
Supporting Dynamically Changing
Authorizations in Pervasive Communication

Systems

Adam J. Lee, Jodie P. Boyer, Chris Drexelius, Prasad Naldurg, Raquel L. Hill,
and Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
{adamlee, jpboyer, drexeliu, naldurg, rlhill,rhc}@cs.uiuc.edu

Abstract. In pervasive computing environments, changes in context
may trigger changes in an individual’s access permissions. We contend
that existing access control frameworks do not provide the fine-grained
revocation needed to enforce these changing authorizations. In this pa-
per, we present an authorization framework, in the context of the Gaia
OS for active spaces, which integrates context with authorization and
provides fine-grained control over the enforcement of dynamically chang-
ing permissions using cryptographic mechanisms. Our design, imple-
mented in middleware, addresses the limitations of traditional autho-
rization frameworks and the specific access control needs of pervasive
computing environments. As part of our proposed framework, we define
cryptographic protocols that enforce access to the system’s communica-
tion channels and provide secure delivery of messages. We also provide a
proof of correctness of key agreement and freshness using the standard
BAN deduction system.

1 Introduction

In pervasive computing environments, a change in context may affect the access
permissions of users to different system resources. These context changes may oc-
cur often, and the management of access control policies for these environments
is inherently more complex. The problem of enforcing access control policies for
traditional information systems is well studied. We contend that existing authen-
tication and authorization frameworks for these systems such as Kerberos [1, 2]
and public-key certification hierarchies [3] are not adequate for pervasive com-
puting scenarios. To illustrate, in Kerberos, the tickets that represent a user’s
right to access a service are issued with fixed expiry times, which cannot be
determined in advance as a function of changing context. The problem of revo-
cation in hierarchical PKI systems is well known [4]. While the authors in [5]
explore the authentication problem for pervasive computing, our focus in this
paper is on the adequate enforcement of dynamically changing authorizations,
driven by changing context.

We explore these authorization issues in the context of our prototype smart
room, consisting of a variety of computing and communication services that can
be configured for different activities depending on the context. This infrastruc-
ture is orchestrated by Gaia OS [6], which brings the functionality of an operating
system to physical spaces. In addition to common operating system functions,
such as events, signals, file system, security, processes, process groups, etc., Gaia
extends typical operating system concepts to include context, location aware-
ness, mobile computing devices and actuators like doorlocks and light switches.

To illustrate the problem in this setting, consider a typical scenario where
users, applications, or sensors may initiate events that trigger a change in con-
text. For example, a smoke detector may generate an emergency alarm event
triggered by an actual fire which disables electronic doorlocks and allows oc-
cupants of the environment to safely exit the building. This emergency alarm
event can be implemented in Gaia as a control message to a software-controlled
doorlock service, which in turn sends an unlock control message to the individual
doorlocks.

Such event notification messages disseminate context information and have
the potential to change the operating characteristics of their environment. Au-
thorization to send these notifications should be tightly controlled. Without such
protection, the system is vulnerable to attack. For example, an attacker can trig-
ger an emergency alarm by forging the appropriate event, and open the doors
to gain physical access to the environment. An attacker could also repeatedly
send lock messages to the doorlock service to keep the doors in a locked state,
thereby denying access to authorized users. These two examples illustrate how
events that occur in virtual space may affect the physical security of that space.

Data exchanged between users and devices in the course of a pervasive com-
puting scenario is also subject to dynamically changing authorizations depending
on the context. Consider a collaborative meeting example where all users should
be allowed to send messages using the event channel to a shared electronic bul-
letin board via their personal handheld devices. When the room is configured
as a lecture hall, only a presenter should be authorized to send messages to this
bulletin board. Therefore, a user’s authorizations to the board should change in
response to a change in context. Due to the asynchronous and distributed nature
of event generation and notification, as well as data dissemination, this service
in Gaia OS is implemented as publish-subscribe channels.

Given the setting, we contend that existing frameworks [1, 3, 7–9] do not pro-
vide the fine-grained revocation necessary to enforce changing authorizations. In
this paper we present an access control architecture that integrates context with
authorization and provides fine-grained control over the enforcement of dynam-
ically changing permissions. Our proposed solution extends the functionality of
the Gaia OS and is implemented using distributed objects. The components of
our new framework can be replicated easily for load-balancing, are designed to
keep minimal state, and work independently without coordination. We believe
that this aspect of our design makes our system more efficient and resilient to
denial of service (DoS) attacks.

