics of logic programs are well understood. For exam-
ple, policies in Cassandra [3], PSPL [9], the language used by
Koshutanski and Massacci [16], RT [19], and PeerAccess [26]
are all specified in this manner. Even some XML-based
languages, such as TPL, are formally modeled using logic
programming approaches [15]. Not surprisingly, the pol-
icy compliance checking approaches used for these types of
languages have leveraged traditional theorem-proving tech-
niques. When the compliance checker is invoked on a policy
p with a set E of evidence, the underlying theorem prover

stores the set of evidence e ⊆ E used during the construction
of a single proof that p was satisfied. Rather than simply re-
turning the Boolean value true, the set e is also returned by
the compliance checker to provide support for its decision.

Although this type of theorem-proving approach to the
general compliance checker problem is natural given the log-
ical foundations of trust management, it is not the only way
in which this problem can be formulated. In fact, using
this type of approach to solve the type-3 compliance checker
problem is unappealing, as theorem provers in general are
designed to find a single proof that a fact is valid (i.e., that
a policy is satisfied) and search for alternate proofs only
when a given proof attempt fails. As an alternate approach,
we have recognized that the the type-3 compliance checker
problem is actually an instance of the more general many
pattern/many object pattern matching problem [13]:

The Many Pattern/Many Object Pattern Match-
ing Problem. Given a set of patterns P and a set of objects
O, determine all subsets of O that can be used to match any
pattern p ∈ P.

Clearly, if credentials and other evidence are treated as ob-
jects and policy clauses are treated as patterns, an efficient
solution to this problem could likely lead to an efficient solu-
tion to the type-3 compliance checker problem. This prob-
lem has been studied previously by the artificial intelligence
community, as it is central to the design of efficient produc-
tion system interpreters. As a result, efficient algorithms,
such as Rete [13] and TREAT [20], have been developed to
solve this problem. The Rete algorithm is optimized for in-
stances of the many pattern/many object pattern matching
problem in which (i) patterns are compilable, (ii) all ob-
jects remain constant once inserted into the Rete engine’s
working memory, and (iii) the set of objects changes rela-
tively slowly [13]. Note that trust negotiation policies are
all compilable, as they are designed to enable automated
reasoning, rather than human interpretation. Further, cre-
dentials and other evidence remain constant once obtained.
For example, modifying or tampering with a digital certifi-
cate invalidates its attached issuer signature. Lastly, the set
of local evidence changes very infrequently and the set of
remote evidence grows monotonically as the protocol pro-
ceeds. We therefore use the Rete algorithm as the basis for
the Clouseau compliance checker.

4.2 The Rete Algorithm
We now provide an overview of the Rete algorithm and

highlight its benefits in solving the type-3 compliance checker
problem. Space limitations prevent a full discussion of the
specifics of the Rete algorithm; interested readers should
consult [13] for more information. At a high level, the Rete
algorithm works by forming a network of nodes that rep-
resent one or more matching tests found in the specified
patterns. Pattern nodes, which are also known as one-input
nodes, are used to match single objects stored in the work-
ing memory of the Rete engine. In the case of Clouseau,
these objects represent constraints on individual pieces of
trust negotiation evidence (e.g., digital certificates and un-
certified claims). The outputs of these pattern nodes can
then be fed into one or more join nodes, which are used to
build more complex patterns consisting of conjunctions of
basic patterns and constraints existing between the objects
matched by these patterns. In our formulation of the type-3

?c ?a ?b ?d ?e

^ ^

^ ^

p

Pattern nodes

Join nodes

Terminal node

Figure 2: An example Rete network.

compliance checker problem, join nodes are used to specify
conjunctions of basic credentials as well as inter-credential
constraints (i.e., chains of trust or credential delegations).

A collection of pattern nodes and join nodes forms a di-
rected acyclic graph whose sink nodes are called terminal
nodes. As matches occur in the Rete network, information
describing the match is propagated along the edges of the
graph. When a terminal node is reached, an event is trig-
gered that signifies that a complete match has occurred. In
Clouseau, this implies that a given policy has been satis-
fied and enables the compliance checker to extract the set
of evidence that led to this particular policy satisfaction.
Since information is propagated along all possible edges in
the Rete network, all satisfying sets are found by the Rete
algorithm.

Figure 2 is an illustration of a Rete network for the policy
p ← a ∧ b ∧ (c ∨ (d ∧ e)), which is represented internally as
the pair of Horn clauses p ← a, b, c and p ← a, b, d, e. Square
boxes represent pattern nodes, the trapezoids are join nodes,
and the oval node is a terminal node that represents the
satisfaction of the policy p. Note that distinct patterns are
matched at most once, despite appearing in multiple Horn
clauses. Further, join nodes can be shared between multiple
clauses of the policy.

Another benefit of the Rete approach is that the network
maintains state between invocations, which greatly mini-
mizes the number of times that the working memory is iter-
ated over as multiple policies are matched. That is, each ob-
ject in the Rete engine’s working memory is matched against
each pattern node at most one time and the results of this
matching operation are saved. For instance, if the policy
p′ ← a ∧ b ∧ (c ∨ f) is added to the working memory of the
Rete engine in Figure 2, the Rete engine needs only to check
for the existence of credential f , as any matches for a ∧ b
and a ∧ b ∧ c were found and memoized during the analysis
of the policy p. These types of optimizations further help
make the Rete algorithm an efficient approach to solving the
type-3 compliance checker problem.

