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A tale of two talks… 
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Announcement 

Two weeks:  Student technical presentations 
 
Logistics: 

l  6 groups 
l  Presentations split up over both days 
l  Each group will receive reviews from: 

  All classmates (“anonymous”) 
 Me (not anonymous) 

All talks must be emailed to me by start of class on 
Tuesday September 24th! 



Giving a talk isn’t easy the first time around… 

Talk 1:  Less than stellar talk 
 
Discussion:  Knee-jerk reactions 

l  What made that talk bad?   
l  What could be improved? 
l  Structural elements of a good talk 

Talk 2:  A (hopefully) improved talk 
 
Discussion:  Presentation elements 

l  Style and delivery 
l  Slide layout and effects 



Brace yourselves for mediocrity… 

Adam J. Lee and Ting Yu, "Towards Quantitative Analysis of Proofs of 
Authorization: Applications, Framework, and Techniques," in 
Proceedings of the 23rd IEEE Computer Security Foundations 
Symposium (CSF 2010), July 2010. 
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Proofs	
  of	
  Authoriza,on	
  

•  Trust	
  management	
  systems	
  are	
  used	
  for	
  
access	
  control	
  in	
  open	
  systems	
  

•  Logical	
  proofs	
  are	
  constructed	
  at	
  run,me	
  to	
  
determine	
  whether	
  a	
  given	
  principal	
  is	
  
allowed	
  to	
  access	
  some	
  specific	
  resource	
  

•  Rather	
  than	
  simply	
  interpre,ng	
  a	
  proof	
  as	
  a	
  
binary	
  decision,	
  we	
  aim	
  to	
  analyze	
  these	
  
proofs	
  in	
  a	
  more	
  quan,ta,ve	
  manner	
  



Framework	
  

Conceptually,	
  a	
  trust	
  management	
  system	
  
contains	
  

– A	
  set	
  P	
  of	
  principals	
  
– A	
  set	
  S	
  of	
  resources	
  
– A	
  set	
  C	
  of	
  creden,als	
  that	
  make	
  policy	
  statements	
  

•  Abstrac,on:	
  	
  s	
  <-­‐	
  q,	
  signed	
  by	
  p	
  
–  P	
  says	
  that	
  anyone	
  that	
  sa,sfies	
  q	
  can	
  access	
  s	
  
–  P	
  must	
  control	
  s	
  

– An	
  inference	
  scheme	
  F	
  :	
  P	
  x	
  S	
  x	
  2C	
  -­‐>	
  {true,	
  false}	
  



Views	
  
•  We	
  assume	
  principals	
  have	
  some	
  view	
  of	
  the	
  
system.	
  

•  This	
  allows	
  us	
  to	
  define	
  proof	
  scoring	
  
func,ons,	
  score:	
  P	
  x	
  S	
  x	
  V	
  -­‐>	
  T	
  



Proper,es	
  of	
  Scoring	
  Func,ons	
  

Required	
  Proper,es	
  
1.  Determinis,c	
  
2.  Simple	
  ordering	
  

•  F(A,s,C)=T	
  ⋀	
  F(B,x,C)=F	
  →	
  score(A,s,v)	
  >	
  score(B,s,v)	
  
3.  Authoriza,on	
  relevant	
  

Op,onal	
  Proper,es	
  
4.  Interpretable	
  
5.  Bounded	
  
6.  Monotonic	
  



Overview	
  of	
  RT0	
  
Basics	
  

–  Public	
  keys	
  iden,fy	
  users	
  
–  Roles	
  group	
  users	
  

	
  
Four	
  types	
  of	
  rules	
  

–  Simple	
  member:	
  	
  A.R	
  <-­‐	
  B	
  
–  Simple	
  containment:	
  	
  A.R	
  <-­‐	
  B.R’	
  