The rest of the paper is organized as follows. Section 2 describes the threat
model for attacks on the communication systems of pervasive computing envi-
ronments. Section 3 presents the limitations of existing authorization frameworks
and motivates the need for a new access control architecture, which we present
in Section 4. In Section 5, we present the authorization protocols used in our
framework. We present an evaluation of our architecture and protocols in Section
6 and conclude in Section 7.

2 Threat Model

In this section, we characterize the nature and scope of attacks that can be
mounted against the message distribution system of our prototype pervasive
computing environment. We assume that attackers can be either passive or ac-
tive. Regardless of their physical location, passive attackers can listen to messages
anywhere on the network but cannot change the contents of these messages. Ac-
tive attackers can modify, reorder, replay, or inject messages into the network.
Neither active nor passive attackers can perform cryptographic operations with
keys that they do not possess. The remainder of this section discusses various
attacks and the impact they have on the system.

Integrity Violations It is important that an event published by a sender is
the same event that arrives at the receiver. If no such guarantees can be
made, an active attacker can change the content of messages while they are
in transit. Consider an active attacker who changes the sign bit on messages
sent out by a temperature sensor. This attack may cause the climate control
equipment in the room to activate the heaters, which may adversely impact
system hardware.

Confidentiality Violations In many cases, the contents of both data and con-
trol messages may need to be confidential. Consider an electronic doorlock
system that sends events to a central monitoring facility when any door
is locked or unlocked. If these messages are sent unencrypted, unauthorized
viewers can quickly learn what parts of the building are unlocked. This could
lead to intrusions and theft.

Privacy Violations While it is difficult to make strong guarantees about pri-
vacy such as unobservability, or unlinkability [10], it is important that a
message distribution system provides for basic user privacy by preventing
disclosure of sensitive personal information. Content publishers should be
able to define which entities have access to generated information. For in-
stance, if a user is wearing a location-tracking badge that periodically sends
her GPS location, she may specify a list of authorized recipients of this data
to preserve her location privacy.

Authenticity Message authenticity is necessary in an event distribution sys-
tem, since the configuration and security of the pervasive computing environ-
ment can change as a result of the messages sent. Without such guarantees,
the system is open to attacks in which a malicious user injects spurious mes-
sages, claiming that they came from legitimate sources. One example of such

an attack is when an intruder forges a message from a smoke detector that
will trigger an alarm system. The alarm system may unlock the doors to the
building to allow easier exit, or in this case, entrance to an unauthorized
user.

Denial of Service In addition to traditional denial of service (DoS) attacks,
the context-sensitive nature of pervasive computing environments exposes
these systems to additional avenues of DoS. For instance, a clever attacker
might realize that access permissions in the system change with context. The
attacker can repeatedly trigger context changes to force management over-
heads associated with permission revocation and acquisition on the system.
If these overheads are too high, such an attack could impact the distribution
of events.

In the rest of this paper, we describe the design and implementation of our
secure event distribution system and evaluate the architecture and protocols
that we present to show that our system is robust enough to resist the threats
outlined in this section. In the next section, we examine the shortcomings of
existing security solutions, explore the limitations that they impose when de-
ployed in pervasive computing environments, and motivate the need for our new
authorization framework.

3 Related Work

In this section, we present the limitations of existing authorization and authenti-
cation frameworks with respect to enforcing dynamically changing permissions in
pervasive environments. These frameworks include Kerberos [1, 2], SESAME [7],
hierarchical PKI [3], SDSI/SPKI [9], and KeyNote [8]. We also distinguish how
this work differs from other efforts to incorporate contextual changes into access
control frameworks for pervasive environments.

Kerberos and SESAME Kerberos is a distributed authentication and autho-
rization framework that enforces access control through the use of time-
limited tickets. SESAME provides functionality beyond the scope of Ker-
beros such as scalability when multiple networks are connected. However, the
basic SESAME Security Architecture is essentially an extension of Kerberos.
Kerberos service tickets and SESAME certificates are valid for a fixed time
interval starting at a predetermined time. Explicit revocation before ticket
expiration is not possible. To combat this problem, Kerberos and SESAME
administrators may decrease the time interval between ticket activation and
expiration. This strategy now acts as revocation mechanism for all tickets,
regardless of whether or not permissions have actually changed. This nega-
tively impacts the usefulness of tickets and increases the burden on clients
wishing to access resources in both Kerberos and SESAME. This derived
revocation mechanism does not solve the revocation problem since there is
still no direct link between ticket expiration and context-driven permission
changes. Role-based extensions to Kerberos and SESAME including [11] still

suffer from the same fundamental revocation limitation as the basic Kerberos
and SESAME architectures.