4.3 Implementation
We now describe our implementation of Clouseau, a

fully-functional compliance checker that leverages the Rete
algorithm to efficiently solve the type-3 compliance checker
problem. Our goal in designing Clouseau was not to pro-
pose a new trust negotiation policy language, but rather to
explore the design of efficient solutions to the type-3 com-
pliance checker problem. Therefore, rather than designing
Clouseau to check the satisfaction of policies specified in
one particular policy language (e.g., Cassandra, RT , TPL,

or X -TNL), we instead focus on designing a more general-
purpose compliance checker. Ultimately, the access control
policies used by trust negotiation systems are satisfied by
digital certificates or other such evidence presented by par-
ticipants in the negotiation process. To this end, the policy
patterns used to construct the Rete network analyzed by
Clouseau specify constraints on the actual evidence (e.g.,
certificates, certificate chains, and claims) necessary to gain
access to a particular resource. This is in contrast to higher-
level policy languages, such as RT , which have syntactic
constructs to represent concepts such as delegation natively.
In Section 5, we discuss a process through which RT policies
can be automatically compiled into the native rule format
used by Clouseau for analysis. Since all trust negotiation
policies are eventually satisfied by the same types of ev-
idence, we believe that equivalent compilation procedures
could be derived for other higher-level policy languages as
well.

Our implementation of Clouseau was developed using
the Java programming language and runs within the Trust-
Builder2 framework for trust negotiation.1 At a high level,
Clouseau takes a set E of evidence and an access control
policy p and uses an implementation of the Rete algorithm
provided by the Jess expert system [14] to determine all of
the ways in which subsets of E can satisfy p. The running
time of this Rete implementation scales, on average, lin-
early with the size of its working memory [14]. This implies
that Clouseau’s running time scales as O(NA), where N
is the number of satisfying sets for a policy and A is the
average size of each satisfying set; we confirm this result
experimentally in Section 6. Our implementation consists
of a Jess specification defining the internal representations
of evidence and several useful functions for reasoning about
credential chains, and a larger Java code base responsible
for examining various types of evidence, translating evidence
into objects that can be instantiated within Clouseau, and
creating and querying the Rete network used by Clouseau.
We now discuss the internal representation of evidence used
by Clouseau as well as the specification of access control
policies.

Evidence Representation
Because Jess provides a general-purpose implementation of
the Rete algorithm, it has no way of representing or reason-
ing about trust negotiation evidence natively. We therefore
had to define several object templates that represent key
types of evidence inside of the Rete engine’s working mem-
ory. The current implementation of Clouseau supports the
use of digital certificates, certificate chains, and uncertified
claims as forms of evidence; adding support for other types
of evidence, such as Trust-X trust tickets, would be a rela-
tively straightforward process.

Clouseau makes use of TrustBuilder2’s extensible cre-
dential type hierarchy, which allows users to add support
for new credential types to TrustBuilder2—and by extension
Clouseau—without modifying the underlying code base.
Trust negotiation implementations are responsible for vali-
dating any proof-of-ownership challenges associated with a
given credential and for forming and verifying the credential
chains passed into Clouseau. Once a collection of creden-

1For further information regarding TrustBuilder2 or to
download the framework, which includes Clouseau, please
see http://dais.cs.uiuc.edu/tn.

;; Used to describe digital certificates and
;; other credentials
(deftemplate credential

(slot id)
(slot issuer)
(slot subject)
(slot fingerprint)
(slot owned (default FALSE))
(slot map (default (new java.util.HashMap))))

;; Contains an ordered list of credentials making
;; up a credential chain
(deftemplate credential-chain

(multislot credentials))

;; Claims are stored as attribute/value pairs
(deftemplate claim

(slot id)
(slot type)
(slot value))

Figure 3: Internal evidence representations used by
Clouseau.

tial chains has been passed into Clouseau, they are trans-
lated into instances of the credential and credential-chain
object types described in Figure 3. Uncertified claims pro-
vided as evidence to Clouseau are represented internally
as instances of the claim object type.

Objects of type credential are generated by extract-
ing information from a given cryptographic credential us-
ing methods of the abstract credential class at the top of
TrustBuilder2’s credential type hierarchy. Each credential
structure is assigned a unique identifier and contains fields
describing the credential’s subject and issuer, a cryptographic
fingerprint of the credential, a Boolean value indicating
whether proof-of-ownership of the credential was verified,
and a map containing key/value pairs describing attributes
(e.g., job function, hire date, etc.) or other information
(e.g., expiry date) embedded in the credential. Internally,
credential chains are represented as ordered lists of unique
identifiers satisfying two invariants: (i) the credential ref-
erenced by the identifier at index 0 in the list is the root
of the credential chain and (ii) the credential referenced by
the identifier at index i > 0 was issued by the owner of the
credential at index i− 1. Uncertified claims are represented
as attribute/value pairs associated with a unique identifier
field.

Policy Specification
In Clouseau, access control policies are specified as collec-
tions of Jess rules that place constraints on the credentials,
credential chains, and uncertified claims that must be pre-
sented to gain access to a particular resource. In the remain-
der of this section, we provide an overview of the Clouseau
policy syntax by discussing an example access control policy.
We note that only a very small subset of the Jess language
is needed to specify Clouseau policies. In particular, we
use only the language constructs discussed in this section.