–  Linking	
  containment:	
  A.R	
  <-­‐	
  A.R1.R2	
  
–  Intersec,on	
  containment:	
  A.R	
  <-­‐	
  B1.R1	
  ∩	
  …	
  ∩	
  Bn.Rn	
  

Policies	
  built	
  up	
  using	
  combina,ons	
  of	
  these	
  rules	
  



Scoring	
  Func,ons:	
  Take	
  1	
  

•  Assump,ons	
  
– Simplified	
  model	
  
– User	
  designing	
  func,on	
  only	
  knows	
  about	
  A.R	
  

•  Knows	
  all	
  rules	
  defining	
  A.R	
  
•  Understands	
  seman,cs	
  of	
  every	
  role	
  “used”	
  in	
  these	
  
rules	
  

– Each	
  creden,al	
  associated	
  with	
  a	
  vector	
  wi	
  
•  All	
  entries	
  >	
  0	
  
•  ||wi||1	
  =	
  1	
  



Scoring	
  Func,ons:	
  Take	
  1	
  
Algorithm 1 A simple recursive scoring scheme.
1: Function score(p ⌦ P, A.R ⌦ R, v ⇧ V) : R
2: // Filter credentials and initialize storage vector
3: C = {ci | ci ⌦ v.C ◆ head(c) = A.R}
4: Discard all ci ⌦ C of the form A.R ⌥ P �, P � ↵= P
5: s = [1, 0, . . . , 0] // vector in R|C|+1

6:
7: for all ci ⌦ C do
8: wi = v.A.weight(ci) // weight vector for ci

9: if ci = A.R ⌥ P then
10: t = [1, 1]
11: else if body(ci) = B1.R1 ✓ · · · ✓ Bk.Rk then
12: t = [1, B1.score(p, B1.R1), . . . , Bk.score(p, Bk.Rk)]
13: else if body(ci) = A.R1.R2 then
14: Find B ⇧ A.R1 such that �Bj ⌦ B : P ⌦ Bj .R2
15: t = [1, maxBj⇥B(Bj .score(p, B.R2))]

16: if t contains any 0 entries then
17: s[i] = 0
18: else
19: s[i] = t · wi

20:
21: // Get master weight vector and combine all weights
22: w = v.A.weight(A.R)
23: return s · w

by A, while information regarding roles other than A.R is
obtained by recursively issuing requests to the principals
defining these roles.

This naive authorization scoring scheme can be viewed
as a simplification of the RT proof construction process
that only builds proofs of height 1. Specifically, the root
of each proof tree is a node representing the role A.R
and the leaves of the proof tree are credentials asserting
a simple membership in the roles directly used to define
membership in A.R. This allows principals to hide the
details of exactly how membership in roles that they define is
determined from other principals in the system by replacing
sub-proofs encoding proof structure with simple membership
credentials asserting that membership has been verified. This
is similar in spirit to the proofs of authorization constructed
in the Minami-Kotz distributed proof system [24], which
hide the structure of a proof from unauthorized users.

Scoring Construction. Evaluating role memberships
given only this limited information can be viewed as a
process similar to the recursive resolution of DNS queries
or the lazy proof construction process used within the Grey
distributed proof system [2]. Algorithm 1 shows how such an
authorization scoring function can be designed. This naive
algorithm assumes that each credential ci defining some role
A.R is associated with a weight vector wi described in A’s
auxiliary information A. The first entry of this vector is a
constant factor and the remaining entries are scaling factors
for the scores computed for each role in the body of ci. the
score for a given credential is then computed as the linear
combination represented by the dot product of this vector
with the vector of scores gathered recursively for each role
in the body of ci.1 We require that every such wi contains

1The constant factor can be used to adjust the “baseline” score for a
proof of access generated using a given credential. Setting this term to
zero scores the proof using only the scores returned for each sub-proof.

only non-negative entries and that ||wi||1 = 1.
We further assume that each role A.R is associated with

another weight vector w, the first entry of which is, again, a
constant factor. The second entry in this vector is a scaling
factor that is associated with principals who are defined
through simple membership to be a member of A.R. The
remaining entries in w are scaling factors for the scores
computed for each credential ci that defines membership in
A.R The final score for the role A.R is then computed as
the linear combination represented by the dot product of w
and the scores calculated for each ci defining A.R. Again,
w is assumed to be encoded in the additional information
A maintained by the principal A, and we require that w
contains only non-negative entries and that ||w||1 = 1.

