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ABSTRACT 
We present LensGesture, a pure software approach for 
augmenting mobile interactions with back-of-device finger 
gestures. LensGesture detects full and partial occlusion as well as 
the dynamic swiping of fingers on the camera lens by analyzing 
image sequences captured by the built-in camera in real time. We 
report the feasibility and implementation of LensGesture as well 
as newly supported interactions. Through offline benchmarking 
and a 16-subject user study, we found that 1) LensGesture is easy 
to learn, intuitive to use, and can serve as an effective 
supplemental input channel for today's smartphones; 2) 
LensGesture can be detected reliably in real time; 3) LensGesture 
based target acquisition conforms to Fitts' Law and the 
information transmission rate is 0.53 bits/sec; and 4) LensGesture 
applications can improve the usability and the performance of 
existing mobile interfaces.   

Categories and Subject Descriptors 
H5.2 [Information interfaces and presentation]: User 
Interfaces. - Graphical user interfaces; Input devices and 
strategies, Theory and methods. 

General Terms 
Design; Experimentation; Human Factors. 

Keywords 
Mobile Interfaces; Gestures; Motion Sensing; Camera Phones; 
LensGesture; Text Input. 

1. INTRODUCTION 
The wide adoption of multi-touch enabled large displays and 
touch optimized interfaces has completely changed how users 
interact with smartphones nowadays. Tasks that were considered 
challenging for mobile devices one decade ago, such as web 
browsing and map navigation, have experienced rapid growth 
during the past a few years [3]. Despites these success stories, 
accessing all the diverse functions available to mobile users on 
the go, especially in the context of one-handed interactions, are 

still challenging.  

For example, when a user interacts with her phone with one hand,  
the user's thumb, which is neither accurate nor dexterous, 
becomes the only channel of input for mobile devices, leading to 
the notorious "fat finger problem" [2, 22], the “occlusion 
problem” [2,  18], and the "reachability problem" [20]. In 
contrast, the more responsive, precise index finger remains idle on 
the back of mobile devices throughout the interactions. Because 
of this, many compelling techniques for mobile devices, such as 
multi-touch, became challenging to perform in such a "situational 
impairment" [14] setting.  

Many new techniques have been proposed to address these 
challenges, from adding new hardware [2, 15, 18, 19] and new 
input modality, to changing the default behavior of applications 
for certain tasks [22]. Due to challenges in backward software 
compatibility, availability of new sensors, and social acceptability 
[11], most of the solutions are not immediately accessible to users 
of existing mobile devices. 

 
Figure 1. LensGesture in use for menu navigation. 

In this paper, we present LensGesture (Figure 1), a new 
interaction technique that augments mobile interactions via finger 
gestures on the back camera of mobile devices.  LensGesture 
detects full or partial lens covering actions as well as dynamic 
lens swiping actions by analyzing image sequences captured by 
the built-in camera.  

We describe both implementation details and the benchmarking 
performance of the LensGesture algorithm. We show the potential 
and feasibility of leveraging on-lens finger gestures to enable a 
richer set of mobile interactions.  Key contributions of this paper 
also include the design, exploration and performance evaluation 
of the LensGesture interaction technique, a quantitative 
performance study of LensGesture, and an empirical validation of 
LensGesture enhanced applications. 
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2. RELATED WORK 
Related work fall into two categories: motion gesture interfaces, 
and back of device interaction. 

2.1 Gestural Interfaces 
Gesture is a popular and effective approach for mobile interfaces. 
Gestures on mobile devices can be performed by moving fingers 
or a stylus across a touch screen (i.e. touch-surface stroke gestures 
[23]), by moving the devices directly [10, 12, 16] (i.e. motion 
gestures), or a combination of both [8, 12, 16, 17]. Properly 
designed gestures can make mobile applications intuitive and 
enjoyable to use [11], improving performance for important tasks 
such as text entry [17, 19, 21], and making tasks such as selecting 
small on screen targets [22] or using application on the go easy to 
complete [8]. However, touch-surface stroke gestures could be 
tricky to perform [20] with a user's thumb in one-handed usage 
scenarios; at the same time, motion gestures require more space to 
complete and may also have social acceptability concerns [11]. 