Figure 4 is an example access control policy designed to
allow graduate students at universities accredited by the Ac-
creditation Board for Engineering and Technology (ABET)
to access some resource “server,” provided that they disclose
an email address that can be used for future correspondence.
Because of the relatively simple nature of this policy, it can

;; This policy is satisfied by graduate students at ABET-
;; accredited universities who provide an email address
;; that can be used for future correspondence.
(defrule rule-grad-student

;; Find a certificate chain leading from a university
;; to a graduate student
(credential (id ?iuniv) (subject ?suniv))
(credential (id ?istud) (owned true) (map ?mstud))
(test (eq "Graduate Student" (?mstud get "Type")))
(credential-chain (credentials $?cstud))
(test (is-root ?iuniv ?cstud))
(test (is-leaf ?istud ?cstud))

;; Find a certificate chain leading from ABET to
;; the university found above.
(credential (id ?iabet) (fingerprint

"38:1A:42:E9:00:7D:19:41:AC:66:F2:EF:12:E6:B4:A1"))
(credential (id ?icert) (map ?mcert)

(subject ?scert &: (eq ?scert ?suniv)))
(test (eq "Accredited University" (?mcert get "Type")))
(credential-chain (credentials $?ccert)
(test (is-root ?iabet ?ccert))
(test (is-nth ?icert 2 ?ccert))

;; See if the student provided an email address
(claim (id ?iemail) (type "Email") (value ?v))

=>
(assert (satisfaction (resource-name server)

(credentials ?cstud ?ccert)
(claims ?iemail))))

Figure 4: An example Clouseau policy.

be specified using a single Jess rule. Rules consist of two
parts: a left hand side (LHS) specifying patterns that must
be matched by objects in the working memory of the Rete
engine and a right hand side (RHS) that specifies some ac-
tion to be taken if the pattern in the LHS of the rule is
completely matched. These two parts of a rule are sepa-
rated by the => token.

The LHS of the rule in Figure 4 consists of three groups
of patterns that must be matched by objects representing
pieces of trust negotiation evidence in the working mem-
ory of the Rete engine. The first group determines whether
there exists a certificate chain whose leaf node is a certificate
of type “Graduate Student.” The first line of this group is
a pattern that matches any credential and saves the values
of its unique identifier and subject string in the variables
?iuniv and ?suniv, respectively. The second line in this
grouping is a similar pattern that matches any credential
whose ownership was proven during the trust negotiation
protocol. The third line in this grouping enforces the con-
straint that the second credential matched has a “Type”
field whose value is “Graduate Student.” The last three lines
of the first grouping require that the two matched credentials
must exist in a credential chain whose authenticity was ver-
ified by the trust negotiation implementation. Note that a
given pattern need not constrain all fields of the credential
object type.

The second group of patterns is similar to the first, in that
it also establishes the existence of another credential chain.
The first two lines of this of this group form a pattern that
matches only the certificate whose cryptographic fingerprint
is represented by the hexadecimal string 38:1A:42:E9:00:
7D:19:41:AC:66:F2:EF:12:E6:B4:A1, which is the finger-
print of the (fictitious) certificate used by ABET to issue
university accreditations. The third, fourth, and fifth lines

of this group form a pattern that matches any credential
that has a subject field that is the same as that of the root
of the first credential chain (i.e., the university), and has a
“Type” field whose value is “Accredited University.” The
last two lines of this pattern place the constraint that the
ABET credential must form the root of a credential chain of
length two that ends with the university’s accreditation cer-
tificate. The last group of constraints consists of a single line
specifying that the user needs to also disclose an uncertified
claim of type “Email” containing his or her email address,
which will presumably be stored for future correspondence.

In general, the RHS of an Clouseau policy can either
assert an intermediate result that can be used as input to
other rules, or assert a satisfaction object describing one
way in which a particular policy was satisfied. The former
action might be taken if a complicated policy has several
paths to satisfaction that each require a common prefix to
be matched; we will see examples of this in Section 5.2.
The policy in Figure 4 takes the latter action and asserts a
satisfaction object containing the set of credentials and
the single claim used to satisfy the policy.

We note that despite a simple policy specification syntax,
Clouseau policies can quickly become large and difficult
to understand due to the number of constraints that might
exist between elements of a credential chain or fields of cre-
dentials in different chains. However, we do not view this as
a limitation of Clouseau. We do not expect that users of
Clouseau will choose to specify policies using this subset of
Jess. Rather, we view the native policy representation used
by Clouseau as being akin to assembly language in that it
provides a representation of a potentially-complex expres-
sion that can be efficiently analyzed. We expect that users
will specify policies in higher-level trust negotiation policy
languages and that these policies will be automatically com-
piled into Clouseau’s native language, much as programs
written in high-level programming languages are compiled
into assembly code prior to execution.

5. ANALYZING RT POLICIES
In this section, we discuss a method for automatically

compiling RT policies into a format suitable for analysis by
Clouseau. For ease of exposition, we begin by discussing
a compilation process for RT 0 policies, which support the
use of unparameterized roles, and prove the correctness and
completeness of this process. We then provide an intuition
for how this process can be extended to support RT 1 poli-
cies allowing the use of parameterized roles. The ability
to correctly analyze these types of policies is a necessary
step towards establishing Clouseau as a general-purpose
solution to the type-3 compliance checker problem. Since
all trust negotiation policies are eventually satisfied by the
same types of evidence, we conjecture that equivalent com-
pilation procedures could be devised for other higher-level
policy languages as well.

5.1 RT 0 Policy Syntax
Recall from [19] that RT 0 is the most basic language in

the RT family of trust management languages. As in all
of the RT languages, principals are identified by means of
identity certificates. RT 0 roles are defined simply as strings
identifying the name of the role and cannot be parameter-
ized. Policy statements in RT 0 are expressed as one or more
of these role definitions and are encoded as role definition

credentials signed by the author of the role definition. There
are four basic types of role definition credentials in RT 0:

Simple Member A role definition of the form KA.R ←
KD encodes the fact that principal KA considers prin-
cipal KD to be a member of the role KA.R.

Simple Containment A role definition of the form KA.R ←
KB .R1 encodes the fact that principal KA defines the
role KA.R to contain all members of the role KB .R1,
which is defined by principal KB .

Linking Containment A role definition of the form KA.R ←
KA.R1.R2 is called a linked role. This defines the mem-
bers of KA.R to contain all members of KB .R2 for each
KB that is a member of KA.R1.

Intersection Containment The role definition KA.R ←
KB1 .R1 ∩ · · · ∩ KBn .Rn defines KA.R to contain the
principals who are members of each role KBi .Ri where
1 ≤ i ≤ n.