Example. To more concretely demonstrate the scoring
function defined in Algorithm 1, consider the following RT 0

role definitions:

Univ.auth CS.student ⇡ACM.member (3)
Univ.auth Univ.techDept.gradStudent (4)

This policy states that computer science students who
are ACM members, and graduate students within technical
departments at Univ to be members of the role Univ.auth.
Assume that the weight vector for credential (3) is defined
as [0, 0.7, 0.3], which gives more weight to the role defined
by the CS department at Univ than to the role defined by
the ACM. Further, assume that the master weight vector
for Univ.auth is defined as [0, 0.5, 0.25, 0.25], where the
entries in this vector reflect a constant factor of 0, and the
weights assigned to simple members of Univ.auth, creden-
tial (3), and credential (4), respectively. This implies that
simple membership in Univ.auth is strongly preferred over
proofs that involve delegation to other principals, and that
both types of delegated proofs are given equal preference.

Properties. Although extremely simple to implement, this
naive scoring function can be shown to satisfy a number of
the properties identified in Section III-B. In particular, we
have the following theorem:

Theorem 1: The function score : P⇤R⇤V ⌦ R defined
in Algorithm 1 satisfies the deterministic, simple ordering,
authorization relevant, bounded, and monotonic properties.

Proof: To prove the above claim, we address each
property one at a time:

• Deterministic. Note that the score function does not
make use of any randomized information. Provided that
system policies and weight vectors do not change, two
invocations of score(p, A.R, v) will always return the
same value.

• Simple Ordering. The check on Line 16 of Algo-
rithm 1 ensures that non-zero scores are only recorded
for members of a role, while non-members of a role



Scoring	
  Func,ons:	
  Take	
  1	
  

Proof	
  sketch:	
  
–  Determinis,c:	
  	
  Obvious	
  
–  Simple	
  ordering:	
  	
  Members	
  scored	
  with	
  a	
  posi,ve	
  value,	
  non-­‐
members	
  not	
  scored	
  (Line	
  16)	
  

–  Authoriza,on	
  relevant:	
  Only	
  creden,als	
  defining	
  A.R	
  used	
  when	
  
compu,ng	
  a	
  score	
  (Line	
  3)	
  

–  Bounded:	
  ||wi||1	
  =	
  1	
  for	
  all	
  creden,als	
  ci,	
  so	
  bounded	
  above	
  by	
  
1.	
  	
  All	
  entries	
  in	
  each	
  wi	
  >	
  0,	
  so	
  bounded	
  below	
  by	
  0.	
  

–  Monotonic:	
  No	
  nega,ve	
  entries	
  in	
  any	
  wi,	
  so	
  score	
  can	
  never	
  
decrease	
  by	
  gemng	
  more	
  informa,on	
  

Algorithm 1 A simple recursive scoring scheme.
1: Function score(p ⌦ P, A.R ⌦ R, v ⇧ V) : R
2: // Filter credentials and initialize storage vector
3: C = {ci | ci ⌦ v.C ◆ head(c) = A.R}
4: Discard all ci ⌦ C of the form A.R ⌥ P �, P � ↵= P
5: s = [1, 0, . . . , 0] // vector in R|C|+1

6:
7: for all ci ⌦ C do
8: wi = v.A.weight(ci) // weight vector for ci

9: if ci = A.R ⌥ P then
10: t = [1, 1]
11: else if body(ci) = B1.R1 ✓ · · · ✓ Bk.Rk then
12: t = [1, B1.score(p, B1.R1), . . . , Bk.score(p, Bk.Rk)]
13: else if body(ci) = A.R1.R2 then
14: Find B ⇧ A.R1 such that �Bj ⌦ B : P ⌦ Bj .R2
15: t = [1, maxBj⇥B(Bj .score(p, B.R2))]

16: if t contains any 0 entries then
17: s[i] = 0
18: else
19: s[i] = t · wi

20:
21: // Get master weight vector and combine all weights
22: w = v.A.weight(A.R)
23: return s · w

by A, while information regarding roles other than A.R is
obtained by recursively issuing requests to the principals
defining these roles.

