
LensGesture: Augmenting Mobile Interactions with Back-
of-Device Finger Gestures

Xiang Xiao♦, Teng Han§, Jingtao Wang♦

♦Department of Computer Science
University of Pittsburgh
210 S Bouquet Street

Pittsburgh, PA 15260, USA
{xiangxiao, jingtaow}@cs.pitt.edu

§Intelligent Systems Program
University of Pittsburgh
210 S Bouquet Street

Pittsburgh, PA 15260, USA
teh24@pitt.edu

ABSTRACT
We present LensGesture, a pure software approach for
augmenting mobile interactions with back-of-device finger
gestures. LensGesture detects full and partial occlusion as well as
the dynamic swiping of fingers on the camera lens by analyzing
image sequences captured by the built-in camera in real time. We
report the feasibility and implementation of LensGesture as well
as newly supported interactions. Through offline benchmarking
and a 16-subject user study, we found that 1) LensGesture is easy
to learn, intuitive to use, and can serve as an effective
supplemental input channel for today's smartphones; 2)
LensGesture can be detected reliably in real time; 3) LensGesture
based target acquisition conforms to Fitts' Law and the
information transmission rate is 0.53 bits/sec; and 4) LensGesture
applications can improve the usability and the performance of
existing mobile interfaces.

Categories and Subject Descriptors
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces; Input devices and
strategies, Theory and methods.

General Terms
Design; Experimentation; Human Factors.

Keywords
Mobile Interfaces; Gestures; Motion Sensing; Camera Phones;
LensGesture; Text Input.

1. INTRODUCTION
The wide adoption of multi-touch enabled large displays and
touch optimized interfaces has completely changed how users
interact with smartphones nowadays. Tasks that were considered
challenging for mobile devices one decade ago, such as web
browsing and map navigation, have experienced rapid growth
during the past a few years [3]. Despites these success stories,
accessing all the diverse functions available to mobile users on
the go, especially in the context of one-handed interactions, are

still challenging.

For example, when a user interacts with her phone with one hand,
the user's thumb, which is neither accurate nor dexterous,
becomes the only channel of input for mobile devices, leading to
the notorious "fat finger problem" [2, 22], the “occlusion
problem” [2, 18], and the "reachability problem" [20]. In
contrast, the more responsive, precise index finger remains idle on
the back of mobile devices throughout the interactions. Because
of this, many compelling techniques for mobile devices, such as
multi-touch, became challenging to perform in such a "situational
impairment" [14] setting.

Many new techniques have been proposed to address these
challenges, from adding new hardware [2, 15, 18, 19] and new
input modality, to changing the default behavior of applications
for certain tasks [22]. Due to challenges in backward software
compatibility, availability of new sensors, and social acceptability
[11], most of the solutions are not immediately accessible to users
of existing mobile devices.

Figure 1. LensGesture in use for menu navigation.

In this paper, we present LensGesture (Figure 1), a new
interaction technique that augments mobile interactions via finger
gestures on the back camera of mobile devices. LensGesture
detects full or partial lens covering actions as well as dynamic
lens swiping actions by analyzing image sequences captured by
the built-in camera.

We describe both implementation details and the benchmarking
performance of the LensGesture algorithm. We show the potential
and feasibility of leveraging on-lens finger gestures to enable a
richer set of mobile interactions. Key contributions of this paper
also include the design, exploration and performance evaluation
of the LensGesture interaction technique, a quantitative
performance study of LensGesture, and an empirical validation of
LensGesture enhanced applications.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
ICMI’13, December 9–13, 2013, Sydney, Australia.
Copyright © 2013 ACM 978-1-4503-2129-7/13/12…$15.00.
DOI string from ACM form confirmation

2. RELATED WORK
Related work fall into two categories: motion gesture interfaces,
and back of device interaction.

2.1 Gestural Interfaces
Gesture is a popular and effective approach for mobile interfaces.
Gestures on mobile devices can be performed by moving fingers
or a stylus across a touch screen (i.e. touch-surface stroke gestures
[23]), by moving the devices directly [10, 12, 16] (i.e. motion
gestures), or a combination of both [8, 12, 16, 17]. Properly
designed gestures can make mobile applications intuitive and
enjoyable to use [11], improving performance for important tasks
such as text entry [17, 19, 21], and making tasks such as selecting
small on screen targets [22] or using application on the go easy to
complete [8]. However, touch-surface stroke gestures could be
tricky to perform [20] with a user's thumb in one-handed usage
scenarios; at the same time, motion gestures require more space to
complete and may also have social acceptability concerns [11].