Hiearachical PKI Unlike Kerberos and SESAME, hiearachical PKI systems
do have the ability to revoke access rights. However, critical analysis in [4]
suggests that distribution of key revocation information may be prohibitively
expensive on a large scale. Each time permissions change, a message reflect-
ing the new permission state must be distributed to each host in the system.
The dynamic nature of pervasive environments makes this framework insuf-
ficient for the revocation needs of these environments.

SDSI/SPKI SDSI/SPKI suffers from the same revocation issues outlined
above for hierarchical PKI. Though SDSI/SPKI does not support certificate
revocation lists (CRLs), a service may exist that provides a list of principals
whose keys have been revoked. To maintain system-wide consistency, service
providers must continually poll the list of revoked certificates. SDSI/SPKI
is not appropriate for ubiquitous environments since certificates may be re-
voked often.

KeyNote Similar to the limitations of the other authorization and authen-
tication frameworks addressed above, KeyNote does not provide sufficient
credential revocation mechanisms to handle changing context information.
Like Kerberos and SESAME, KeyNote allows credentials to exist for a lim-
ited window of time, but explicit revocation is not possible. The KeyNote
interpreter, a component used to verify credentials, may be informed of au-
thorization revocation. Similar to SDSI/SPKI above, this places the burden
on clients to perform certificate verification. Since we wish to eliminate this
client-side burden, the KeyNote framework is insufficient for our needs.

In [12] the authors propose a security middleware for Gaia, that consists of
a network of Middleboxes, reconfigurable computing and communications nodes
that act as proxies or access points for critical services and mediate access to
services by authenticating requesters and negotiating security requirements. Our
system implements the generic proxy behavior of Middleboxes and mediates com-
munication between publishers and subscribers by brokering information pub-
lished by publishers to authorized, registered subscribers. In [13] the authors
argue that traditional authentication frameworks that attempt to prove the va-
lidity of a claimed identity are not sufficient for pervasive environments, and
that contextual attributes like location and manufacturer’s certificates should
be authenticated to establish higher levels of assurance. This work focuses on
establishing trust as opposed to handling dynamically changing permissions. In
[14], the authors propose extensions to RBAC that facilitate context-aware access
control policies. In their system, users can assume multiple roles, and changes
in user permissions are communicated to applications for which the associated
roles are active. The authors do not provide a mechanism by which applications
can enforce dynamically changing permissions.

In the next section, we introduce our authorization architecture, which is
designed to overcome the revocation granularity limitations of existing autho-

Fig. 1. System Architecture

rization and authentication frameworks. We also provide implementation and
analysis details to validate our proposed concepts.

4 Architecture

Gaia OS [6] is a middleware meta-operating system that exposes APIs which
allow users to locate and interact with applications, manage the context of the
system, create and utilize communication channels, and otherwise interface with
the pervasive computing environment in a meaningful way. Gaia OS utilizes
publish-subscribe “event channels” to control the system and disseminate infor-
mation to interested parties. The specific solution that we present is designed to
secure these channels.

4.1 System Architecture

We rely on cryptographic mechanims to enforce dynamic authorizations. If an
individual has sufficient rights to an information resource, the system can en-
crypt the information and provide the user with a secret decryption key. This
ensures that only authorized individuals have direct access to sensitive data, and
anyone snooping on the communication channels is denied access. Dynamic au-
thorization is achieved by controlling the distribution of keys, and key freshness
and agreement are essential for proper enforcement of access control policies.
Key revocation, an integral part of key management, is used in our framework
to deny access when permissions change.

We present a key distribution and management protocol to achieve dynamic
authorization in pervasive computing environments. Our proposed solution ac-
counts for denial of service, failures of commodity hardware and the dynamic
nature of pervasive systems. Our framework is distributed and provides multi-
ple key management entities. Each management entity maintains minimal state

to facilitate bootstrapping, data migration and replication as well as allows the
system to handle attacks on individual components. Figure 1 presents the archi-
tecture of the secure publish-subscribe system that we have developed for Gaia
OS. We now describe the components of this system.

Publisher Publishers are the information providers in our system. They create
channels, determine the access control polices for these channels, and pub-
lish data. Example publishers include sensors, messaging clients, and other
system components.

Subscriber Subscribers are the event consumers in our system. Any subscriber
can register to consume events that they are authorized to view.