LensGesture is similar to TinyMotion [16] in that both techniques 
rely on analyzing the image sequences captured by the built-in 
camera to detect motion. However, there are two major 
differences between these two methods. First, TinyMotion detects 
and interprets background shifting caused by the physical 
movement of mobile devices: a user needs to move or tilt the 
phone in order to interact with TinyMotion enabled applications. 
In comparison, LensGesture detects the intrusion of finger to the 
background while the mobile phone is being held still; Second, 
TinyMotion only supports "dynamic" motion gestures, which 
requires explicit device motion to activate a gesture while 
LensGesture also allows a user to perform "static" gestures such 
as covering the camera lens fully or partially.  

The usage of in-the-air finger gestures in front of a mobile camera 
was investigated in [1, 7, 16] previously. Wang et al [16]  
discovered that 2D finger/hand movements in front of a camera 
can be detected by motion estimation algorithms in mobile 
interactions. An et al [1] tracked 2D, in-the-air finger gestures via 
skin color segmentation. In the PalmSpace project, Kratz et al [7] 
detected the 3D location and posture of a user’s palm via an 
external depth camera. Our approach differs from these in-the-air 
gesture techniques in two ways. First, the LensGesture is directly 
performed on the lens of the camera. This paradigm greatly 
simplifies the detection algorithm and improves both the speed 
and accuracy of gesture detection. In addition, the bezel of camera 
lens provides natural tactile feedback during gesturing. Second, in 
addition to interactions enabled by motion sensing, LensGesture 
also systematically explores the design spaces of full/partial lens 
covering based static gestures. 

The motion scanner(or direction scanner?) envisioned by Ni and 
Baudisch [9] for ultra-small devices is similar to Dynamic 
LensGesture in terms of marking based input language. Instead of 
working for “disappearing mobile devices” in the future, 
LensGesture is designed as a complementary input channel to 
augment today’s palm-size smartphones. The unique affordance 
of camera bezels also allows LensGestures to support unique 
input vocabulary such as partial covering gestures.  

Hinckley and Song [6] systematically explored how two basic 
interactions, i.e. touch and motion, can be combined together via 
a set of "touch-enhanced motion" and "motion-enhanced touch" 
scenarios. Their sensor synaesthesia techniques [6] use either 
implicit device motion or explicit hand movements captured by 

built-in sensors such as accelerometers or gyroscopes.  In 
contrast, LensGesture relies on back-of-device index finger and 
the camera to complement front-screen interactions when the 
device is holding still.  

2.2 Back of Device Interactions 
The LensGesture provides a pure-software, complementary input 
channel on the back of the device. Back of device interactions 
have been studied by researchers in recent years for both 
ergonomics concerns and practical benefits [2, 5, 13, 15, 18, 20].  
Wobbrock et al. [20] discovered that index fingers on the back of 
mobile devices can outperform thumb finger on the front in both 
speed and accuracy. Wobbrock and colleagues [20] used a 
pocket-sized touchpad to simulate conditions in their study due to 
the limited availability of mobile devices with back-mounted 
touch surfaces in 2008. While devices equipped with a back side 
touchpad have started to appear in recent years, e.g. SONY 
PlayStation Vita and Motorola Spice XT300 smartphone, the 
mainstream mobile devices do not benefit directly from such 
inventions. 
Back of device interaction techniques are especially intriguing on 
small devices. Operating on the backside of the device allows 
users to navigate menus with single or multiple fingers and 
interact with the device without occluding the screen. nanoTouch 
[2] and HybridTouch [15] rely on back-mounted touchpad to 
support inch-sized small devices, and LucidTouch [18] uses back-
mounted camera and to track users' fingers on a tablet sized 
device and shows a semi-transparent overlay to establish a 
"pseudo-transparent" metaphor during interactions. Minput [4] 
has two optical tracking sensors on the back of a small device to 
support intuitive and accurate interaction, such as zooming, on the 
device. RearType [13] places physical keyboard keys on the back 
of the device, enabling users to type text using the rear keys while 
griping the device with both hands.   