LensGesture is similar to TinyMotion [16] in that both techniques
rely on analyzing the image sequences captured by the built-in
camera to detect motion. However, there are two major
differences between these two methods. First, TinyMotion detects
and interprets background shifting caused by the physical
movement of mobile devices: a user needs to move or tilt the
phone in order to interact with TinyMotion enabled applications.
In comparison, LensGesture detects the intrusion of finger to the
background while the mobile phone is being held still; Second,
TinyMotion only supports "dynamic" motion gestures, which
requires explicit device motion to activate a gesture while
LensGesture also allows a user to perform "static" gestures such
as covering the camera lens fully or partially.

The usage of in-the-air finger gestures in front of a mobile camera
was investigated in [1, 7, 16] previously. Wang et al [16]
discovered that 2D finger/hand movements in front of a camera
can be detected by motion estimation algorithms in mobile
interactions. An et al [1] tracked 2D, in-the-air finger gestures via
skin color segmentation. In the PalmSpace project, Kratz et al [7]
detected the 3D location and posture of a user’s palm via an
external depth camera. Our approach differs from these in-the-air
gesture techniques in two ways. First, the LensGesture is directly
performed on the lens of the camera. This paradigm greatly
simplifies the detection algorithm and improves both the speed
and accuracy of gesture detection. In addition, the bezel of camera
lens provides natural tactile feedback during gesturing. Second, in
addition to interactions enabled by motion sensing, LensGesture
also systematically explores the design spaces of full/partial lens
covering based static gestures.

The motion scanner(or direction scanner?) envisioned by Ni and
Baudisch [9] for ultra-small devices is similar to Dynamic
LensGesture in terms of marking based input language. Instead of
working for “disappearing mobile devices” in the future,
LensGesture is designed as a complementary input channel to
augment today’s palm-size smartphones. The unique affordance
of camera bezels also allows LensGestures to support unique
input vocabulary such as partial covering gestures.

Hinckley and Song [6] systematically explored how two basic
interactions, i.e. touch and motion, can be combined together via
a set of "touch-enhanced motion" and "motion-enhanced touch"
scenarios. Their sensor synaesthesia techniques [6] use either
implicit device motion or explicit hand movements captured by

built-in sensors such as accelerometers or gyroscopes. In
contrast, LensGesture relies on back-of-device index finger and
the camera to complement front-screen interactions when the
device is holding still.

2.2 Back of Device Interactions
The LensGesture provides a pure-software, complementary input
channel on the back of the device. Back of device interactions
have been studied by researchers in recent years for both
ergonomics concerns and practical benefits [2, 5, 13, 15, 18, 20].
Wobbrock et al. [20] discovered that index fingers on the back of
mobile devices can outperform thumb finger on the front in both
speed and accuracy. Wobbrock and colleagues [20] used a
pocket-sized touchpad to simulate conditions in their study due to
the limited availability of mobile devices with back-mounted
touch surfaces in 2008. While devices equipped with a back side
touchpad have started to appear in recent years, e.g. SONY
PlayStation Vita and Motorola Spice XT300 smartphone, the
mainstream mobile devices do not benefit directly from such
inventions.
Back of device interaction techniques are especially intriguing on
small devices. Operating on the backside of the device allows
users to navigate menus with single or multiple fingers and
interact with the device without occluding the screen. nanoTouch
[2] and HybridTouch [15] rely on back-mounted touchpad to
support inch-sized small devices, and LucidTouch [18] uses back-
mounted camera and to track users' fingers on a tablet sized
device and shows a semi-transparent overlay to establish a
"pseudo-transparent" metaphor during interactions. Minput [4]
has two optical tracking sensors on the back of a small device to
support intuitive and accurate interaction, such as zooming, on the
device. RearType [13] places physical keyboard keys on the back
of the device, enabling users to type text using the rear keys while
griping the device with both hands.

3. THE DESIGN OF LENSGESTURE
LensGesture is motivated by four key observations when using
mobile devices. First, a user's index finger, which is usually the
most nimble finger, stays idle during most interactions. Second,
the built-in camera of mobile devices remains largely unused
outside of the photographic applications. Third, the built-in
camera lens is reachable by the user’s index finger on the back of
the device regardless of whether the user is operating the phone
with one hand (thumb based interactions) or both hands
(operating the phone with index finger on the dominant hand).
Fourth, the edge and bezel of cameras are usually made of
different materials and on different surface levels, which can
provide natural tactile feedback for direct touching and swiping
operations on the lens.