Event System The Event System is the underlying messaging system provided
by Gaia. This component provides functionality for creating, destroying, and
managing event channels.

Secure Event Component (SEC) In our system, there are one or more
SECs. These components act as distributed reference monitors for the event
channels in the system. Each SEC manages access control for one or more
event channels. When a channel is created, its creator pushes access con-
trol lists (ACLs) controlling read and write access to the new channel. The
SEC is responsible for enforcing these ACLs. We describe the SEC in further
detail next.

4.2 Secure Event Component

The Secure Event Component (SEC) stores encryption keys, checks access rights,
and brokers messages securely from publishers to authorized subscribers. A par-
ticular configuration of an active space may have multiple SECs that generate
and manage symmetric keys used to secure specific event channels. The sym-
metric keys are stored in a hash table to allow efficient storage and lookup.
These symmetric keys must be stored in a secure manner, e.g., using tamper-
resistant hardware. Details of the cryptographic protocols between the SEC and
the publishers and subscribers are presented in Section 5.

Users in our system can authenticate and obtain their credentials using a
public/private key pair issued by the Gaia Certificate Authority. Once the user’s
identity is established, an attribute certifier, which is not discussed in detail in
this paper, can issue them credentials bound to the current context by a counter
which attest to various attributes, including their roles in the system. Each
device or service maintains an access list, which associates a set of permissions
with each role.

When the context of the space changes, the underlying Gaia access control
architecture [15] changes the user-role assignment of affected users, according to
a meta policy specified by the administrator of the space. The privileges assigned
to roles in a space are relatively static, but principals can move in and out of
roles in a dynamic fashion, triggered by changes to the current configuration
of the space. A Gaia administrator is responsible for setting up these policies.
In [15] we show how our access control framework, based on RBAC, can be used

to specify such context-sensitive policies correctly. In this paper, we present a
set of mechanisms to guarantee that the permissions that are being enforced are
current.

To create a secure event channel, user Alice authenticates with the SEC and
receives a symmetric key that she can use to publish to the SEC over a newly
created channel. When Bob wants to subscribe to the events published by Alice,
the SEC checks Bob’s current role permissions to verify whether he possesses the
necessary permissions. If authorized, the SEC creates a new channel, negotiates
a symmetric key with Bob (one per channel), decrypts the message it receives
from Alice and re-encrypts it with Bob’s key, and sends it on the appropriate
channel.

The binding between a user and their current role can change at any time due
to a change in context. The SEC is notified by Gaia’s access control service when
existing user-to-role mappings are altered by a role change in the system. If any
user-role assignments are changed for a particular subscriber channel, the SEC
revokes the symmetric key and denies unauthorized access to this information.
It is important to note that publishers are unaffected by this change, as the
Secure Event Component decouples the publish and subscribe operations by
using different keys to communicate with publishers than with subscribers.

In the next section, we present the details of our cryptographic protocols,
highlighting their key acquisition and revocation features.

5 Protocol Details

In this section, we explain the details of the cryptographic protocols used in our
system. These protocols are used to negotiate and transfer keys from the SEC to
the publishers and subscribers. We also describe protocols for sending messages
and requesting new keys. Finally, we discuss how key revocation works in our
system.

It should be noted that throughout this section, we assume that the publisher
creates the channels in the system and provides an ACL used to restrict the set
of potential subscribers. A straightforward extension of these protocols would
allow a third party to create a channel and provide ACLs for both publisher
and subscriber groups. Due to space limitations, however, this extended set of
protocols is not discussed.

5.1 Notation

The following notation is used throughout the remainder of this document:

– P is a publisher, S is a subscriber and M is the SEC.
– ID(B) refers to user B’s identity certificate, which is publicly available from

a trusted Certificate Authority (CA) in the system.
– Attr(B) refers to object B’s attribute certificate (e.g., its system role bind-

ing).

Fig. 2. a. The messages required to create a channel. b. The messages required to
register as a subscriber for a channel.

– PKB refers to B’s public key and PK−1
B refers to B’s private key.

– KPM is a symmetric key shared between the publisher P and the SEC M .
– KSM (P) refers to a symmetric key that is shared between the SEC and the

subset of authorized subscribers. Note that KSM (P) 6= KPM .
– NB is a nonce generated by user B.
– {C}K refers to the message C encrypted with key K, whereas 〈C〉K′ refers

to the message C signed by key K ′.
– H refers to a cryptographic hash function, used to create a MAC.