3. THE DESIGN OF LENSGESTURE 
LensGesture is motivated by four key observations when using 
mobile devices. First, a user's index finger, which is usually the 
most nimble finger, stays idle during most interactions. Second, 
the built-in camera of mobile devices remains largely unused 
outside of the photographic applications. Third, the built-in 
camera lens is reachable by the user’s index finger on the back of 
the device regardless of whether the user is operating the phone 
with one hand (thumb based interactions) or both hands 
(operating the phone with index finger on the dominant hand). 
Fourth, the edge and bezel of cameras are usually made of 
different materials and on different surface levels, which can 
provide natural tactile feedback for direct touching and swiping 
operations on the lens. 

3.1 The LensGesture Taxonomy 
We propose two groups of interaction techniques, Static 
LensGesture and Dynamic LensGesture, for finger initiated direct 
touch interactions with mobile cameras (Figure 2). 

Static LensGesture (Figure 2, top row) is performed by covering 
the camera lens either fully or partially. Supported gestures 
include covering the camera lens in full (i.e. full covering gesture) 
and covering the camera lens partially (e.g. partially covering the 



left, right, and bottom region of the lens1). Static LensGesture 
converts the built-in camera into a multi-state push button set. 
Interestingly, the edge/bezel of the camera optical assembly can 
provide natural tactile feedback to the user’s index finger when 
performing static gestures.  Froehlich et al [4] proposed a family 
of barrier pointing techniques that utilize the physical properties 
of screen edges on mobile devices to improve pen based target 
acquisition. LensGesture is unique in that it leverages the 
affordance of a camera’s bezel to create a new touch input 
channel on the back of mobile devices.  

 
Figure 2. Top Row: Static LensGestures; Bottom Row: 

Dynamic LensGestures. 
A user can also perform a Dynamic LensGesture (Figure 2, 
bottom row) by swiping her finger horizontally (left and right) or 
vertically (up and down) across the camera lens2. Dynamic 
LensGestures convert the back camera into a four-way, analog 
pointing device based on relative movement sensing. As we later 
show, allowing the direct swiping of fingers on camera lens 
significantly simplify the detection algorithm and improve the 
corresponding detection performance. 

3.2 The LensGesture Algorithm 
We designed a set of three algorithms to detect full coverage, 
partial coverage and dynamic swiping of fingers on the lens. 
Depending on usage scenarios, these three algorithms can be 
cascaded together to support all or part of the LensGesture set. 

In all LensGesture detection algorithms, the camera is set in 
preview mode, capturing 144x176 pixel color images at a rate of 
30 frames per second. We disable the automatic focus function 
and the automatic white balance function to avoid interference 
with our algorithms.  

Static LensGesture - Full covering: The full covering gesture 
(Figure 3, second row) can be detected quickly and reliably via a 
linear classification model on the global mean and standard 
deviation of all the pixels in an incoming image frame in the 8-bit 
gray scale space.  
                                                                 
1 According to informal tests, we found the top-covering gesture both hard 

to perform and hard to distinguish (when compared with left-covering 
gestures, Figure 3, third row, first and last images). So we intentionally 
removed the top-covering gesture as a supported Static LensGesture. 
Please also note that the definition of “top”, “left”, “right” and “bottom” 
depends on the holding position (e.g. portrait mode or landscape mode) 
of the phone. 

2 It is possible to create another Dynamic LensGesture by moving the 
finger close to or away from the camera lens. However, such gestures 
are relatively hard to perform when a user is holding the phone with the 
same hand. We leave this type of Dynamic LensGesture on z-axis to 
future work. 

     

    

    
Figure 3. Samples images of Static LensGesture. First row: no 

gesture. Second row: full covering gestures. Third row: 
partial-covering gestures. Left to right: left-covering, right-

covering, bottom-covering, and top-covering (not supported).  
The intuition behind the underlining detection algorithm is that 
when a user covers the camera’s lens completely, the average 
illumination of images drops, while the illumination among pixels 
in the image will become homogeneous (i.e. smaller standard 
deviations). 