This naive authorization scoring scheme can be viewed
as a simplification of the RT proof construction process
that only builds proofs of height 1. Specifically, the root
of each proof tree is a node representing the role A.R
and the leaves of the proof tree are credentials asserting
a simple membership in the roles directly used to define
membership in A.R. This allows principals to hide the
details of exactly how membership in roles that they define is
determined from other principals in the system by replacing
sub-proofs encoding proof structure with simple membership
credentials asserting that membership has been verified. This
is similar in spirit to the proofs of authorization constructed
in the Minami-Kotz distributed proof system [24], which
hide the structure of a proof from unauthorized users.

Scoring Construction. Evaluating role memberships
given only this limited information can be viewed as a
process similar to the recursive resolution of DNS queries
or the lazy proof construction process used within the Grey
distributed proof system [2]. Algorithm 1 shows how such an
authorization scoring function can be designed. This naive
algorithm assumes that each credential ci defining some role
A.R is associated with a weight vector wi described in A’s
auxiliary information A. The first entry of this vector is a
constant factor and the remaining entries are scaling factors
for the scores computed for each role in the body of ci. the
score for a given credential is then computed as the linear
combination represented by the dot product of this vector
with the vector of scores gathered recursively for each role
in the body of ci.1 We require that every such wi contains

1The constant factor can be used to adjust the “baseline” score for a
proof of access generated using a given credential. Setting this term to
zero scores the proof using only the scores returned for each sub-proof.

only non-negative entries and that ||wi||1 = 1.
We further assume that each role A.R is associated with

another weight vector w, the first entry of which is, again, a
constant factor. The second entry in this vector is a scaling
factor that is associated with principals who are defined
through simple membership to be a member of A.R. The
remaining entries in w are scaling factors for the scores
computed for each credential ci that defines membership in
A.R The final score for the role A.R is then computed as
the linear combination represented by the dot product of w
and the scores calculated for each ci defining A.R. Again,
w is assumed to be encoded in the additional information
A maintained by the principal A, and we require that w
contains only non-negative entries and that ||w||1 = 1.

Example. To more concretely demonstrate the scoring
function defined in Algorithm 1, consider the following RT 0

role definitions:

Univ.auth CS.student ⇡ACM.member (3)
Univ.auth Univ.techDept.gradStudent (4)

This policy states that computer science students who
are ACM members, and graduate students within technical
departments at Univ to be members of the role Univ.auth.
Assume that the weight vector for credential (3) is defined
as [0, 0.7, 0.3], which gives more weight to the role defined
by the CS department at Univ than to the role defined by
the ACM. Further, assume that the master weight vector
for Univ.auth is defined as [0, 0.5, 0.25, 0.25], where the
entries in this vector reflect a constant factor of 0, and the
weights assigned to simple members of Univ.auth, creden-
tial (3), and credential (4), respectively. This implies that
simple membership in Univ.auth is strongly preferred over
proofs that involve delegation to other principals, and that
both types of delegated proofs are given equal preference.

Properties. Although extremely simple to implement, this
naive scoring function can be shown to satisfy a number of
the properties identified in Section III-B. In particular, we
have the following theorem:

Theorem 1: The function score : P⇤R⇤V ⌦ R defined
in Algorithm 1 satisfies the deterministic, simple ordering,
authorization relevant, bounded, and monotonic properties.

Proof: To prove the above claim, we address each
property one at a time:

• Deterministic. Note that the score function does not
make use of any randomized information. Provided that
system policies and weight vectors do not change, two
invocations of score(p, A.R, v) will always return the
same value.