3.1 The LensGesture Taxonomy
We propose two groups of interaction techniques, Static
LensGesture and Dynamic LensGesture, for finger initiated direct
touch interactions with mobile cameras (Figure 2).

Static LensGesture (Figure 2, top row) is performed by covering
the camera lens either fully or partially. Supported gestures
include covering the camera lens in full (i.e. full covering gesture)
and covering the camera lens partially (e.g. partially covering the

left, right, and bottom region of the lens1). Static LensGesture
converts the built-in camera into a multi-state push button set.
Interestingly, the edge/bezel of the camera optical assembly can
provide natural tactile feedback to the user’s index finger when
performing static gestures. Froehlich et al [4] proposed a family
of barrier pointing techniques that utilize the physical properties
of screen edges on mobile devices to improve pen based target
acquisition. LensGesture is unique in that it leverages the
affordance of a camera’s bezel to create a new touch input
channel on the back of mobile devices.

Figure 2. Top Row: Static LensGestures; Bottom Row:

Dynamic LensGestures.
A user can also perform a Dynamic LensGesture (Figure 2,
bottom row) by swiping her finger horizontally (left and right) or
vertically (up and down) across the camera lens2. Dynamic
LensGestures convert the back camera into a four-way, analog
pointing device based on relative movement sensing. As we later
show, allowing the direct swiping of fingers on camera lens
significantly simplify the detection algorithm and improve the
corresponding detection performance.

3.2 The LensGesture Algorithm
We designed a set of three algorithms to detect full coverage,
partial coverage and dynamic swiping of fingers on the lens.
Depending on usage scenarios, these three algorithms can be
cascaded together to support all or part of the LensGesture set.

In all LensGesture detection algorithms, the camera is set in
preview mode, capturing 144x176 pixel color images at a rate of
30 frames per second. We disable the automatic focus function
and the automatic white balance function to avoid interference
with our algorithms.

Static LensGesture - Full covering: The full covering gesture
(Figure 3, second row) can be detected quickly and reliably via a
linear classification model on the global mean and standard
deviation of all the pixels in an incoming image frame in the 8-bit
gray scale space.

1 According to informal tests, we found the top-covering gesture both hard

to perform and hard to distinguish (when compared with left-covering
gestures, Figure 3, third row, first and last images). So we intentionally
removed the top-covering gesture as a supported Static LensGesture.
Please also note that the definition of “top”, “left”, “right” and “bottom”
depends on the holding position (e.g. portrait mode or landscape mode)
of the phone.

2 It is possible to create another Dynamic LensGesture by moving the
finger close to or away from the camera lens. However, such gestures
are relatively hard to perform when a user is holding the phone with the
same hand. We leave this type of Dynamic LensGesture on z-axis to
future work.

Figure 3. Samples images of Static LensGesture. First row: no

gesture. Second row: full covering gestures. Third row:
partial-covering gestures. Left to right: left-covering, right-

covering, bottom-covering, and top-covering (not supported).
The intuition behind the underlining detection algorithm is that
when a user covers the camera’s lens completely, the average
illumination of images drops, while the illumination among pixels
in the image will become homogeneous (i.e. smaller standard
deviations).

Figure 4. global mean vs. standard deviation all the pixels in
images with (full-covering : red dots, partial covering: green
dots) and without (blue dots) Static LensGestures. Each dot

represents one sample image.
Figure 4 shows a scatter plot of global mean vs. global standard
deviation of 791 test images (131 contained no LensGesture; 127
contained full-covering gestures; 533 contained partial covering
gestures). We collected test images from 9 subjects and in four
different environments: 1) indoor bright lighting, 2) indoor poor
lighting, 3) outdoor direct sunshine, and 4) outdoor in the shadow.
All the subjects in the data collection stage were undergraduate
and graduate students in a local university, recruited through
school mailing lists. The number of samples in each environment
condition is evenly distributed. When we choose mean <= 100,
stdev <=30 as the linear decision boundaries for detecting full-
covering gestures (highlighted in Figure 4), we can achieve an
accuracy of 97.9%, at the speed of 2.7 ms per estimate. While
more advanced detection algorithms could definitely improve the
accuracy, we believe an accuracy of 97.9% is sufficient in
interactive applicants where users can adapt their behaviors via
real-time feedback.

Static LensGesture - Partial covering: To detect partial
covering gestures in real time, we designed three serial cascaded
binary kNN (k=5) classifiers to detect covering-left, covering-
bottom, and covering-right gestures. After deciding that the
current frame does not contain a full covering gesture, the image
will be fed to the covering-left, the covering-bottom, and the
covering-right classifier one after the other. If a partial covering
gesture is detected, the algorithm will stop immediately, if not,
the result will be forwarded to the next binary classifier. If no
partial-covering gesture was detected, the image will be labeled as
“no gesture”. We adopted this cascading approach and the kNN
classifier primarily for speed concerns.