 
Figure 4. global mean vs. standard deviation all the pixels in 
images with (full-covering : red dots, partial covering: green 
dots) and without (blue dots) Static LensGestures. Each dot 

represents one sample image. 
Figure 4 shows a scatter plot of global mean vs. global standard 
deviation of 791 test images (131 contained no LensGesture; 127 
contained full-covering gestures; 533 contained partial covering 
gestures). We collected test images from 9 subjects and in four 
different environments:  1) indoor bright lighting, 2) indoor poor 
lighting, 3) outdoor direct sunshine, and 4) outdoor in the shadow. 
All the subjects in the data collection stage were undergraduate 
and graduate students in a local university, recruited through 
school mailing lists. The number of samples in each environment 
condition is evenly distributed.  When we choose mean <= 100, 
stdev <=30 as the linear decision boundaries for detecting full-
covering gestures (highlighted in Figure 4), we can achieve an 
accuracy of 97.9%, at the speed of 2.7 ms per estimate. While 
more advanced detection algorithms could definitely improve the 
accuracy, we believe an accuracy of 97.9% is sufficient in 
interactive applicants where users can adapt their behaviors via 
real-time feedback.  



Static LensGesture - Partial covering: To detect partial 
covering gestures in real time, we designed three serial cascaded 
binary kNN (k=5) classifiers to detect covering-left, covering-
bottom, and covering-right gestures. After deciding that the 
current frame does not contain a full covering gesture, the image 
will be fed to the covering-left, the covering-bottom, and the 
covering-right classifier one after the other. If a partial covering 
gesture is detected, the algorithm will stop immediately, if not, 
the result will be forwarded to the next binary classifier. If no 
partial-covering gesture was detected, the image will be labeled as 
“no gesture”. We adopted this cascading approach and the kNN 
classifier primarily for speed concerns. 

 
Figure 5. From left to right, extracting local features from 

Region L (covering-left classifier), Region B (covering-bottom 
classifier), and Region R (covering-right classifier). 

Features we used in the kNN classifiers include both global 
features (mean, standard deviation, maximal and minimal 
illuminations in the image histogram) and local features (same 
features in a local bounding box, defined in Figure 5). There are 
two parameters (w, l) that control the size and location of the local 
bounding boxes. The (w, l) values (unit=pixels) should be 
converted to a relative ratio when used in different preview 
resolutions. 

We use the data set described in the previous section, and ten-fold 
classification to determine the optimal values ( w and l  ) for each 
classifier (Figure 6).  As shown in Figure 6, we found that for the 
covering-left classifier,  w  = 24, l =40 will give us the highest 
binary classification accuracy at 98.9%. For the cover-bottom 
classifier, w = 4, l  = 0, gives the highest accuracy at 97.1%, for 
the covering-right classifier, w  = 4, l  = 100, gives the highest 
accuracy at 95.9%.  The overall accuracy of the cascaded 
classification is 93.2%. The speed for detecting partial covering 
ranges from 16 – 42 ms.  

Dynamic LensGesture: As reported by Wang, Zhai, and Canny 
in [16], TinyMotion users discovered that it is possible to put 
one’s other hand in front of the mobile camera and control motion 
sensing games by moving that hand rather than moving the 
mobile phone. As shown in Figure 7, the fundamental causes of 

image change are quite different in TinyMotion and LensGesture. 
In TinyMotion (Figure 7, bottom row), the algorithm was 
detecting the background shifting caused by lateral movement of 
mobile devices. When performing Dynamic LensGestures (Figure 
7, top row), the background keeps almost still while the finger tip 
moves across the lens. Another important observation is that in 
Dynamic LensGesture, a user’s finger will completely cover the 
lens in one or two frames, making brute force motion estimation 
results noisy. 

 
Figure 7. The difference between image sequences captured by 
LensGesture (up) and TinyMotion (down) in the same scene. 

The Dynamic LensGesture algorithm is based on the TinyMotion 
algorithm with minor changes and additional post processing 
heuristics. Figure 8 shows the relative movements from the 
TinyMotion algorithm, as well as the actual images captured, 
when a left-to-right Dynamic LensGesture was performed. In 
Figure 8, we see that although the TinyMotion algorithm 
successfully captured the strong movements in x-axis (frames 3, 
4, 5, 7, 8, 10, 11), estimations became less reliable (frame 6) 
when a major portion of the lens was covered. To address this 
issue, we use a variable weight moving window to process the 
raw output from the TinyMotion algorithm. We give the output of 
the current frame a low weight when a full covering action is 
detected. 