5.2 Authorized Channel Creation

When a publisher, P , wishes to publish on a secure channel, he must first create
an insecure channel. This is done with the aid of the Event System. This channel,
known as the publisher channel, is used by P and the SEC to exchange messages.
These messages are shown in Figure 2a. Once the publisher channel is created
P and the SEC exchange a key. Key exchange begins when P sends a secure
channel message to the SEC. This message contains the name of the SEC, a
nonce, generated by P , an ID certificate for P and a hash of the message signed
with P ’s private key. The entire message is encrypted with the SEC’s public key.
The SEC responds to P with a message that contains P ’s name, P ’s nonce, a new
nonce generated by the SEC, a new symmetric key and a hash of the message
signed with the SEC’s private key. This entire message is then encrypted with
P ’s public key. P acknowledges the receipt of the key by sending a message
that contains the SEC’s nonce. This message also contains a signed hash and is
encrypted with the SEC’s public key.

Formally:

P →M : {D = (SECURECHANNEL, M, NP , ID(P), 〈H(D)〉PK−1
P
}PKM

M → P : {D = (OK, P, NP , NM , KPM), 〈H(D)〉PK−1
M
}PKP

P →M : {D = (ACK, M, NM), 〈H(D)〉PK−1
P
}PKM

This protocol allows for the mutual authentication of the SEC and P , along with
secure key exchange. It also assures P that the SEC is an authorized system com-
ponent and binds the actions of P to his identity which ensures nonrepudiation.

We model the protocols using a belief logic. The rules of the Burrows-Abadi-
Needham (BAN) formal deduction system [16] are used to draw some conclusions
about what guarantees these protocols provide. While the BAN system does
not have an independent semantics, it is sufficient here to prove mechanically,
given that the assumptions are correct, that key agreement and freshness can be
achieved with our protocols. Using only the rules of inference outlined in [16],
we prove that after a run of our protocol, a trusted publisher (or subscriber)
in our system believes that the SEC believes that he or she shares a symmetric
key with the SEC, and that this key is fresh. Likewise, we prove that a trusted
SEC believes that P believes that it shares a fresh key with the publisher (or
subscriber). We present details of our proof in Appendix A. Note that we can-
not prove these results if either the SEC or the publishers and subscribers are
malicious and lie about their beliefs.

To prove that we achieve our goals, we assume that all parties communicating
can generate fresh nonces. Since each party in the system uses a cryptographic
pseudo-random number generator, we feel that this is a valid assumption. Ad-
ditionally, we assume that all parties can obtain the public-key certificates of
the other parties through the Gaia certificate authority. Lastly, we assume that
publishers and subscribers trust the SEC to generate appropriate session keys.

Validating that the key agreement and freshness properties can be achieved
by our protocols provides us the assurance that our cryptographic mechanisms
are being used correctly. It is important to note that these mechanisms only
enforce the underlying dynamic policy changes. It is equally important to analyze
whether the underlying RBAC framework itself generates the appropriate user-
role assignments, consistent with the requirements and goals of our pervasive
computing scenarios. We present a proof of this safety property in [15].

5.3 Authorized Client Subscription

When a subscriber, S, subscribes to a secure channel, she must first acquire an
attribute certificate that serves as an attestation of her current system role. The
following message exchange is similar to that in Section 5.2:

S →M : {D = (JOIN, M, NS , Attr(S), ID(S)), 〈H(D)〉PK−1
S
}PKM

M → S : {D = (OK, S, NS , NM , KSM (P)), 〈H(D)〉PK−1
M
}PKS

S →M : {D = (ACK, M, NM), 〈H(D)〉PK−1
S
}PKM

This exchange provides the same guarantees as those discussed for channel cre-
ation. S’s attribute certificate is passed to the SEC in the first message. This
allows the SEC to mediate access to the channel based on S’s system role.

The client registers as a listener on the administrative channel. All three
messages described above are exchanged on the administrative channel. The

Fig. 3. The message publication sequence.

client does not register for the subscriber channel until the final acknowledgment
is sent. Figure 2b. illustrates this process.

5.4 Publishing a Message

P publishes messages to the SEC encrypted with their shared key. The SEC
subsequently decrypts these messages and re-encrypts them with the subscriber
key and sends them to the subscribers.

Formally:

P →M : {MESSAGE}KP M

M → S : {MESSAGE}KSM (P)

This is shown in Figure 3. It is important to note that there may be many
subscribers listening to the same channel.