Figure 5. From left to right, extracting local features from

Region L (covering-left classifier), Region B (covering-bottom
classifier), and Region R (covering-right classifier).

Features we used in the kNN classifiers include both global
features (mean, standard deviation, maximal and minimal
illuminations in the image histogram) and local features (same
features in a local bounding box, defined in Figure 5). There are
two parameters (w, l) that control the size and location of the local
bounding boxes. The (w, l) values (unit=pixels) should be
converted to a relative ratio when used in different preview
resolutions.

We use the data set described in the previous section, and ten-fold
classification to determine the optimal values (w and l) for each
classifier (Figure 6). As shown in Figure 6, we found that for the
covering-left classifier, w = 24, l =40 will give us the highest
binary classification accuracy at 98.9%. For the cover-bottom
classifier, w = 4, l = 0, gives the highest accuracy at 97.1%, for
the covering-right classifier, w = 4, l = 100, gives the highest
accuracy at 95.9%. The overall accuracy of the cascaded
classification is 93.2%. The speed for detecting partial covering
ranges from 16 – 42 ms.

Dynamic LensGesture: As reported by Wang, Zhai, and Canny
in [16], TinyMotion users discovered that it is possible to put
one’s other hand in front of the mobile camera and control motion
sensing games by moving that hand rather than moving the
mobile phone. As shown in Figure 7, the fundamental causes of

image change are quite different in TinyMotion and LensGesture.
In TinyMotion (Figure 7, bottom row), the algorithm was
detecting the background shifting caused by lateral movement of
mobile devices. When performing Dynamic LensGestures (Figure
7, top row), the background keeps almost still while the finger tip
moves across the lens. Another important observation is that in
Dynamic LensGesture, a user’s finger will completely cover the
lens in one or two frames, making brute force motion estimation
results noisy.

Figure 7. The difference between image sequences captured by
LensGesture (up) and TinyMotion (down) in the same scene.

The Dynamic LensGesture algorithm is based on the TinyMotion
algorithm with minor changes and additional post processing
heuristics. Figure 8 shows the relative movements from the
TinyMotion algorithm, as well as the actual images captured,
when a left-to-right Dynamic LensGesture was performed. In
Figure 8, we see that although the TinyMotion algorithm
successfully captured the strong movements in x-axis (frames 3,
4, 5, 7, 8, 10, 11), estimations became less reliable (frame 6)
when a major portion of the lens was covered. To address this
issue, we use a variable weight moving window to process the
raw output from the TinyMotion algorithm. We give the output of
the current frame a low weight when a full covering action is
detected.

Figure 8. Plot of the distant changes in both x and y directions

for 20 gesture samples.
We collected 957 sets of Dynamic LensGesture sample from 12
subjects. There were more than 30000 images in this data set. For

Figure 6. Classification accuracies of partial-covering classifiers. (Left to right: covering-left, covering-bottom, covering-right)

each Dynamic LensGesture, depending on the finger movement
speed, 10-20 consecutive images were usually captured. We
achieve an accuracy of 91.3% for detecting Dynamic
LensGestures on this dataset, at a speed of 3.9 ms per estimate.
We looked deeper into the misclassified sample sequences and
found that most errors were caused by the confusion between the
swiping down and the swiping left gestures. Most of the
misclassified sequences looked confusing even to human eyes
because the actual swiping actions were diagonal rather than
vertical or horizontal. We attribute this issue to the relative
positioning between the finger and the lens, as well as the lack of
visual feedback during data collection.
To explore the efficacy of LensGesture as a new input channel,
we wrote six applications (LensLock, LensCapture, LensMenu,
LensQWERTY, LensAlbum, and LensMap). All these prototypes
can be operated by Static or Dynamic LensGestures (Figure 9).
All but one application (LensQWERTY) can be operated with one
hand.

Figure 9. Sample LensGesture applications. From left to right,

top to bottom - LensLock, LensCapture, LensMenu,
LensQWERTY, LensAlbum, and LensMap.