 
Figure 8. Plot of the distant changes in both x and y directions 

for 20 gesture samples.  
We collected 957 sets of Dynamic LensGesture sample from 12 
subjects. There were more than 30000 images in this data set. For 

 
Figure 6. Classification accuracies of partial-covering classifiers. (Left to right: covering-left, covering-bottom, covering-right)



each Dynamic LensGesture, depending on the finger movement 
speed, 10-20 consecutive images were usually captured. We 
achieve an accuracy of 91.3% for detecting Dynamic 
LensGestures on this dataset, at a speed of 3.9 ms per estimate. 
We looked deeper into the misclassified sample sequences and 
found that most errors were caused by the confusion between the 
swiping down and the swiping left gestures. Most of the 
misclassified sequences looked confusing even to human eyes 
because the actual swiping actions were diagonal rather than 
vertical or horizontal. We attribute this issue to the relative 
positioning between the finger and the lens, as well as the lack of 
visual feedback during data collection.  
To explore the efficacy of LensGesture as a new input channel, 
we wrote six applications (LensLock, LensCapture, LensMenu, 
LensQWERTY, LensAlbum, and LensMap). All these prototypes 
can be operated by Static or Dynamic LensGestures (Figure 9).  
All but one application (LensQWERTY) can be operated with one 
hand.  

 

 
Figure 9. Sample LensGesture applications. From left to right, 

top to bottom - LensLock, LensCapture, LensMenu, 
LensQWERTY, LensAlbum, and LensMap. 

LensLock leverages the Static LensGesture and converts the 
camera into a "clutch" for automatic view orientation changes. 
When a user covers the lens, LensLock locks the screen at the 
current landscape/portrait format until the user's finger releases 
from the lens. LensLock can achieve the same "pivot-to-lock" 
technique proposed by Hinckley [6] without using the thumb 
finger to touch the front screen, which may lead to unexpected 
state changes.  
LensQWERTY uses Static LensGesture to control the SHIFT 
state of a traditional on screen QWERTY keyboard. The user can 
use the hand holding the phone to toggle the SHIFT state when 
the other index finger is being used for typing.  
LensAlbum and LensMap are two applications that leverage 
Dynamic LensGestures for one-handed photo album/map 
navigation. These two application shows that LensGesture can 
alleviate “fat finger problem” and the “occlusion problem” by 
avoiding direct thumb interaction on the touch screen. The 
LensMenu also illustrates a feasible solution to the "reachability 
problem" via a supplemental back-of-device input channel 
enabled by LensGestures.  

3.3 Feasibility 
Three major concerns arise for interacting with cameras on 
mobile devices in such a "non-traditional" approach. First, is it 

possible and comfortable to reach the camera on the back with a 
user's index finger under normal grip? Second, does covering and 
swiping directly on the surface of the lens scratch or damage the 
lens? Third, will the LensGesture algorithm drain the battery of a 
smartphone quickly? 

We carried out an informal survey to answer the first question. 
Reviewing the smartphones in the market, we found that most 
phones have 4 to 5 inch touch screens, such as Nokia Lumia 900 
(4.3"), Samsung Galaxy Nexus (4.65"), LG Lucid (4"), Motorola 
Droid 4 (4"), Samsung Focus S (4.3"), HTC Vivid (4.5"). Some 
have smaller screens, like iPhone 4S (3.5") and some have bigger 
ones, like Samsung Galaxy Note (5.3"). Basically, the phones 
with various sizes are easy to be hold with one hand (Figure 10). 
The only exception we are aware of is an Android based MP3 
music player named Archos 32. Its camera is located in the 
bottom left region of the device.  

We also consulted design experts in leading mobile phone 
manufacturers to see if covering and swiping directly on the 
surface of the lens scratch or damage the lens. According to them, 
mainstream optical assemblies in the mobile phones have been 
carefully designed to avoid damages from accidental drops, 
scratches and collisions. The external unit in an optical unit is 
usually made of crystal glass, cyclic olefin copolymer, or 
sapphire. While they are not scratch free, these materials are 
strong enough to resist frictions caused by finger touch. 
Interestingly, the surrounding bezel of the camera is usually made 
of a different material, slightly higher than the external lens 
surface. Such material and height difference provide good tactile 
feedback for both locating the lens and performing different 
LensGestures (especially partial occlusion gestures and dynamic 
gestures). 