5.5 Changing a Publisher Key

P uses a symmetric key to encrypt its messages. Keys that are used for a long
period of time are susceptible it is to cryptanalysis, therefore P periodically
requests a new symmetric key from the SEC. P requests a key by sending a
message that contains a nonce and is encrypted using the key shared between
P and the SEC. The SEC subsequently sends a new key to P . This message is
encrypted with the old key and contains P ’s nonce and a new nonce generated
by the SEC. P acknowledges the receipt of the key by sending the SEC’s nonce
back, encrypted with the new key.

This exchange is shown as follows:

P →M : {CHANGE, NP }KP M

M → P : {KEY, NP , NM , K ′
PM}KP M

P →M : {KEYACK, NM}K′P M

All of these messages are sent between SEC and P using the publish channel
as shown in Figure 4.

Fig. 4. The messages exchanged to get a new key.

5.6 Handling a Role Change

In a pervasive computing environment, an individual may have several roles and
her active role binding may change for a variety of reasons. The same user may
have the role of a lecturer in a smart classroom, and the role of a researcher
when a meeting is scheduled in the same room.

Role changes in this system are handled by a unilateral revocation of the
keys on the channels affected by the role change. For example, only lecturers
may have access to the overhead projectors, so if a lecturer’s role changes to a
researcher, the projector’s publisher key is revoked. In order to accomplish this,
the SEC receives a message from a trusted authority, namely the Gaia context
system, informing it of the role change. Students subscribed to the projectors
display channel need not change their roles or keys.

Unilateral key revocation allows the overhead of revocation to be distributed
among the affected entities. These entities are required to reacquire the attributes
necessary to continue to use the event channel. This means that the SEC does
not need to track the roles and permissions of users subscribed to the channel
and also allows key revocation to be fast and efficient.

In the next section, we will evaluate our solution and protocols and show
how it meets the needs of pervasive computing environments.

6 Evaluation

In this section, we revisit our threat model and argue informally about how
our authorization framework addresses our original goals and overcomes the
limitations of existing solutions. We revisit each of our threats from Section 2 in
turn and examine how we address integrity, confidentiality, privacy, authenticity,
and DoS concerns.

Our framework relies on standard public-key certificates for identity authen-
tication. When a new user, Alice, joins our system, she is required to obtain a
public-key certificate from our (offline) CA and include this in her communica-
tion when she first attempts to contact any server, tries to publish, or subscribe
to the event channels. We propose that the user’s identity is verified out-of-band
before the certificate issued. All trusted entities in the system, including the SEC
and the event managers also publish their public keys so that anyone wishing

to communicate with them can use their public key to send them encrypted
messages. However, relying on public-key encryption for all confidentiality re-
quirements can be expensive. Therefore the public-key encrypted channels are
only used to exchange symmetric keys securely as outlined in our protocols pre-
viously.

With the public-key infrastructure, we can also provide integrity protection,
non-repudiation, and mutual authentication. For integrity, Alice can create a
MAC using a cryptographic hash function and sign this MAC with her private
key used for digital signatures. A verifier on the other end can validate the
integrity by recomputing the MAC and checking it with the decrypted value
embedded in the message. This mechanism can also be used to provide non
repudiation of origin. Mutual authentication can be accomplished by a standard
challenge-response protocol used in this fashion. Our protocols are optimal in
the number of rounds required for mutual authentication.

While our use of the PKI is fairly standard during protocol initiation, all sub-
sequent messages between two mutually authenticated parties are protected by
encryption using symmetric session keys for performance reasons. The novelty in
our framework is in the use of these keys to enforce authorizations. For example,
whenever subscriber authorizations change due to changes in system context,
the publishers in our protocol are unaffected. The mediators or the SECs sim-
ply change the encryption keys on the channel they share with the subscribers,
enforcing this policy change without sacrificing security guarantees. In this case,
the subscribers are burdened with the responsibility of obtaining new keys by
re-authenticating with the attribute certifiers according to their new roles. This
unilateral revocation of keys may inconvenience affected subscribers, requiring
them to buffer some event messages from the SECs and delay their processing.
On the other hand, when a publisher’s authorizations change, subscribers are
unaffected. We picked this trade-off deliberately to cause the least amount of
impact on the rest of the system, and maximize the precision of enforcement of
dynamic access control policies.

Our use of group keys, i.e., one key per role, simplifies key distribution and
management. In our initial prototype, we do not optimize group key revocation
and sharing. In the future, we plan to explore different hierarchical key distri-
bution frameworks, especially multicast and group-key management [17–20] to
optimize this aspect of our protocols.