• Simple Ordering. The check on Line 16 of Algo-
rithm 1 ensures that non-zero scores are only recorded
for members of a role, while non-members of a role



Scoring	
  Func,ons:	
  Take	
  2	
  

•  Assump,ons	
  
– More	
  general	
  system	
  model	
  
– User	
  knows	
  nothing	
  about	
  policies	
  

•  Structural	
  informa,on	
  is	
  discovered	
  at	
  run,me	
  
•  Like	
  RT,	
  SecPAL,	
  Gray,	
  etc.	
  

•  Basic	
  idea:	
  Compute	
  score	
  based	
  on	
  number	
  
of	
  ways	
  that	
  a	
  policy	
  can	
  be	
  sa,sfied	
  



Scoring	
  Func,ons:	
  Take	
  2	
  
decreasing order of their robustness as reported by ⌃.

score(p, A.R, v) =
⇤

(Ci,wi)⌦osets�(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ⌃. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ⌃ function:

⌃len(Cs, ) = ⇤maxp⇥paths(Cs)(length(p)) (7)

⌃ind(Cs, C) = 1�
maxCi⌦C\{Cs}(|Cs ⇡ Ci|)

|Cs|
(8)

⌃li(Cs, C) = � · ⌃len(Cs, ) + ⇥ · ⌃ind(Cs, C) (9)

In particular, the function ⌃len defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant ⇤ � [0, 1] to this
power. Since longer paths will produce lower scaling factors,
⌃len gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ⌃ind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ⌃ind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ⌃len and ⌃ind

using the constants �,⇥ � [0, 1] chosen such that �+⇥ = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (10)
Univ.auth Univ.techDept.gradStudent (11)

Univ.techDep CS (12)
CS.student CS.ugrad (13)

CS.student CS.gradStudent (14)
CS.gradStudent Alice (15)
ACM.member  Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student  CS.gradStudent  Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent  Alice). If we let C =
{C1, C2}, v = �⌘, {(10), . . . , (16)}, ⌘�, and ⇤ = 0.9, we
have the following:

⌃len(C1, C) = 0.93 = 0.729
⌃len(C2, C) = 0.92 = 0.81

⌃ind(C1, C) = 1� |C1 ⇡ C2|
|C1|

= 1� 1
4

=
3
4

⌃ind(C2, C) = 1� |C2 ⇡ C1|
|C2|

= 1� 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 · 1

4 = 13
24 ⌥ 0.5417.

Properties. The class of scoring functions described by
Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ⌃( , ) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ⇤
R ⇤ V ⌦ R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
⌃ : 2C⇤22C ⌦ [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ⌃ function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ⌃ is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osets⇥(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant

Weigh,ng	
  func,ons	
  ω	
  :	
  2C	
  x	
  22C	
  -­‐>	
  [0,1]	
  weight	
  the	
  contribu,on	
  
of	
  each	
  proof	
  
	
  

decreasing order of their robustness as reported by ⌃.

score(p, A.R, v) =
⇤

(Ci,wi)⌦osets�(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ⌃. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ⌃ function:

⌃len(Cs, ) = ⇤maxp⇥paths(Cs)(length(p)) (7)

⌃ind(Cs, C) = 1�
maxCi⌦C\{Cs}(|Cs ⇡ Ci|)

|Cs|
(8)

⌃li(Cs, C) = � · ⌃len(Cs, ) + ⇥ · ⌃ind(Cs, C) (9)

In particular, the function ⌃len defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant ⇤ � [0, 1] to this
power. Since longer paths will produce lower scaling factors,
⌃len gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ⌃ind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ⌃ind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ⌃len and ⌃ind

using the constants �,⇥ � [0, 1] chosen such that �+⇥ = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (10)
Univ.auth Univ.techDept.gradStudent (11)

Univ.techDep CS (12)
CS.student CS.ugrad (13)

CS.student CS.gradStudent (14)
CS.gradStudent Alice (15)
ACM.member  Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student  CS.gradStudent  Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent  Alice). If we let C =
{C1, C2}, v = �⌘, {(10), . . . , (16)}, ⌘�, and ⇤ = 0.9, we
have the following:

⌃len(C1, C) = 0.93 = 0.729
⌃len(C2, C) = 0.92 = 0.81

⌃ind(C1, C) = 1� |C1 ⇡ C2|
|C1|

= 1� 1
4

=
3
4

⌃ind(C2, C) = 1� |C2 ⇡ C1|
|C2|

= 1� 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 · 1

4 = 13
24 ⌥ 0.5417.