 

Figure 10. Performing LensGesture on different phones. 

We ran a total of four mini experiments to quantify the impact of 
LensGesture to battery life. We used a Google Nexus S 
smartphone (running Android 4.0.3) in the follow-up battery tests. 
First, we measured the battery life of while LensGesture was 
continuously running in the background and the backlight of the 
screen being turned off. Our test phone ran 5 hours 33 minutes 
after a full charge. Second, when the backlight of the screen was 
turned on to minimal backlight, the same phone lasted 2 hours 35 
minutes. Third, when we turn the flashlight of the camera to 
always on, and screen backlight to minimal, our smartphone 
lasted 2 hours 13 minutes. In the last controlled condition, we 
tested a regular android app (i.e. the Alarm Clock) with minimal 
backlight; the battery lasted 4 hours 11 minutes. 



We have two major findings from the battery experiments.  1) A 
major power drain of the modern smartphone is the screen 
backlight. This finding agrees with the existing battery test for 
camera based motion sensing on features phones [16]. 2) 
Paradoxically, the flashlight feature of today’s smartphones only 
takes minimal amount of power so the inclusion of flashlight to 
improve low-light performance may be worth exploring in future 
research.  

3.4 Implementation 
We implemented LensGesture on a Google Nexus S smartphone. 
We wrote the LensGesture algorithms and all the LensGesture 
applications in Java. The LensGesture algorithm can be 
implemented in C/C++ and compiled to native code via Android 
NDK if higher performance is needed. 

4. USER STUDY 
Although the results of our LensGesture algorithm on pre-
collected data sets were very encouraging, a formal study was 
necessary to understand the capabilities and limitations of 
LensGesture as a new input channel.  

4.1 Experimental Design 
The study consisted of six parts: 

Overview. We first gave participants a brief introduction to the 
LensGesture project. We explained each task to them, and 
answered their questions.  

Reproducing LensGestures. This session was designed to test 
whether users could learn and comfortably use the LensGestures 
we designed, and how accurate/responsive the gesture detection 
algorithm was in a real world setting.  A symbol representing 
either a Static LensGesture or a Dynamic LensGesture was shown 
on the screen (Figure 11, (1) (2)). Participants were required to 
perform the corresponding LensGesture with their index fingers 
as fast and as accurately as possible. The application would still 
move to the next stimulus if a user could not perform the expected 
gesture within the timeout threshold (5 seconds). A user 
completed 20 trials for each supported gesture. The order of the 
gestures was randomized. 

 
Figure 11. Screen shots of applications in the user study. 

Target Acquisition/Pointing. The goal of this session was to 
quantify the human performance of using LensGesture to perform 
target acquisition tasks. For each trial, participants needed to use 
Dynamic LensGestures to drive an on-screen cursor from its 
initial position to the target (Figure 11, (3)). After the cursor hit 
the target, participants were required to tap the screen to complete 
the trial. Regardless of whether participants hit the target or not, 
the target acquisition screen disappeared and an information 

screen indicating the number of remaining trials in the current 
block would show up. We encouraged participants to hit the target 
as fast as possible and as accurately as possible. Each participant 
completed 160 randomized trials.  

Text Input. In this task, we compared the performance of standard 
Android virtual keyboard with the LensQWERTY keyboard 
(Figure 11, (4)).  

Each participant entered 13 short phrases in each condition. The 
13 test sentences were: “Hello”, “USA”, “World”, “Today”, 
“John Smith”, “Green Rd”, “North BLVD”, “Lomas De Zamora”, 
“The Great Wall”, “John H. Bush”, “Sun MicroSystem”, “Mon 
Tue Wed Thu”, and “An Instant In The Wind”. These test 
sentences were intended to maximize the usage of LensGesture 
based shifting feature and simulate commonly used words in a 
mobile environment (person names, place names etc).  

