
Cluster Security Research Challenges
William Yurcik† Adam J. Lee†‡ Gregory A. Koenig†‡

Nadir Kiyanclar†‡ Dmitry Mogilevsky†‡ Michael Treaster†‡
†National Center for Supercomputing Applications (NCSA)

‡Department of Computer Science
University of Illinois at Urbana-Champaign

 {byurcik,adamlee,koenig,nadir,dmogilev,treaster}@ncsa.uiuc.edu

ABSTRACT
In this paper, we share insights from our group experience
building and experimenting on high performance computing
clusters to support our research developing novel cluster
security protection techniques and tools.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures –
distributed architectures. C.2.0 [Computer-Communications
Networks]: General – security. C.5.1 [Computer System
Implementation]: Large and Medium (``Mainframe'')
Computers – super (very large) computers. K.6.2 [Management
of Computing and Information Systems]: Installation
Management– computing equipment management.

General Terms
Experimentation, Management, Measurement, Security

Keywords
cluster security, high performance cluster computing, cluster
management, research challenges, lessons learned

1. INTRODUCTION
Our research group has been relatively successful at combining
cluster computing research with security and traditional
computer science (parallel programming and computer
architectures) [2,4,5]. However, this success does not mean
there are no challenges, in fact just the opposite. There are many
challenges and we hope by sharing our lessons others may learn
from our experience - we certainly owe a debt of gratitude to
lessons we have learned from other researchers. We generalize
our experiences into two groups: (1) building/managing a
cluster and (2) performing experiments. We note for
completeness there are different types of HPC clusters as
described in [2] so our insights need to be filtered for
applicability.

2. INFRASTRUCTURE CHALLENGES
Building a high performance computing (HPC) cluster system
requires a significant investment in hardware/software selection
and implementation [1]. Often, the equipment is "hand-me-
down" equipment - this has been our scenario. While the
assembled hardware confined us in terms of the configuration, it
also provided an initial trusted setup to build upon. However,
there were also peculiarities in equipment failures and time
spent finding drivers to support outdated equipment.

When deciding which software to install, our choices were
driven by a desire to balance configurability with ease of
administration. Our projects require hosts running standard
Linux facilities, along with a standard suite of tools for
distributed computing such as MPI. We also require the ability
to install research software and make kernel modifications.

We chose the ROCKS cluster toolkit because of its ease of
installation [3]. This choice placed some constraints on system
configuration since ROCKS enforces the notion of an 'enclosed
cluster' consisting of a head node and multiple compute nodes.
For on-demand computing experiments in which we execute
distributed jobs across clusters, this must be circumvented.
Overall, this decision has worked well allowing us to stop
malicious network traffic at a single chokepoint and minimizing
IP address administration.

Setting up research oriented clusters can be challenging – it is
an advanced task. We were particularly challenged by setting
up PXE boot sequences correctly on the nodes as well as being
unable to get the nodes to boot the installation from the head
node automatically. Maintenance will require human resources
since it is an on-going process that does not end when the
cluster software installation is finished, a cluster requires require
many adjustments to remain usable.

Lastly, researchers may use weak passwords or shared accounts.
This requires someone to serve as a dedicated system
administrator to monitor system log files and "root" e-mail since
a compromise on a research cluster can negatively impact the
wider organizational community.

3. EXPERIMENTATION CHALLENGES
A research-oriented cluster differs from typical production
clusters. In research clusters, many users have "root" privileges
since it is easier to modify the environment yourself rather than
going through a system administrator. The downside is the
research cluster environment generally tends toward chaos with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NSF/CISE/CNS Cluster Computing Infrastructure Experience
Workshop, July 27, 2005, Siebel Center for Computer Science,
University of Illinois at Urbana-Champaign, IL., USA.
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

lack of accountability. For example, there may be several
different (possibly even competing) versions of the same
software installed.

The benefits of building and maintaining a research cluster for
experimentation are worth it. You do gain exclusive access for
testing software under development. This is especially useful for
system level software versus user-level scientific software
because system-level software faults can disrupt an entire
cluster. There are also benefits in scheduling grid or on-demand
jobs across multiple clusters simultaneously. In a production
environment, you usually have to schedule 2-4 hour blocks of
time a week in advance not to mention that you may not be able
to debug your problems in such a small window of opportunity.
In contrast, research clusters tend to be a "free for all” regarding
resources, with much less emphasis on things like job schedulers
to allocate nodes to individual jobs.