These four basic types of role definitions can be used to
define a wide range of access control policies. For example,
the following RT 0 role definitions express an access control
policy requiring that entities accessing a given resource be
employees of a SuperGrid member organization:

Provider .service ← Provider .partner .employee

Provider .partner ← SuperGrid .memberOrganization

If a principal, Alice, could provide credentials proving the
statements SuperGrid .memberOrganization ← AliceLabs and
AliceLabs.employee ← Alice, she could satisfy the policy
formed by the above two role definitions and gain access to
the protected service.

5.2 Compiling RT 0 Policies
In RT 0, policies are collections of role definition creden-

tials. Therefore, we must preprocess the set of credentials
provided to Clouseau as input in order to generate the set
of policy rules that Clouseau will attempt to satisfy. Since
Clouseau examines the actual credentials used to hold RT 0

assertions, rather than these higher-level RT 0 assertions, we
must make a few assumptions regarding the format of these
credentials.

1. We assume that principals in the system are identified
by the fingerprint of their identity certificates. Text
strings such as “ABET .accredited” will be used during
the discussion of abstract policies, although such as-
sertions are actually shorthand for statements such as
“38:1A:42:E9:00:7D:19:41:AC:66:F2:EF:12:E6:B4:
A1.accredited.” When defining Clouseau policies later
in this section, we will use the notation <K A> to denote
the fingerprint of KA’s identity certificate.

2. Simple membership role definition credentials of form
KA.R ← KB are assumed to have the attributes
“roleMgr,” “role,” and “roleSubj” set to the values
<K A>, R, and <K B>, respectively.

3. Role definition credentials are valid if and only if they
are signed by the principal identified at the head of
the credential. For example, the simple membership
credential KA.R ← KB is considered valid if and only
if it is signed by the principal KA.

;; Template to store role membership information
(deftemplate is-member

(slot role)
(slot roleMgr)
(slot roleSubj)
(multislot credentials))

;; Code to detect role memberships via the presence of simple
;; membership policy credentials. I.e., this can prove that
;; K_A.R <- K_B
(defrule member-of

;; Match K_B’s identity certificate
(credential (id ?kb) (fingerprint ?fkb))

;; Prove that K_A says that K_B is in role R
(credential (id ?ka) (fingerprint ?fka))
(credential (id ?r) (map ?m))
(test (eq ?fka (?m get "roleMgr")))
(test (eq ?fkb (?m get "roleSubj")))
(credential-chain (credentials $?c))
(test (is-root ?ka ?c))
(test (is-nth ?r 2 ?c))

=>
(assert (is-member (role (?m get "role"))

(roleMgr (?m get "roleMgr"))
(roleSubj (?m get "roleSubj"))
(credentials ?ka ?kb ?r))))

Figure 5: Base policy enabling Clouseau to deter-
mine role membership via the use of simple mem-
bership credentials.

Given the above assumptions regarding credential format,
we now describe an algorithm for generating a Clouseau
policy p′ that is equivalent to an RT 0 policy p consisting of
the valid role definition credentials r1, . . . , rn and the set of
identity certificates c1, . . . , cm.

1. Insert the is-member template type and the member-of
rule defined in Figure 5 into p′. The is-member object
type holds information regarding a particular princi-
pal’s membership in a particular role. The member-of
rule asserts an is-member object if a simple member-
ship role definition credential of form KA.R ← KB can
be found, along with identity certificates for KA and
KB .

2. Generate the credential objects corresponding to the
identity certificates c1, . . . cm and insert these into the
working memory of Clouseau.

3. For each valid role definition credential ri:

• Generate the credential object corresponding
to ri and insert it into the working memory of
Clouseau. Save the “id” field of this object as
the variable <id>.

• If ri is a simple containment credential of form
KA.R ← KB .R1 then insert the following rule
into p′:

(defrule rule-sc-<id>
(is-member (role "R_1") (roleMgr <K_B>)

(roleSubj ?rs) (credentials $?c))
=>

(assert (is-member (role "R") (roleMgr <K_A>)
(roleSubj ?rs)
(credentials ?c <id>)))

This rule asserts that a principal is a member of
role KA.R if he is also a member of KB .R1.

• If ri is a linking containment credential of form
KA.R ← KA.R1.R2 then insert the following rule
into p′:

(defrule rule-lc-<id>
;; Find a member of R_2
(is-member (role "R_2") (roleMgr ?r2mgr)

(roleSubj ?r2subj) (credentials $?cr2))
;; find a member of K_A.R_1
(is-member (role "R_1") (roleMgr <K_A>)

(roleSubj ?r1subj)
(credentials $?cr1))

(test (eq ?r1subj ?r2mgr))
=>

(assert (is-member (role "R") (roleMgr <K_A>)
(roleSubj ?r2subj)
(credentials ?cr1 ?cr2 <id>)))

This rule asserts that a principal is a member of
the role KA.R if he is a member of the role R2

defined by some member of KA.R1.

• If ri is an intersection containment credential of
form KA.R ← KB1 .R1∩ · · ·∩KBk .Rk then insert
the following rule into p′:

(defrule rule-ic-<id>
(is-member (role "R_1") (roleMgr <K_B_1>)

(roleSubj ?rs1) (credentials $?cr1))
...
(is-member (role "R_k") (roleMgr <K_B_k>)

(roleSubj ?rsk &: (eq ?rs1 ?rsk))
(credentials $?crk))

=>
(assert (is-member (role "R") (roleMgr <K_A>)

(roleSubj ?rs1)
(credentials ?cr1 ... ?crk <id>)))

This rule asserts that a principal is a member of
the role KA.R if role memberships for each of the
roles KB1 .R1, . . . , KBk .Rk can be found. Note
that this rule enforces the constraint that these
role membership must all refer to the same sub-
ject principal.