Properties. The class of scoring functions described by
Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ⌃( , ) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ⇤
R ⇤ V ⌦ R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
⌃ : 2C⇤22C ⌦ [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ⌃ function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ⌃ is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osets⇥(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant
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decreasing order of their robustness as reported by ⌃.

score(p, A.R, v) =
⇤

(Ci,wi)⌦osets�(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ⌃. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ⌃ function:

⌃len(Cs, ) = ⇤maxp⇥paths(Cs)(length(p)) (7)

⌃ind(Cs, C) = 1�
maxCi⌦C\{Cs}(|Cs ⇡ Ci|)

|Cs|
(8)

⌃li(Cs, C) = � · ⌃len(Cs, ) + ⇥ · ⌃ind(Cs, C) (9)

In particular, the function ⌃len defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant ⇤ � [0, 1] to this
power. Since longer paths will produce lower scaling factors,
⌃len gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ⌃ind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ⌃ind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ⌃len and ⌃ind

using the constants �,⇥ � [0, 1] chosen such that �+⇥ = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (10)
Univ.auth Univ.techDept.gradStudent (11)

Univ.techDep CS (12)
CS.student CS.ugrad (13)

CS.student CS.gradStudent (14)
CS.gradStudent Alice (15)
ACM.member  Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student  CS.gradStudent  Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent  Alice). If we let C =
{C1, C2}, v = �⌘, {(10), . . . , (16)}, ⌘�, and ⇤ = 0.9, we
have the following:

⌃len(C1, C) = 0.93 = 0.729
⌃len(C2, C) = 0.92 = 0.81

⌃ind(C1, C) = 1� |C1 ⇡ C2|
|C1|

= 1� 1
4

=
3
4

⌃ind(C2, C) = 1� |C2 ⇡ C1|
|C2|

= 1� 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 · 1

4 = 13
24 ⌥ 0.5417.

Properties. The class of scoring functions described by
Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ⌃( , ) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ⇤
R ⇤ V ⌦ R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
⌃ : 2C⇤22C ⌦ [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ⌃ function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ⌃ is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osets⇥(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant
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to the proof of membership in A.R. Since osets only
ranks and returns minimal proofs for A.R, Equation 6
does not consider any irrelevant information when
scoring proofs of authorization. As such, irrelevant
information cannot influence the score produced by
Equation 6.

• Bounded. Note that sum of the infinite geometric series⇥ 
i=1

1
2

i converges to 1. Since every term in this
summation is positive, we have that ✏1⌃j :

⇥j
i=1

1
2

i
<⇥j+1

i=1
1
2

i. As a result, the sum of any sub-series of
the infinite series will converge to some value in the
range [0, 1). Equation 6 is nothing more than such a
summation in which each term is scaled by a weight
wi � [0, 1]. As a result, Equation 6 is bounded below
by 0 and bounded above by 1.

• Monotonic. To prove the monotonicity of Equation 6,
we proceed by induction. We first assume that principal
p has previously discovered the (ordered) collection of
proofs and weights (C1, w1), . . . , (Cn, wn) for the role
A.R. The base case that we must consider is that a new
pair (Cs, ws) is discovered such that no weight wi is
less than ws. In this case, this new pair will introduce
a new term to the end of the summation calculated by
Equation 6, thereby increasing principal p’s score for
the role A.R.
Assume that (Cs, ws) can be inserted before up
to n terms in the sequence of (ci, wi) pairs while
still preserving the monotonicity requirement. Now,
assume that p has previously found proofs of au-
thorization with the sequence of weights S =
(C1, w1), . . . , (Ci, wi), . . . , (Ci+n, wi+n) and has now
discovered a (Cs, ws) pair such that ws > wi, thereby
needing to be inserted before n + 1 terms in the
sequence S. We first note that replacing (Ci, wi) with
(Cs, w) will generate a sequence S� that—when used
in conjunction with Equation 6—will produce a score
greater than that produced using S, since ws > wi

and all other terms are the same. By the inductive
hypothesis, (Ci, wi) can then be re-inserted before the
n final terms of S� while still preserving monotonicity.