With respect to the DoS problem, we believe that our distributed mediators
(the SECs) make it difficult for an attacker to mount DoS attacks against our
infrastructure. In particular, an attacker would need to expend a large amount of
resources to target all the different components to cause service outages. Since
our protocols themselves are soft-state and our entities can bootstrap easily
without needing to coordinate with each other or worry about consistency issues,
we claim our solution is resilient to DoS attacks.

However, we realize that a dedicated insider can repeatedly change the con-
text to trigger key revocation and deny service to legitimate users. While our
system provides non-repudiation at session start-up, such an attacker can hide

behind the group or role set that he or she belongs to due to our use of symmet-
ric keys at this point. At this point, we may need to look at publish behavior of
individual users by analyzing audit logs to catch the culprit. Maintaining these
logs becomes more crucial in this context. While our use of symmetric keys at
this point makes it harder to catch an attacker quickly in this scenario, we still
have accountability at a per-user level.

In the next section, we summarize our work and present our conclusions.

7 Conclusion

In this paper we present an access control architecture that integrates context
with authorization and provides fine-grained control over the enforcement of
dynamically changing permissions. The foundation of this access control archi-
tecture is our secure message distribution system which consists of protocols
for gaining authorized access to communications channels and securely trans-
mitting messages throughout the system. Our secure message distribution sys-
tem addresses the threats to the underlying communication system of pervasive
computing environments, as well as the limitations of existing access control
frameworks.

We have implemented our access control architecture in the Gaia meta-
operating system as distributed objects. Our access control and messaging pro-
tocols secure Gaia’s publish/subscribe communication system. We also present
a proof of correctness of our cryptographic protocols using BAN logic.

Our design includes distributed reference monitors, authorization servers, and
key managers, which afford maximum flexibility to handle dynamically changing
permissions securely. Our SECs maintain ACLs and are directly responsible for
enforcing access policy. This design choice enables distributed enforcement of
policies without sacrificing consistency. The components of our architecture can
be replicated easily for load balancing, are designed to be soft-state, and work
independently without coordination. We believe that this aspect of our design
makes our system more efficient and resilient to denial of service (DoS) attacks.

References

1. Kohl, J., Neuman, B.C.: The Kerberos Network Authentication Service (Version
5). Internet Request for Comments RFC-1510 (1993)

2. Neuman, B.C., Ts’o, T.: Kerberos: An Authentication Service for Computer Net-
works. In: IEEE Communications. Volume 32. (1994) 33–38

3. Housely, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. Internet Request for Comments RFC-2459 (1999)

4. : Public key infrastructure study. National Institute of Standards and Technology
(1994)

5. Creese, S., Goldsmith, M., Rosco, B., Zakiuddin, I.: Authentication for pervasive
computing. In: Proceedings of the First International Conference on Security in
Pervasive Computing, Boppard, Germany, March 12-14th, LNCS, Springer. (2003)

6. Roman, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrst-
edt, K.: Gaia: A middleware infrastructure to enable active spaces. IEEE Pervasive
Computing (2002) 74–83

7. Ashley, P., Vandenwauver, M.: Practical Intranet Security: Overview of the State
of the Art and Available Technologies. Kluwer Academic Publishers (1999)

8. Blaze, M., Feigenbaum, J., Keromytis, A.D.: KeyNote: Trust management for
public-key infrastructures (position paper). Lecture Notes in Computer Science
1550 (1999) 59–63

9. Rivest, R.L., Lampson, B.: SDSI – A simple distributed security infrastructure.
Presented at CRYPTO’96 Rumpsession (1996)

10. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity: A
proposal for terminology (2000)

11. Vandenwauver, M., Govaerts, R., Vandewalle, J.: How role based access control is
implemented in sesame. In: WETICE. (1997) 293–298

12. Hill, R., Al-Muhtadi, J., Campbell, R., Kapadia, A., Naldurg, P., Ranganathan,
A.: A middleware architecture for securing ubiquitous computing cyber infrastruc-
tures. In: 5th ACM/IFIP/USENIX International Middleware Conference. (2004)

13. Creese, S., Goldsmith, M., Roscoe, B., Zakiuddin, I.: Authentication for pervasive
computing. In: Security in Pervasive Computing. (2003)

14. Wullems, C., Looi, M., Clark, A.: Towards context- aware security: An authoriza-
tion architecture for intranet environments. In: in the proceedings of the Second
IEEE Conference on Pervasive Computing and Communciations Worshops. (2004)