4. Given the target role for the negotiation, say KA.Rt,
insert the following rule into p′:
(defrule target

(is-member (role "R_t") (roleMgr <K_A>) (roleSubj ?rs)
(credentials $?c))

(credential (fingerprint ?fp &: (eq ?fp ?rs))
(owned TRUE))

=>
(assert (satisfaction (resource-name "target")

(credentials ?c))))

This rule triggers the insertion of a policy satisfac-
tion object whenever an identity certificate with valid
proof-of-ownership can be found for a member of the
target role KA.Rt.

Intuitively, this compilation process works in a bottom-up
fashion, as follows. The member-of rule enables Clouseau
to conclude that a principal KB is a member of the role
KA.R if it finds KB ’s identity certificate, KA’s identity cer-
tificate, and the simple membership role definition certificate
declaring KB to be a member of KA.R. These three creden-
tials are retained as evidence supporting KB ’s membership
in KA.R. The rules inserted during step 3 of the compilation
process can then combine these basic role membership asser-
tions to prove membership in roles defined by more complex
expressions (i.e., simple containment, linking containment,
and intersection containment).

As role membership assertions are combined by these rules,
the credential identifiers stored in these role membership

assertions are combined and stored in the newly-concluded
role membership assertions. Finally, the target rule in-
serted into p′ at step 4 of the compilation process asserts
a satisfaction object whenever membership in the target
role of the negotiation process can be found for a princi-
pal who could demonstrate proof-of-ownership of his or her
identity certificate. This allows Clouseau to conclude that
the policy in question has been satisfied and to extract the
credentials used during the satisfaction process. The Rete
algorithm ensures that all paths leading to the creation of a
satisfaction object are explored during the pattern match-
ing process, which implies that all satisfying sets of evidence
are discovered by the Clouseau compliance checker. Fur-
ther, a linear increase in the size of the RT policy to be
analyzed causes only a linear increase in the running time
of Clouseau. This is a result of the fact that the size of
Clouseau’s working memory is increased linearly for each
credential analyzed during the policy compilation process
(i.e., we add at most one rule to Clouseau for each creden-
tial processed).

Figure 6 illustrates the result of applying the above com-
pilation process to the RT 0 access policy described in Sec-
tion 5.1. For brevity, the is-member template and the
member-of rule in Figure 5 were omitted from this figure,
although they would be included in the generated policy.
We now make the following claim regarding the correctness
and completeness of this policy compilation process. A full
proof of this theorem can be found in the technical report
version of this paper [17].

Theorem 1 (Correctness and Completeness). Let
R = {r1, . . . , rn} be a set of role definition credentials, C =
{c1, . . . , cm} be a set of identity certificates, p = R∪C be an
RT 0 policy, and let p′ be the result of compiling p using the
above process. Clouseau finds the satisfying set S ⊆ (R∪C)
of credentials for the policy p′ if and only if the RT rules of
inference can be used on exactly the set S of credentials to
prove membership in the target role.

5.3 Supporting RT 1 Policies
The only feature that RT 1 adds to RT 0 is the ability to

parameterize role definitions. For example, rather than re-
quiring Alice’s employee credential to be of the form
AliceLabs.employee ← Alice, it could instead encode other
attributes regarding Alice’s employment. For example, we
could define Alice as the President of AliceLabs by defining
the following simple membership credential:

AliceLabs.employee(title=“President”) ← Alice

RT 1 role definition credentials can also constrain role mem-
berships based on the values of role parameters. For ex-
ample, the following simple containment credential declares
that only widgets whose price is over $10 are on sale:

Acme.sale ← Acme.widget(price > 10)

Adding support for the above types of parameterizations
and constraints to the policy compilation process described
in Section 5.2 is a relatively straightforward process. In
fact, we must only (i) provide support for storing param-
eters and their values in simple membership role definition
credentials and (ii) allow the various containment role defini-
tion rules generated during the policy compilation process to
place constraints on these parameter values. To address (i),

;; Provider.service <- Provider.partner.employee
(defrule rule-1

(is-member (role "employee") (roleMgr ?r2mgr)
(roleSubj ?r2subj) (credentials $?cr2))

(is-member (role "partner") (roleMgr <Provider>)
(roleSubj ?r1subj)
(credentials $?cr1))

(test (eq ?r1subj ?r2mgr))
=>

(assert (is-member (role "service") (roleMgr <Provider>)
(roleSubj ?r2subj)
(credentials ?cr1 ?cr2 <id>)))

;; Provider.partner <- SuperGrid.memberOrganization
(defrule rule-2

(is-member (role "memberOrganization") (roleMgr <SuperGrid>)
(roleSubj ?rs) (credentials $?c))

=>
(assert (is-member (role "partner") (roleMgr <Provider>)

(roleSubj ?rs) (credentials ?c <id>)))

;; Provider.service is our target role
(defrule target

(is-member (role "service") (roleMgr <Provider>)
(roleSubj ?rs) (credentials $?c))

(credential (fingerprint ?fp &: (eq ?fp ?rs))
(owned TRUE))

=>
(assert (satisfaction (resource-name "target")

(credentials ?c))))

Figure 6: A compiled version of the RT 0 policy dis-
cussed in Section 5.1.

we can store the parameters of a given simple membership
credential and their corresponding values in the “map” field
of the simple membership’s Clouseau credential object.
Further, the is-member object template must be extended
to include this mapping of parameter names to values.

