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ABSTRACT 
In this paper, we share insights from our group experience 
building and experimenting on high performance computing 
clusters to support our research developing novel cluster 
security protection techniques and tools.    

Categories and Subject Descriptors 
C.1.4 [Processor Architectures]: Parallel Architectures – 
distributed architectures. C.2.0 [Computer-Communications 
Networks]: General – security. C.5.1 [Computer System 
Implementation]: Large and Medium (``Mainframe'') 
Computers – super (very large) computers. K.6.2 [Management 
of Computing and Information Systems]: Installation 
Management– computing equipment management.    

General Terms 
Experimentation, Management, Measurement, Security 

Keywords 
cluster security, high performance cluster computing, cluster 
management, research challenges, lessons learned 

1. INTRODUCTION 
Our research group has been relatively successful at combining 
cluster computing research with security and traditional 
computer science (parallel programming and computer 
architectures) [2,4,5]. However, this success does not mean 
there are no challenges, in fact just the opposite. There are many 
challenges and we hope by sharing our lessons others may learn 
from our experience - we certainly owe a debt of gratitude to 
lessons we have learned from other researchers.  We generalize 
our experiences into two groups: (1) building/managing a 
cluster and (2) performing experiments. We note for 
completeness there are different types of HPC clusters as 
described in [2] so our insights need to be filtered for 
applicability.  

2. INFRASTRUCTURE CHALLENGES 
Building a high performance computing (HPC) cluster system 
requires a significant investment in hardware/software selection 
and implementation [1].  Often, the equipment is "hand-me-
down" equipment - this has been our scenario.  While the 
assembled hardware confined us in terms of the configuration, it 
also provided an initial trusted setup to build upon. However, 
there were also peculiarities in equipment failures and time 
spent finding drivers to support outdated equipment.  

When deciding which software to install, our choices were 
driven by a desire to balance configurability with ease of 
administration.  Our projects require hosts running standard 
Linux facilities, along with a standard suite of tools for 
distributed computing such as MPI.  We also require the ability 
to install research software and make kernel modifications.   

We chose the ROCKS cluster toolkit because of its ease of 
installation [3].  This choice placed some constraints on system 
configuration since ROCKS enforces the notion of an 'enclosed 
cluster' consisting of a head node and multiple compute nodes.  
For on-demand computing experiments in which we execute 
distributed jobs across clusters, this must be circumvented.  
Overall, this decision has worked well allowing us to stop 
malicious network traffic at a single chokepoint and minimizing 
IP address administration. 

Setting up research oriented clusters can be challenging  – it is 
an advanced task.  We were particularly challenged by setting 
up PXE boot sequences correctly on the nodes as well as  being 
unable to get the nodes to boot the installation from the head 
node automatically.  Maintenance will require human resources 
since it is an on-going process that does not end when the 
cluster software installation is finished, a cluster requires require 
many adjustments to remain usable.  

Lastly, researchers may use weak passwords or shared accounts. 
This requires someone to serve as a dedicated system 
administrator to monitor system log files and "root" e-mail since 
a compromise on a research cluster can negatively impact the 
wider organizational community. 

3. EXPERIMENTATION CHALLENGES 
A research-oriented cluster differs from typical production 
clusters.  In research clusters, many users have "root" privileges 
since it is easier to modify the environment yourself rather than 
going through a system administrator.  The downside is the 
research cluster environment generally tends toward chaos with 
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lack of accountability.  For example, there may be several 
different (possibly even competing) versions of the same 
software installed. 

The benefits of building and maintaining a research cluster for 
experimentation are worth it. You do gain exclusive access for 
testing software under development. This is especially useful for 
system level software versus user-level scientific software 
because system-level software faults can disrupt an entire 
cluster.  There are also benefits in scheduling grid or on-demand 
jobs across multiple clusters simultaneously.  In a production 
environment, you usually have to schedule 2-4 hour blocks of 
time a week in advance not to mention that you may not be able 
to debug your problems in such a small window of opportunity. 
In contrast, research clusters tend to be a "free for all” regarding 
resources, with much less emphasis on things like job schedulers 
to allocate nodes to individual jobs.   