Our group is exploring the development of patches to the Linux
kernel to aid in cluster security monitoring. From the
perspective of production clusters, it is clearly a problem to
allow parties, even privileged ones, to load kernel modules or
otherwise modify the kernels of cluster machines. One potential
solution was to go with a completely user-space solution to both
problems, the primary candidate in this direction being User-
Mode Linux (UML).

UML documentation, as well as our own experiments,
convinced us that this solution is not suitable for performance
and security reasons. UML showed poor performance, relative
to Linux, on native hardware in our experiments (a result which
has been widely confirmed). This is because every system call
from a hosted user mode instance of the kernel must be trapped
using the Linux ptrace interface. Furthermore, the UML kernel
must emulate many system calls, including those involving IO
to virtual block devices backed by real hardware, by making
system calls into the real kernel, conservatively incurring a 2-to-
1 performance penalty. UML is also insecure when running on
an unmodified hosting kernel due to the fact that system is
implemented by placing a copy of the 'virtual kernel' in the
upper address space of all of its 'virtual' user-space processes.
Malicious processes can thus read and modify the memory
space of the UML kernel. These security issues may be
addressed by patching the hosting kernel to support a new
Separate Kernel Address Space (skas) mode. However, kernel
patching would have defeated the purpose of a completely user-
space goal.

During experiments on developing a fault-detection API, several
things became apparent. The current MPI implementation is
low level, perhaps too low level. It is difficult to predict the
behavior of a multi-threaded program in which multiple threads
attempt simultaneous MPI calls. MPI is also ill-suited for
environments with no QoS guarantees. For example, MPICH2
has undefined behavior when MPI_Finalize is called when there
is an unresolved MPI_Ireceive call still present. Another
example is calling MPI_Bcast, yet failing to receive the
broadcast due to network or node failure.

4. SUMMARY
In summary, while studying security in cluster computing we
have learned two primary lessons:

Lesson 1: Studying security in HPC clusters is harder than
studying security in enterprise networks. To effectively study
the security of clusters, researchers must have full access to
explore the environment in a realistic setting. The emergent
properties of clusters make studying security difficult to
simulate, as working with a small number of nodes does not
allow researchers to fully explore the relationships present
throughout a system as a whole. Full access to a production
clusters is difficult to attain, as members of the HPC community
are reluctant to experiment without guarantees and immediate
benefits. For these reasons, cluster security researchers must
experiment on their own cluster(s) – a significant barrier.

Lesson 2: Studying security in HPC clusters is easier than
studying security in enterprise networking. A large
percentage of the overall cluster nodes may be partitioned into a
small number of equivalence classes. This allows researchers to
make simplifying assumptions (that cannot be made in
enterprise network environments) regarding homogeneous
communication patterns, configurations, running services, and
other aspects of the environment. In addition, the networking
that connects cluster nodes is typically physically and/or
logically centralized. Lastly, a cluster environment is more
constrained than typical enterprise environments in terms of
software, processes, and users making security experimentation
an easier task.

These seemingly contradictory lessons lead to an important
conclusion: studying the security of HPC clusters is
fundamentally different than studying the security of enterprise
networks. In order to make substantial progress on this
front, it is important that the HPC and security communities
embrace one another's work and form collaborative
relationships so that both communities can prosper. Without
the support of the HPC community, security researchers find it
difficult to fully explore their ideas. Likewise, without the
support of the security community, the HPC community will
likely continue to be plagued by security incidents on the scale
of the TeraGrid compromises during the Spring of 2004 which
has taken over a year to fully investigate.

5. REFERENCES
[1] Paz, M.B., and Gulias, V.M., “Cluster Setup and its

Administration,” Chapter Two within the book High
Performance Cluster Computing Volume 1: Architectures
and Systems (edited by R. Buyya), Prentice Hall, 1999.

[2] Pourzandi, M., Gordon, D., Yurcik, W., and Koenig, G.A.,
"Clusters and Security: Toward Distributed Security for
Distributed Systems,” IEEE Cluster Computing and Grid
(CCGrid), 2005.

[3] ROCKS Cluster Distribution,
<http://www.rocksclusters.org/Rocks/>

[4] Yurcik, W., Koenig, G.A., Meng, X., and Greenseid, J.,
"Cluster Security as a Unique Problem with Emergent
Properties: Issues and Techniques,” 5th LCI International
Conference on Linux Clusters, 2004.

[5] Yurcik, W., Meng, X., and Kiyanclar, N., “NVisionCC: A
Visualization Framework for High Performance Cluster
Security,” ACM CCS Workship on Visualization and Data
Mining for Computer Security (VIZSEC/DMSEC), 2004.