Addressing point (ii) is a slightly more complicated pro-
cess involving the generation of Clouseau rules during step
3 of the compilation process. Rather than explain each case
in detail, we will instead provide one example compilation
rule and claim that the other cases can be handled in a sim-
ilar fashion. As an example, consider the following simple
containment role definition credential:

AliceLabs.seniorManagement ←
AliceLabs.employee(hireYr < 2000, mgt = true)

This credential defines members of the “Senior Manage-
ment” role at AliceLabs to be managers hired before the
year 2000. A policy compiler could parse the above type of
role definition credential to form the following rule:

(defrule rule-<id>
(is-member (role "employee") (roleMgr <AliceLabs>) (map ?m)

(roleSubj ?rs) (credentials $?c))
(test (eq TRUE (?m get "mgt")))
(test (> 2000 (?m get "hireYr")))

=>
(assert (is-member (role "seniorManagement") (roleSubj ?rs)

(roleMgr <AliceLabs>)
(credentials ?c <id>)))

Creating this rule automatically involves an extension to
the rule generation logic presented in Section 5.2 that adds
one test clause to the rule for every constraint placed on an
attribute value by the RT 1 role definition credential. Since
the Rete engine used by Clouseau supports comparison
operators such as >, <, and =, it can support the types of

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40 45 50

Av
er

ag
e

tim
e

(m
s)

Size of the union of all satisfying sets (U)

One satisfying set
U satisfying sets

Two satisfying sets

Figure 7: Running time as a function of the size of
the union of all satisfying sets.

constraints allowed by RT 1. As such, it is possible to define
an automated procedure for compiling RT 1 policies into a
format suitable for analysis by Clouseau.

6. EVALUATION
In this section, we evaluate the performance of the

Clouseau compliance checker and then discuss the implica-
tions of our findings. In particular, we examine the amount
of time required to find all satisfying sets of evidence for a
given policy in three sets of experiments; each set of exper-
iments was conducted on a 2.5GHz Pentium 4 with 512MB
RAM running Linux. The running times reported include
all overheads associated with generating a Rete network
based on the policy rules provided to Clouseau, creating
credential and credential-chain objects corresponding
to the credentials and credential chains provided to Clouseau,
inserting these objects into Clouseau’s working memory,
and recovering all satisfying sets of credentials.

6.1 Experimental Results
We first repeat the experiments conducted in [22], which

explored the overheads associated with using a type-2 com-
pliance checker to solve the type-3 compliance checker prob-
lem. The three most interesting cases explored in [22] ex-
amined the overheads of using the SSGen algorithm to find
all satisfying sets of credentials for a policy in the event that
(i) the policy had one satisfying set of size U , (ii) the policy
had U satisfying sets of size one, or (iii) the policy had two
satisfying sets, each of size 3U

4 . In all cases, U represents the
size of the union of all satisfying sets. Recall from Figure 1
in Section 2 that the overheads associated with cases (ii)
and (iii) grew exponentially and quickly became impracti-
cal. Figure 7 shows the results of running these same tests
using the Clouseau compliance checker; note that the y-
axis of Figure 1 is labeled in seconds, while the y-axis of
Figure 7 is labeled in milliseconds. In our experiments, we
varied the size of the union of all satisfying sets (U) between
1 and 50. Each data point in the figure represents the av-
erage running time over 100 randomly-generated policies; a
new Rete network was constructed for each of these 100 tri-
als as to eliminate any optimizations that might occur as a
result of partial network reuse as discussed in Section 4.2.

 0 2 4 6 8 10 12 14 16Size of
each satisfying set 0

 5
 10

 15
 20

 25

Number
 of satisfying sets

 0
 50

 100
 150
 200
 250

Average time
 (ms)

Figure 8: Running time as the number of satisfying
sets and the size of each satisfying set varies.

We see that, in all cases, the running time overheads of
Clouseau grow linearly with U and never exceed 80 ms to
find all satisfying sets. We note also that, unlike the SSgen
algorithm, Clouseau does not require that policies be spec-
ified in DNF form in order to efficiently find all satisfying
sets.

To further explore the running time characteristics of
Clouseau, we conducted another experiment designed to
more fully examine the types of policies that might be pro-
cessed by Clouseau in practice. In this experiment, we
varied both the number of satisfying sets contained in a par-
ticular policy and the size of each satisfying set. For each
〈number, size〉 pair, 100 policies were generated at random
and examined using Clouseau. Random policy generation
does not compromise the validity of our experiments, as the
structural complexity of a policy dictates the complexity of
the compliance checking process, not the exact contents of
the policy. Further, random generation of policies allows us
to explore cases in which satisfying sets overlap with one
another to varying degrees. This is important because over-
lapping satisfying sets will result in shared nodes in the Rete
network constructed by Clouseau and, thus, more efficient
analysis; examining a random sampling of policies provides
us with a more “average case” view of Clouseau’s perfor-
mance. The results of this experiment are shown in Figure 8
and confirm that the performance of Clouseau scales as
O(NA), where N is the number of satisfying sets and A is
the average size of each satisfying set. We then considered
the case in which each credential was assigned a sensitivity
value by its owner, as in [27], and ran the above experiments
again. Given the satisfying sets detected by Clouseau, it
took a trust negotiation strategy, on average, only 0.04 ms
to choose the least-sensitive satisfying set to disclose.

We next sought to evaluate the performance of Clouseau
in a worst-case scenario. To accomplish this, we analyzed
policies of the form p ← (c1 ∨ c2)∧ · · ·∧ (c2i−1 ∨ c2i), which
can be satisfied in 2i different ways by a set of 2i credentials.
Figure 9 shows the results of this experiment, which con-
firm that the performance of Clouseau continues to scale
as O(NA) (note that the x-axis of Figure 9 follows a loga-
rithmic scale). Policies with exponentially-many satisfying
sets are unlikely to be used legitimately in practice, but

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 8 16 32 64 128 256 512 1024

Av
er

ag
e

tim
e

(m
s)

Number of satisfying sets (log scale)

Figure 9: Time required to find all 2i satisfying sets
of size 2i for i = 1, . . . , 10.

could be formed by attackers wishing to consume inordinate
amounts of system resources. Detecting these types of ma-
licious policies in practice is out of the scope of our current
paper, and thus we defer that topic to future work. We
do note, however, that Clouseau found 512 satisfying sets
of credentials in approximately 1 second. This implies that
the naive strategy of capping the time spent in the compli-
ance checker might be a reasonable means of detecting these
types of attacks in practice, as finding that many satisfying
sets of credentials for a non-attack policy seems exceedingly
unlikely.