Other Applications. In this session, Participants were presented 
with five LensGesture applications we created (LensLock, 
LensCapture, LensMenu, LensAlbum, and LensMap, Figure 9).  
After a brief demonstration session, we encouraged the 
participants to play with these applications as long as they 
wanted.  

Collect Qualitative Feedback. After a participant completed all 
tasks, we asked him or her to complete a questionnaire. We also 
asked the participant to comment on each task, and describe one’s 
general feeling towards LensGesture. 

4.2 Participants and Apparatus 
16 subjects (4 females) between 22 and 30 years of age 
participated in our study. 15 of the participants owned a 
smartphone. The user study was conducted in a lab with abundant 
light. All of the participants completed all tasks.  

Our experiments were completed on a Google Nexus S 
smartphone with a 480 x 800 pixels display, a 1GHz ARM 
Cortex-A8 processor, running Android 4.0.3. It has a built-in 5.0 
mega-pixel back camera located at the upper right region. 

5. EVALUATION RESULTS 

5.1 Reproducing LensGestures 

 
Figure 12. Average response time of Static and Dynamic 

LensGestures with one standard deviation error bars. 
As shown in Figure 12, the time needed to perform a static 
gesture varied on gesture type. Repeated measure variance 
analysis showed significant difference due to gesture type: F(7, 
120) = 9.7, p < .0001. Fisher’s post hoc tests showed that the 



response time of full-occlusion gesture (787 ms) was significantly 
shorter than any of the partial occlusion gestures (left = 1054 ms, 
p < 0.01; right = 1374 ms, p < 0.0001 ; bottom= 1175 ms, p < 
0.0001) and dynamic gestures. The left partial occlusion gesture is 
significantly faster than right partial occlusion, p < 0.01, the speed 
differences between other partial occlusion gestures are not 
significant.  For Dynamic Gestures, the move-right gesture 
(1258.6 ms) was significantly faster than move-left (1815.2 ms, p 
< 0.01) and move-down (1540.6 ms, p < 0.05) gestures, but there 
was no significant time difference between move-right and move-
up (1395.7 ms, p= 0.15). The move-up gesture was also 
significantly faster than move-left (p < 0.01). The differences in 
detection time of Dynamic LensGestures might be caused by the 
location of the camera. The camera was located on the upper right 
region of the experiment device, making it easier to make the 
move-right and move-up gesture.   

5.2 Target Acquision/Pointing 
2560 target acquisition trials were recorded. 2298 pointing trials 
were successful, resulting in an error rate of 10.2%. This error 
rate is about twice as that of popular pointing devices in Fitts’ law 
studies.  

After adjusting target width W for the percentage errors, linear 
regression between movement time (MT) and Fitts’ index of 
difficulty (ID) is shown in Figure 13: 

 
Figure 13. Scatter-plot of the Movement Time (MT) vs. the 

Fitts’ Law Index of Difficulty (ID) for the overall target 
acquisition task controlled by Dynamic LensGestures. 

MT = 0.594 + 1.8769 log2(A/We+1)      (sec)         
In the equation above, A is the target distance and We is the 
effective target size. While the empirical relationship between 
movement time (MT) and index of difficulty (ID = log (A/We + 
1)) followed Fitts’ law quite well (with R2 = 0.9427, see Figure 
14), the information transmission rate 1/b = 1/1. 1.8769 = 0.53 
bits/sec) indicated a relatively low performance for pointing.  In 
comparison, Wang, Zhai and Canny [16] reported a 0.9 bits/sec 
information transmission rate for device motion based target 
acquisition on camera phones. We attribute the performance 
difference to  the usage patterns of Dynamic LensGestures - due 
to the relatively small touch area of the built-in camera, repeated 
finger swiping actions are needed to drive the on-screen cursor for 
a long distance. We believe that the performance of LensGesture 
could be improved with better algorithms and faster camera frame 
rates in the future. More importantly, since LensGesture can be 
performed in parallel with interaction on the front touch screen, 
we believe that there are opportunities to use LensGesture as a 

supplemental input channel and even use LensGesture as a 
primary input channel when the primary channel is not available.  

5.3 Text Input 
In total, 6273 characters were entered (including editing 
characters) in this experiment. There were a total of 42 upper case 
characters in the test sentences that required shifting operations 
when using the traditional keyboard.  