LensLock leverages the Static LensGesture and converts the
camera into a "clutch" for automatic view orientation changes.
When a user covers the lens, LensLock locks the screen at the
current landscape/portrait format until the user's finger releases
from the lens. LensLock can achieve the same "pivot-to-lock"
technique proposed by Hinckley [6] without using the thumb
finger to touch the front screen, which may lead to unexpected
state changes.
LensQWERTY uses Static LensGesture to control the SHIFT
state of a traditional on screen QWERTY keyboard. The user can
use the hand holding the phone to toggle the SHIFT state when
the other index finger is being used for typing.
LensAlbum and LensMap are two applications that leverage
Dynamic LensGestures for one-handed photo album/map
navigation. These two application shows that LensGesture can
alleviate “fat finger problem” and the “occlusion problem” by
avoiding direct thumb interaction on the touch screen. The
LensMenu also illustrates a feasible solution to the "reachability
problem" via a supplemental back-of-device input channel
enabled by LensGestures.

3.3 Feasibility
Three major concerns arise for interacting with cameras on
mobile devices in such a "non-traditional" approach. First, is it

possible and comfortable to reach the camera on the back with a
user's index finger under normal grip? Second, does covering and
swiping directly on the surface of the lens scratch or damage the
lens? Third, will the LensGesture algorithm drain the battery of a
smartphone quickly?

We carried out an informal survey to answer the first question.
Reviewing the smartphones in the market, we found that most
phones have 4 to 5 inch touch screens, such as Nokia Lumia 900
(4.3"), Samsung Galaxy Nexus (4.65"), LG Lucid (4"), Motorola
Droid 4 (4"), Samsung Focus S (4.3"), HTC Vivid (4.5"). Some
have smaller screens, like iPhone 4S (3.5") and some have bigger
ones, like Samsung Galaxy Note (5.3"). Basically, the phones
with various sizes are easy to be hold with one hand (Figure 10).
The only exception we are aware of is an Android based MP3
music player named Archos 32. Its camera is located in the
bottom left region of the device.

We also consulted design experts in leading mobile phone
manufacturers to see if covering and swiping directly on the
surface of the lens scratch or damage the lens. According to them,
mainstream optical assemblies in the mobile phones have been
carefully designed to avoid damages from accidental drops,
scratches and collisions. The external unit in an optical unit is
usually made of crystal glass, cyclic olefin copolymer, or
sapphire. While they are not scratch free, these materials are
strong enough to resist frictions caused by finger touch.
Interestingly, the surrounding bezel of the camera is usually made
of a different material, slightly higher than the external lens
surface. Such material and height difference provide good tactile
feedback for both locating the lens and performing different
LensGestures (especially partial occlusion gestures and dynamic
gestures).

Figure 10. Performing LensGesture on different phones.

We ran a total of four mini experiments to quantify the impact of
LensGesture to battery life. We used a Google Nexus S
smartphone (running Android 4.0.3) in the follow-up battery tests.
First, we measured the battery life of while LensGesture was
continuously running in the background and the backlight of the
screen being turned off. Our test phone ran 5 hours 33 minutes
after a full charge. Second, when the backlight of the screen was
turned on to minimal backlight, the same phone lasted 2 hours 35
minutes. Third, when we turn the flashlight of the camera to
always on, and screen backlight to minimal, our smartphone
lasted 2 hours 13 minutes. In the last controlled condition, we
tested a regular android app (i.e. the Alarm Clock) with minimal
backlight; the battery lasted 4 hours 11 minutes.

We have two major findings from the battery experiments. 1) A
major power drain of the modern smartphone is the screen
backlight. This finding agrees with the existing battery test for
camera based motion sensing on features phones [16]. 2)
Paradoxically, the flashlight feature of today’s smartphones only
takes minimal amount of power so the inclusion of flashlight to
improve low-light performance may be worth exploring in future
research.

3.4 Implementation
We implemented LensGesture on a Google Nexus S smartphone.
We wrote the LensGesture algorithms and all the LensGesture
applications in Java. The LensGesture algorithm can be
implemented in C/C++ and compiled to native code via Android
NDK if higher performance is needed.

4. USER STUDY
Although the results of our LensGesture algorithm on pre-
collected data sets were very encouraging, a formal study was
necessary to understand the capabilities and limitations of
LensGesture as a new input channel.

4.1 Experimental Design
The study consisted of six parts:

Overview. We first gave participants a brief introduction to the
LensGesture project. We explained each task to them, and
answered their questions.

Reproducing LensGestures. This session was designed to test
whether users could learn and comfortably use the LensGestures
we designed, and how accurate/responsive the gesture detection
algorithm was in a real world setting. A symbol representing
either a Static LensGesture or a Dynamic LensGesture was shown
on the screen (Figure 11, (1) (2)). Participants were required to
perform the corresponding LensGesture with their index fingers
as fast and as accurately as possible. The application would still
move to the next stimulus if a user could not perform the expected
gesture within the timeout threshold (5 seconds). A user
completed 20 trials for each supported gesture. The order of the
gestures was randomized.