In all of our experiments, a completely new Rete network
was created at each invocation of Clouseau. As stated pre-
viously, this was done to eliminate the possible benefits of
partial network sharing between distinct policies, as network
sharing improves the performance of Clouseau. However,
some of the primary benefits of the Rete algorithm arise pre-
cisely because the state encoded in a particular Rete network
can be saved between invocations of the matching algorithm,
which reduces the number of times objects (i.e., credentials
and other evidence) need to be matched against the pattern
nodes (i.e., policy clauses) in the network. If a participant
in the trust negotiation process is willing to trade memory
for execution time, they could maintain a separate Rete net-
work for each ongoing negotiation constructed using all of
the policies relevant to that particular negotiation. This
would allow them to leverage the statefulness of the Rete
algorithm to reduce the number of matching operations re-
quired at each invocation of Clouseau and obtain better
performance as the negotiation proceeds into later rounds.
Further examination of these types of speed versus memory
trade offs is an interesting direction for future work.

6.2 Discussion
The experiments discussed above illustrate that our

Clouseau implementation performs very quickly, requiring
only tens of milliseconds to find all satisfying sets of cre-
dentials for policies of a reasonable size. Furthermore, these
results experimentally confirm our claim that the running
time of Clouseau scales as O(NA), where N is the number
of satisfying sets for the policy being analyzed and A is the
average size of each satisfying set. As always, the number

of satisfying sets for a policy p is in the worst case expo-
nential in the size of p, as was the case in the third set of
experiments described above. Even in this case, Clouseau
performed admirably, finding 512 satisfying sets of size 18
in just one second; for ordinary policies, Clouseau will find
all satisfying sets in about as much time as is needed for a
single disk access.

The largest trust management case study to date is Becker’s
formalization of the security policies required by the elec-
tronic health record service that is being proposed by the
United Kingdom’s National Health Service [2]. This service,
also known as the “Spine,” aims to make electronic patient
records available to medical personnel, patients, and their
designated agents and includes provisions for ensuring the
confidentiality of patient records. In [2], Becker completely
specifies a collection of Cassandra [3] policies for the NHS
Spine and its related services that comply with all available
NHS documents describing the requirements for the Spine.
The complete Cassandra specification includes definitions of
375 policy rules, 71 roles, and 12 actions that can be taken in
the system. Each of the rules is a Horn clause (i.e., a strict
conjunction), although often several rules will have the same
head. For example, there are several ways in which a clini-
cian can assert that he or she is the “treating clinician” for a
particular patient. We will call a set of rules with the same
head a policy, since each such set completely specifies the
ways in which a user can accomplish a particular goal.

Even the most complex policies specified in [2] contain less
than a dozen rules, and thus can be satisfied in at most this
many ways. We see from Figures 7, 8, and 9 that policies of
this size can be efficiently analyzed by Clouseau in under
100 ms in all cases. This shows that even when the myriad
of requirements concerning patient privacy in the medical
domain are considered, the number of unique ways that any
given policy can be satisfied remains reasonably low. Thus,
Clouseau can efficiently handle the largest and most com-
plex set of realistic policies assembled to date.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we described the design and implementa-

tion of the Clouseau compliance checker. Clouseau was
designed to efficiently solve the type-3 compliance checker
problem: given a set E of evidence and a policy p, deter-
mine all subsets of E that can be used to minimally satisfy
p. Previous solutions for this problem have had running
time overheads that are exponential in the size of the union
of all satisfying sets. Clouseau’s time overheads scale lin-
early in the size of the union of all satisfying sets for the
tests conducted in [22], and as O(NA) in general, where N
is the number of satisfying sets for a policy and A is the
average size of each satisfying set. On average, Clouseau
requires only tens of milliseconds to find all satisfying sets
of credentials for a given policy.

Clouseau achieves this level of performance by taking a
non-traditional approach to theorem proving. Rather than
directly analyzing access control policies written in high-
level languages (such as Cassandra, RT , TPL, or X -TNL),
Clouseau compiles high-level policies into an intermediate
representation that specifies constraints on the actual cre-
dentials and other evidence that must be presented to gain
access to a particular resource. Clouseau then leverages
Rete, an efficient pattern matching algorithm, to enumer-
ate all satisfying sets. In this paper, we provided a process

through which access control policies specified in the RT
language can be automatically compiled into the native rule
format analyzed by Clouseau; a proof of correctness for this
compilation procedure is available in [17]. Since all trust
negotiation policies are eventually satisfied by these same
types of evidence, we conjecture that equivalent compila-
tion procedures could also be derived for other higher-level
policy languages. This allows policy writers to express their
policies concisely using high-level policy languages, yet still
analyze them efficiently.

Although Clouseau is much more efficient than previ-
ous solutions to the type-3 compliance checker problem, fur-
ther optimization is still an important area of future work.
Spending tens of milliseconds during an interaction with
their compliance checker is perfectly reasonable for entities
in a peer-to-peer environment or clients in a client/server
setting. However, servers that must process high volumes of
traffic may need several such interactions for each trust ne-
gotiation session. An interesting direction of future work is
to investigate high-level policy language constructs that can
be compiled into Clouseau policies that can be analyzed in
a particularly efficient (or inefficient) manner. Better under-
standing the language constructs that most directly affect
compliance checker performance could help lead to the de-
sign of yet more efficient compliance checkers.