15. Sampemane, G., Naldurg, P., Campbell, R.H.: Access control for active spaces. In:
Annual Computer Security Applications Conference. (2002)

16. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. In: Proceedings of
the twelfth ACM symposium on Operating systems principles, ACM Press (1989)
1–13

17. McGrew, D.A., Sherman, A.T.: Key establishment in large dynamic groups using
one-way function trees. IEEE Transactions on Software Engineering 29 (2003)
444–458

18. Mittra, S.: Iolus: A framework for scalable secure multicasting. In: ACM SIG-
COMM ’97. (1997)

19. Perrig, A.: Efficient collaborative key management protocols for secure autonomous
group communication. In: International Workshop on Cryptographic Techniques
and E-Commerce CrypTEC ’99. (1999)

20. Steiner, M., Tsudik, G., Waidner, M.: Cliques: A new approach to group key
agreement. In: 18th International Conference on Distributed Computing Systems
(ICDCS ’98). (1998) 380–387

A BAN Analysis

Assumptions Goals Idealized Protocol

P |≡#(N1) P |≡M |≡P
KP M←−−→M P → M :

(
N1, {N1}

K
−1
P

)
KM

M |≡#(N2) M |≡P |≡P
KP M←−−→M M → P :

8><
>:N1, N2, P

KP M←−−−−→ M,

(
N1, N2, P

KP M←−−−−→ M

)
K
−1
M

9>=
>;

KP

P |≡ KM7→ M P → M :

8><
>:N2, P

KP M←−−−−→ M

(
N2, P

KP M←−−−−→ M

)
K
−1
P

9>=
>;

KM

P |≡ KP7→ P

M |≡ KP7→ P

A.1 Analysis

After step 1 we know: M /
{

N1, {N1}K−1
P

}
KM

•

M /

(
N1, {N1}

K
−1
P

)
KM

•

[M |≡
KM7→ M]

asmp

M / N1, {N1}
K
−1
P

sees5

•
M / N1, {N1}

K
−1
P

M / {N1}
K
−1
P

sees1

•

[M |≡
KP7→ P]

asmp

M |≡P |∼N
pubkey

After step 2 we know: P /

{
N1, N2, P

KP M←−−→M,
{

N1, N2, P
KP M←−−→M

}
K−1

M

}
KP•

P /

8><
>:N1, N2, P

KP M←−−−−→ M,

(
N1, N2, P

KP M←−−−−→ M

)
K
−1
M

9>=
>;

KP

•

[P |≡ P7→ KP]

asmp

P / N1, N2, P
KP M←−−−−→ M,

(
N1, N2, P

KP M←−−−−→ M

)
K
−1
M

sees5

•

P / N1, N2, P
KP M←−−−−→ M,

(
N1, N2, P

KP M←−−−−→ M

)
K
−1
M

P /

(
N1, N2, P

KP M←−−−−→ M

)
K
−1
M

sees1
•

[P |≡
KM7→ M]

asmp

P |≡M |∼N1, N2, P
KP M←−−−−→ M

sees5

P |≡M |∼N1, P
KP M←−−−−→ M

said

•
[P |≡#(N1)]

asmp

P |≡#(N1, P
KP M←−−−−→ M)

fresh
•

P |≡M |∼N1, P
KP M←−−−−→ M

P |≡M |≡N1, P
KP M←−−−−→ M

nv

P |≡M |≡P
KP M←−−−−→ M

bb

After step 3 we know: M � {{N2, P
KP M←−−→M,P,M}K−1

P
}KM

•

M / {{N2, P
KP M←−−−−→ M, P, M}

K
−1
P

}KM

•

[M |≡
KM7→ M]

asmp

M / {N2, P
KP M←−−−−→ M, P, M}

K
−1
P

sees5
•

[M |≡
KP7→ P]

asmp

M |≡P |∼N2, P
KP M←−−−−→ M, P, M

pubkey

M |≡P |∼N2, P
KP M←−−−−→ M, P

said

M |≡P |∼N2, P
KP M←−−−−→ M

said

•
[M |≡](N2)]

M |≡](N2, P
KP M←−−−−→ M)

fresh

asmp

•

M |≡](N2, P
KP M←−−−−→ M)

•

M |≡P |∼N2, P
KP M←−−−−→ M

M |≡P |≡N2, P
KP M←−−−−→ M

nv

M |≡P |≡P
KP M←−−−−→ M

bb