Figure 11. Screen shots of applications in the user study.

Target Acquisition/Pointing. The goal of this session was to
quantify the human performance of using LensGesture to perform
target acquisition tasks. For each trial, participants needed to use
Dynamic LensGestures to drive an on-screen cursor from its
initial position to the target (Figure 11, (3)). After the cursor hit
the target, participants were required to tap the screen to complete
the trial. Regardless of whether participants hit the target or not,
the target acquisition screen disappeared and an information

screen indicating the number of remaining trials in the current
block would show up. We encouraged participants to hit the target
as fast as possible and as accurately as possible. Each participant
completed 160 randomized trials.

Text Input. In this task, we compared the performance of standard
Android virtual keyboard with the LensQWERTY keyboard
(Figure 11, (4)).

Each participant entered 13 short phrases in each condition. The
13 test sentences were: “Hello”, “USA”, “World”, “Today”,
“John Smith”, “Green Rd”, “North BLVD”, “Lomas De Zamora”,
“The Great Wall”, “John H. Bush”, “Sun MicroSystem”, “Mon
Tue Wed Thu”, and “An Instant In The Wind”. These test
sentences were intended to maximize the usage of LensGesture
based shifting feature and simulate commonly used words in a
mobile environment (person names, place names etc).

Other Applications. In this session, Participants were presented
with five LensGesture applications we created (LensLock,
LensCapture, LensMenu, LensAlbum, and LensMap, Figure 9).
After a brief demonstration session, we encouraged the
participants to play with these applications as long as they
wanted.

Collect Qualitative Feedback. After a participant completed all
tasks, we asked him or her to complete a questionnaire. We also
asked the participant to comment on each task, and describe one’s
general feeling towards LensGesture.

4.2 Participants and Apparatus
16 subjects (4 females) between 22 and 30 years of age
participated in our study. 15 of the participants owned a
smartphone. The user study was conducted in a lab with abundant
light. All of the participants completed all tasks.

Our experiments were completed on a Google Nexus S
smartphone with a 480 x 800 pixels display, a 1GHz ARM
Cortex-A8 processor, running Android 4.0.3. It has a built-in 5.0
mega-pixel back camera located at the upper right region.

5. EVALUATION RESULTS

5.1 Reproducing LensGestures

Figure 12. Average response time of Static and Dynamic

LensGestures with one standard deviation error bars.
As shown in Figure 12, the time needed to perform a static
gesture varied on gesture type. Repeated measure variance
analysis showed significant difference due to gesture type: F(7,
120) = 9.7, p < .0001. Fisher’s post hoc tests showed that the

response time of full-occlusion gesture (787 ms) was significantly
shorter than any of the partial occlusion gestures (left = 1054 ms,
p < 0.01; right = 1374 ms, p < 0.0001 ; bottom= 1175 ms, p <
0.0001) and dynamic gestures. The left partial occlusion gesture is
significantly faster than right partial occlusion, p < 0.01, the speed
differences between other partial occlusion gestures are not
significant. For Dynamic Gestures, the move-right gesture
(1258.6 ms) was significantly faster than move-left (1815.2 ms, p
< 0.01) and move-down (1540.6 ms, p < 0.05) gestures, but there
was no significant time difference between move-right and move-
up (1395.7 ms, p= 0.15). The move-up gesture was also
significantly faster than move-left (p < 0.01). The differences in
detection time of Dynamic LensGestures might be caused by the
location of the camera. The camera was located on the upper right
region of the experiment device, making it easier to make the
move-right and move-up gesture.

5.2 Target Acquision/Pointing
2560 target acquisition trials were recorded. 2298 pointing trials
were successful, resulting in an error rate of 10.2%. This error
rate is about twice as that of popular pointing devices in Fitts’ law
studies.

After adjusting target width W for the percentage errors, linear
regression between movement time (MT) and Fitts’ index of
difficulty (ID) is shown in Figure 13:

Figure 13. Scatter-plot of the Movement Time (MT) vs. the

Fitts’ Law Index of Difficulty (ID) for the overall target
acquisition task controlled by Dynamic LensGestures.