Acknowledgments
This research was supported by the NSF under grants IIS-
0331707, CNS-0325951, and CNS-0524695 and by Sandia
National Laboratories under grant number DOE SNL 541065.
The authors wish to thank Kazuhiro Minami for his detailed
comments on earlier versions of this paper.

8. REFERENCES
[1] L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in

access-control systems. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 81–95, May 2005.

[2] M. Y. Becker. A formal security policy for an NHS electronic
health record service. Technical Report UCAM-CL-TR-628,
University of Cambridge Computer Laboratory, Mar. 2005.

[3] M. Y. Becker and P. Sewell. Cassandra: Distributed access
control policies with tunable expressiveness. In Proceedings of
the Fifth IEEE International Workshop on Policies for
Distributed Systems and Networks, pages 159–168, June 2004.

[4] E. Bertino, E. Ferrari, and A. C. Squicciarini. X -TNL: An
XML-based language for trust negotiations. In Proceedings of
the Fourth IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY), pages 81–84,
June 2003.

[5] E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-X : A
peer-to-peer framework for trust establishment. IEEE
Transactions on Knowledge and Data Engineering,
16(7):827–842, July 2004.

[6] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The
KeyNote trust management system version 2. IETF RFC 2704,
Sept. 1999.

[7] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 164–173, May 1996.

[8] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance checking
in the PolicyMaker trust management system. In Proceedings
of the Second International Conference on Financial
Cryptography, number 1465 in Lecture Notes in Computer
Science, pages 254–274. Springer, Feb. 1998.

[9] P. Bonatti and P. Samarati. Regulating service access and
information release on the web. In Proceedings of the Seventh
ACM Conference on Computer and Communications Security
(CCS), pages 134–143, Nov. 2000.

[10] K. Borders, X. Zhao, and A. Prakash. CPOL:
High-performance policy evaluation. In Proceedings of the 12th

ACM Conference on Computer and Communications Security
(CCS), pages 147–157, Nov. 2005.

[11] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and
M. Strauss. REFEREE: Trust management for web
applications. World Wide Web Journal, 2(3):127–139, Summer
1997.

[12] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder
policy specification language. In Proceedings of the Second
IEEE Workshop on Policies for Distributed Systems and
Networks (POLICY), number 1995 in Lecture Notes in
Computer Science, pages 18–39. Springer, Jan. 2001.

[13] C. L. Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence,
27(3):219–227, 1985.

[14] E. Friedman-Hill. Jess: The rule engine for the Java platform.
Web site, Apr. 2007. 〈http://www.jessrules.com〉.

[15] A. Herzberg, Y. Mass, J. Michaeli, D. Naor, and Y. Ravid.
Access control meets public key infrastructure, or: Assigning
roles to strangers. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 2–14, May 2000.

[16] H. Koshutanski and F. Massacci. An interactive trust
management and negotiation scheme. In Proceedings of the
Second International Workshop on Formal Aspects in
Security and Trust (FAST), pages 139–152, Aug. 2004.

[17] A. J. Lee and M. Winslett. Towards an efficient and
language-agnostic compliance checker for trust negotiation
systems. Technical Report UIUCDCS-R-2007-2903, University
of Illinois at Urbana Champaign Department of Computer
Science, Oct. 2007.

[18] J. Li, N. Li, and W. H. Winsborough. Automated trust
negotiation using cryptographic credentials. In Proceedings of
12th ACM Conference on Computer and Communications
Security (CCS), pages 46–57, Nov. 2005.

[19] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust-management framework. In Proceedings of the
2002 IEEE Symposium on Security and Privacy, pages
114–130, May 2002.

[20] D. P. Miranker. TREAT: A better match algorithm for AI
production systems. In Proceedings of the Sixth National
Conference on Artificial Intelligence (AAAI-87), pages 42–47,
Aug. 1987.

[21] K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child,
J. Jacobson, H. Mills, and L. Yu. Requirements for policy
languages for trust negotiation. In Proceedings of the Third
IEEE Workshop on Policies for Distributed Systems and
Networks (POLICY), pages 68–79, June 2002.

[22] B. Smith, K. E. Seamons, and M. D. Jones. Responding to
policies at runtime in TrustBuilder. In Proceedings of the Fifth
IEEE Workshop on Policies for Distributed Systems and
Networks (POLICY), pages 149–158, June 2004.

[23] W. H. Winsborough and N. Li. Towards practical automated
trust negotiation. In Proceedings of the Third IEEE
International Workshop on Policies for Distributed Systems
and Networks (POLICY), pages 92–103, June 2002.

[24] W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated trust negotiation. In Proceedings of the DARPA
Information Survivability Conference and Exposition, pages
88–102, Jan. 2000.

[25] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson,
R. Jarvis, B. Smith, and L. Yu. Negotiating trust on the web.
IEEE Internet Computing, 6(6):30–37, Nov./Dec. 2002.

[26] M. Winslett, C. Zhang, and P. A. Bonatti. PeerAccess: A logic
for distributed authorization. In Proceedings of the 12th ACM
Conference on Computer and Communications Security
(CCS 2005), pages 168–179, Nov. 2005.

[27] D. Yao, K. Frikken, M. Atallah, and R. Tamassia. Point-based
trust: Define how much privacy is worth. In Proceedings of the
Eighth International Conference on Information and
Communications Security (ICICS ’06), number 4307 in
Lecture Notes in Computer Science, pages 190–209. Springer,
2006.

[28] T. Yu, M. Winslett, and K. E. Seamons. Supporting structured
credentials and sensitive policies throu gh interoperable
strategies for automated trust negotiation. ACM Transactions
on Information and System Security, 6(1), Feb. 2003.