 
Figure 14. Text entry speed from the experiment with one 

standard deviation error bars. 
As shown in Figure 14, the overall speed of LensGesture enabled 
virtual keyboard, i.e. LensQWERTY (13.4 wpm), was higher than 
that of the standard virtual keyboard (11.7 wpm).  The speed 
difference between these two keyboards was significant F(1, 15) 
= 4.17, p < 0.005. 
The uncorrected error rate was less than 0.5% for each condition. 
The average error rates for the standard keyboard and 
LensQWERTY were 2.1% and 1.9% respectively. The error rate 
difference between the standard keyboard and LensQWERTY 
was not significant (p = 0.51). 

5.4 Other Applications 
All participants can learn to use the LensGestures applications we 
provided with minimal practice (< 2 min). Almost all participants 
commented that the portrait/landscape lock feature in LensLock 
was very intuitive and much more convenient than alterative 
solutions available on their own smartphones. Participants also 
indicated that changing the “shift” state of a virtual keyboard via 
LensGesture was both easy to learn and time saving.  

6. DISCUSSIONS AND FUTURE WORK 
The participants reported positive experiences with using 
LensGesture. All participants consistently rated LensGesture as 
“useful” on the closing questionnaire using a five-point Likert 
scale. When asked about how easy it was to learn and use 
LensGesture, 13 participants selected “easy”, 3 participants rated 
the experience “neutral”. 9 participants commented explicitly that 
they would use LensGesture on their own smartphones. 4 of them 
expressed a very strong desire to use LensGesture applications 
every day. 
Our study also revealed usability problems in the current 
implementation. Some participants noticed that accidental device 
movements were recognized as Dynamic LensGestures from time 
to time. We suspect that such kind of accidental device moments 
could be one major cause of the relatively high error rate in our 
target acquisition task. These false positives can be reduced by 



enforcing the full lens covering heuristic illustrated in Figure 8 in 
the future.  

LensGesture has three advantages when compared with most 
existing techniques:  

• Technology availability. LensGesture is a pure software 
approach. It is immediately available on today's main 
streams smartphones. 

• Minimal Screen Estate. LensGestures can be enabled without 
using any on-screen resources.  

• Social Acceptability [11]. When compared with other motion 
gesture related techniques such as TinyMotion [16], and 
DoubleFlip [12], interacting with LensGesture applications is 
barely noticeable to others.  

LensGesture also has its own disadvantages. First, due to its 
internal working mechanism, LensGesture cannot co-exist with 
picture taking and video capturing applications. Second, since 
LensGesture detects the illumination changes caused by finger 
covering activities, it might not work well in extremely dark 
environments. However, this restriction may be relieved by 
leveraging the camera flashlight. Third, given the relatively low 
information transmission rate (0.53 bits/sec), it could be slightly 
tedious to complete pointing tasks via LensGesture for an 
extended amount of time.  
Our current research has only scratched the surface of 
LensGesture-based interactions. For example, an adaptive 
Control-Display (C/D) gain algorithm could be implemented to 
improve the performance of Dynamic LensGesture driven target 
acquisition tasks, where repetitive finger movements are 
necessary. Custom cases or attachments with grooves for guiding 
finger movements could be made to enable EdgeWrite style 
gesture input [21] via LensGesture.  
The LensGesture channel is orthogonal to most existing input 
channels and techniques on mobile phones.  Acting as a 
supplemental input channel, LensGesture can co-exist with 
software or hardware based front or back-of-the-device 
interaction techniques. We believe that there are many new 
opportunities in the design space of multi-channel, multi-stream 
interaction techniques enabled by LensGesture.  

7. CONCLUSIONS 
In this paper, we present LensGesture, a pure software approach 
for augmenting mobile interactions with back-of-device finger 
gestures. LensGesture detects full and partial occlusion as well as 
the dynamic swiping of fingers on the camera lens by analyzing 
image sequences captured by the built-in camera in real time.  We 
report the feasibility and implementation of LensGesture as well 
as newly supported interactions. Both offline benchmarking 
results and a 16-subject user study show that LensGestures are 
easy to learn, intuitive to use, and can complement existing 
interaction paradigms used in today's smartphones. 
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