MT = 0.594 + 1.8769 log2(A/We+1) (sec)
In the equation above, A is the target distance and We is the
effective target size. While the empirical relationship between
movement time (MT) and index of difficulty (ID = log (A/We +
1)) followed Fitts’ law quite well (with R2 = 0.9427, see Figure
14), the information transmission rate 1/b = 1/1. 1.8769 = 0.53
bits/sec) indicated a relatively low performance for pointing. In
comparison, Wang, Zhai and Canny [16] reported a 0.9 bits/sec
information transmission rate for device motion based target
acquisition on camera phones. We attribute the performance
difference to the usage patterns of Dynamic LensGestures - due
to the relatively small touch area of the built-in camera, repeated
finger swiping actions are needed to drive the on-screen cursor for
a long distance. We believe that the performance of LensGesture
could be improved with better algorithms and faster camera frame
rates in the future. More importantly, since LensGesture can be
performed in parallel with interaction on the front touch screen,
we believe that there are opportunities to use LensGesture as a

supplemental input channel and even use LensGesture as a
primary input channel when the primary channel is not available.

5.3 Text Input
In total, 6273 characters were entered (including editing
characters) in this experiment. There were a total of 42 upper case
characters in the test sentences that required shifting operations
when using the traditional keyboard.

Figure 14. Text entry speed from the experiment with one

standard deviation error bars.
As shown in Figure 14, the overall speed of LensGesture enabled
virtual keyboard, i.e. LensQWERTY (13.4 wpm), was higher than
that of the standard virtual keyboard (11.7 wpm). The speed
difference between these two keyboards was significant F(1, 15)
= 4.17, p < 0.005.
The uncorrected error rate was less than 0.5% for each condition.
The average error rates for the standard keyboard and
LensQWERTY were 2.1% and 1.9% respectively. The error rate
difference between the standard keyboard and LensQWERTY
was not significant (p = 0.51).

5.4 Other Applications
All participants can learn to use the LensGestures applications we
provided with minimal practice (< 2 min). Almost all participants
commented that the portrait/landscape lock feature in LensLock
was very intuitive and much more convenient than alterative
solutions available on their own smartphones. Participants also
indicated that changing the “shift” state of a virtual keyboard via
LensGesture was both easy to learn and time saving.

6. DISCUSSIONS AND FUTURE WORK
The participants reported positive experiences with using
LensGesture. All participants consistently rated LensGesture as
“useful” on the closing questionnaire using a five-point Likert
scale. When asked about how easy it was to learn and use
LensGesture, 13 participants selected “easy”, 3 participants rated
the experience “neutral”. 9 participants commented explicitly that
they would use LensGesture on their own smartphones. 4 of them
expressed a very strong desire to use LensGesture applications
every day.
Our study also revealed usability problems in the current
implementation. Some participants noticed that accidental device
movements were recognized as Dynamic LensGestures from time
to time. We suspect that such kind of accidental device moments
could be one major cause of the relatively high error rate in our
target acquisition task. These false positives can be reduced by

enforcing the full lens covering heuristic illustrated in Figure 8 in
the future.

LensGesture has three advantages when compared with most
existing techniques:

• Technology availability. LensGesture is a pure software
approach. It is immediately available on today's main
streams smartphones.

• Minimal Screen Estate. LensGestures can be enabled without
using any on-screen resources.

• Social Acceptability [11]. When compared with other motion
gesture related techniques such as TinyMotion [16], and
DoubleFlip [12], interacting with LensGesture applications is
barely noticeable to others.

LensGesture also has its own disadvantages. First, due to its
internal working mechanism, LensGesture cannot co-exist with
picture taking and video capturing applications. Second, since
LensGesture detects the illumination changes caused by finger
covering activities, it might not work well in extremely dark
environments. However, this restriction may be relieved by
leveraging the camera flashlight. Third, given the relatively low
information transmission rate (0.53 bits/sec), it could be slightly
tedious to complete pointing tasks via LensGesture for an
extended amount of time.
Our current research has only scratched the surface of
LensGesture-based interactions. For example, an adaptive
Control-Display (C/D) gain algorithm could be implemented to
improve the performance of Dynamic LensGesture driven target
acquisition tasks, where repetitive finger movements are
necessary. Custom cases or attachments with grooves for guiding
finger movements could be made to enable EdgeWrite style
gesture input [21] via LensGesture.
The LensGesture channel is orthogonal to most existing input
channels and techniques on mobile phones. Acting as a
supplemental input channel, LensGesture can co-exist with
software or hardware based front or back-of-the-device
interaction techniques. We believe that there are many new
opportunities in the design space of multi-channel, multi-stream
interaction techniques enabled by LensGesture.