Our group is exploring the development of patches to the Linux 
kernel to aid in cluster security monitoring.  From the 
perspective of production clusters, it is clearly a problem to 
allow parties, even privileged ones, to load kernel modules or 
otherwise modify the kernels of cluster machines. One potential 
solution was to go with a completely user-space solution to both 
problems, the primary candidate in this direction being User-
Mode Linux (UML).   

UML documentation, as well as our own experiments, 
convinced us that this solution is not suitable for performance 
and security reasons.  UML showed poor performance, relative 
to Linux, on native hardware in our experiments (a result which 
has been widely confirmed).  This is because every system call 
from a hosted user mode instance of the kernel must be trapped 
using the Linux ptrace interface.  Furthermore, the UML kernel 
must emulate many system calls, including those involving IO 
to virtual block devices backed by real hardware, by making 
system calls into the real kernel, conservatively incurring a 2-to-
1 performance penalty.  UML is also insecure when running on 
an unmodified hosting kernel due to the fact that system is 
implemented by placing a copy of the 'virtual kernel' in the 
upper address space of all of its 'virtual' user-space processes.  
Malicious processes can thus read and modify the memory 
space of the UML kernel.  These security issues may be 
addressed by patching the hosting kernel to support a new 
Separate Kernel Address Space (skas) mode.  However, kernel 
patching would have defeated the purpose of a completely user-
space goal. 

During experiments on developing a fault-detection API, several 
things became apparent.  The current MPI implementation is  
low level, perhaps too low level. It is difficult to predict the 
behavior of a multi-threaded program in which multiple threads 
attempt simultaneous MPI calls.  MPI is also ill-suited for 
environments with no QoS guarantees.  For example, MPICH2 
has undefined behavior when MPI_Finalize is called when there 
is an unresolved MPI_Ireceive call still present.  Another 
example is calling MPI_Bcast, yet failing to receive the 
broadcast due to network or node failure. 

4. SUMMARY 
In summary, while studying security in cluster computing we 
have learned two primary lessons: 

Lesson 1: Studying security in HPC clusters is harder than 
studying security in enterprise networks. To effectively study 
the security of clusters, researchers must have full access to 
explore the environment in a realistic setting.  The emergent 
properties of clusters make studying security difficult to 
simulate, as working with a small number of nodes does not 
allow researchers to fully explore the relationships present 
throughout a system as a whole.  Full access to a production 
clusters is difficult to attain, as members of the HPC community 
are reluctant to experiment without guarantees and immediate 
benefits. For these reasons, cluster security researchers must 
experiment on their own cluster(s) – a significant barrier. 

Lesson 2: Studying security in HPC clusters is easier than 
studying security in enterprise networking. A large 
percentage of the overall cluster nodes may be partitioned into a 
small number of equivalence classes.  This allows researchers to 
make simplifying assumptions (that cannot be made in 
enterprise network environments) regarding homogeneous 
communication patterns, configurations, running services, and 
other aspects of the environment.  In addition, the networking 
that connects cluster nodes is typically physically and/or 
logically centralized.  Lastly, a cluster environment is more 
constrained than typical enterprise environments in terms of 
software, processes, and users making security experimentation 
an easier task.  

These seemingly contradictory lessons lead to an important 
conclusion: studying the security of HPC clusters is 
fundamentally different than studying the security of enterprise 
networks.  In order to make substantial progress on this 
front, it is important that the HPC and security communities 
embrace one another's work and form collaborative 
relationships so that both communities can prosper.  Without 
the support of the HPC community, security researchers find it 
difficult to fully explore their ideas.  Likewise, without the 
support of the security community, the HPC community will 
likely continue to be plagued by security incidents on the scale 
of the TeraGrid compromises during the Spring of 2004 which 
has taken over a year to fully investigate. 
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