7. CONCLUSIONS
In this paper, we present LensGesture, a pure software approach
for augmenting mobile interactions with back-of-device finger
gestures. LensGesture detects full and partial occlusion as well as
the dynamic swiping of fingers on the camera lens by analyzing
image sequences captured by the built-in camera in real time. We
report the feasibility and implementation of LensGesture as well
as newly supported interactions. Both offline benchmarking
results and a 16-subject user study show that LensGestures are
easy to learn, intuitive to use, and can complement existing
interaction paradigms used in today's smartphones.

8. REFERENCES
[1] An, J., Hong, K., Finger gesture-based mobile user interface using a

rear-facing camera, In Proc. ICCE 2011, pp 303-304.

[2] Baudisch, P. and Chu, G. Back-of-Device Interaction Allows
Creating Very Small Touch Devices. In Proc. CHI 2009.

[3] Callcredit Information Group, Mobile Web Traffic Triples in 12
Months, http://finance.yahoo.com/news/mobile-traffic-triples-12-
months-050000265.html 9/8/2013.

[4] Froehlich, J., Wobbrock, J., Kane, S., Barrier Pointing: Using
Physical Edges to Assist Target Acquisition on Mobile Device
Touch Screens, In Proc. ASSETS 2007.

[5] Harrison, C., and Hudson, S., Minput: Enabling Interaction on Small
Mobile Devices with High-Precision, Low-Cost, Multipoint Optical
Tracking, In Proc. CHI 2010.

[6] Hinckley, K., Song, H., Sensor Synaesthesia: Touch in Motion, and
Motion in Touch, In Proc. CHI 2011.

[7] Kratz, S., Rohs, M., et al, PalmSpace: continuous around-device
gestures vs. multitouch for 3D rotation tasks on mobile devices, In
Proc. AVI 2012.

[8] Lu, H., Li, Y., Gesture Avatar: A Technique for Operating Mobile
User Interfaces Using Gestures, In Proc. CHI 2011.

[9] Ni, T., and Baudisch, P., Disappearing Mobile Devices, In Proc.
UIST 2009.

[10] Rekimoto, J., Tilting Operations for Small Screen Interfaces. In
Proc. UIST 1996, pp. 167–168.

[11] Rico, J. and Brewster, S.A. Usable Gestures for Mobile Interfaces:
Evaluating Social Acceptability. In Proc. CHI 2010.

[12] Ruiz, J., Li, Y., DoubleFlip: a Motion Gesture Delimiter for Mobile
Interaction, In Proc. CHI 2011.

[13] Scott, J., Izadi, S., et al, RearType: Text Entry Using Keys on the
Back of a Device, In Proc. of MobileHCI 2010.

[14] Sears. A., Lin M., Jacko, J. and Xiao, Y., When computers fade…
Pervasive computing and situationally-induced impairments and
disabilities, In Proc of HCI International 2003, Elsevier Science.

[15] Sugimoto, M., and Hiroki, K., HybridTouch: an Intuitive
Manipulation Technique for PDAs Using Their Front and Rear
Surfaces, In Proc. MobileHCI 2006, 137-140.

[16] Wang, J, Zhai, S., Canny, J., Camera Phone Based Motion Sensing :
Interaction Techniques, Applications and Performance Study. In
Proc. UIST 2006.

[17] Wang, J., Zhai, S., Canny, J., SHRIMP - Solving Collision and Out
of Vocabulary Problems in Mobile Predictive Input with Motion
Gesture, In Proc. CHI 2010.

[18] Wigdor, D., Forlines, C., Baudisch, P., et al. LucidTouch : a See-
Through Mobile Device. In Proc. UIST 2007.

[19] Wobbrock, J.,Chau, D., Myers, B., An Alternative to Push, Press,
and Tap-Tap-Tap: Gesturing on An Isometric Joystick for Mobile
Phone Text Entry, In Proc. CHI 2007.

[20] Wobbrock, J., Myers, B., and Aung, H. The Performance of Hand
Postures in Front- and Back-of-Device Interaction for Mobile
Computing. International Journal of Human-Computer Studies 66
(12), 857-875.

[21] Wobbrock, J., Myers, B., Kembel, J., EdgeWrite: A Stylus-Based
Text Entry Method Designed for High Accuracy and Stability of
Motion, In Proc of UIST 2003.

[22] Yatani, K., Partridge, K., Bern, M., and Newman, M.W. Escape: a
Target Selection Technique Using Visually-Cued Gestures. In Proc.
CHI 2008, ACM Press (2008), 285-294.

[23] Zhai, S., Kristensson, P.O., et al, Foundational Issues in Touch-
Surface Stroke Gesture Design — An Integrative Review,
Foundations and Trends in Human–Computer Interaction Vol. 5,
No. 2, 97–205, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