We have therefore shown that the class of scoring func-
tions score : P ⇤R ⇤ V ⌦ R represented by Equation 6
satisfies the deterministic, simple ordering, authorization rel-
evant, bounded, and monotonic properties, provided that the
scaling function ⌃ : 2C ⇤ 22C ⌦ [0, 1] used to parameterize
the osets function is deterministic.

As was discussed earlier in this section, it is also possible
for the score function defined by Equation 6 to satisfy the
interpretation property. In particular, when using the trivial
scaling function ⌃( , ) = 1, a higher score implies that
more paths have been found. Similarly, when other notions
of robustness are encoded by representative ⌃ functions,

r � v.S

r /� v.S

Figure 2. One possible scenario in which hybrid authorization scoring
strategies could be beneficial. The oval denotes the security domain of the
principal carrying out the authorization scoring process.

score(p, A.R, v) > score(p�, A.R, v) implies that principal
p can produce more robust proofs of authorization that
principal p�, relative to the notion of robustness encoded
by the particular ⌃ function used.

C. Hybrid Scoring Functions

Although the authorization scoring functions discussed in
Sections IV-A and IV-B are useful, they in fact represent two
opposite extremes in terms of the information available to
the principal scoring proofs of authorization. The recursive
scoring function described by Algorithm 1 assumes that this
principal has access only to credentials defined within her
domain, while the scoring function encoded by Equations 6–
9 assumes that incomplete information is discovered at
runtime. In many cases, the information available to the
principal scoring proofs of authorization is likely to fall
somewhere between these two points.

Figure 2 illustrates one such scenario. In this situation, the
principal (Alice) scoring proofs of authorization is assumed
to have complete knowledge of the set of roles vA.S within
the domain encoded in her view vA. However, she is also
able to use, e.g., credential chain discovery techniques to
discover credentials defining roles outside of her domain,
with the proviso that she may not be able to uncover every
credential defining a particular role. Given that she has
complete knowledge of not only the structure of policies
within her domain, but also of the semantics of the roles
involved in these policies, Alice may wish to fine-tune her
mechanism for scoring membership within these roles to
reflect her “insider knowledge.” For instance, she could
accomplish this by developing very specific weight vectors
for use in conjunction with Algorithm 1.

At the same time, rather than delegating the scoring of
membership in roles outside of vA.S to the parties defining
those roles—as in Algorithm 1—Alice may wish to leverage
her ability to carry out distributed credential discovery



Composing	
  Scoring	
  Func,ons	
  

Mo,va,on	
  
– Perfect	
  informa,on	
  known	
  within	
  a	
  security	
  domain	
  
– Less	
  informa,on	
  known	
  outside	
  of	
  security	
  domain	
  

to the proof of membership in A.R. Since osets only
ranks and returns minimal proofs for A.R, Equation 6
does not consider any irrelevant information when
scoring proofs of authorization. As such, irrelevant
information cannot influence the score produced by
Equation 6.

• Bounded. Note that sum of the infinite geometric series⇥ 
i=1

1
2

i converges to 1. Since every term in this
summation is positive, we have that ✏1⌃j :

⇥j
i=1

1
2

i
<⇥j+1

i=1
1
2

i. As a result, the sum of any sub-series of
the infinite series will converge to some value in the
range [0, 1). Equation 6 is nothing more than such a
summation in which each term is scaled by a weight
wi � [0, 1]. As a result, Equation 6 is bounded below
by 0 and bounded above by 1.

• Monotonic. To prove the monotonicity of Equation 6,
we proceed by induction. We first assume that principal
p has previously discovered the (ordered) collection of
proofs and weights (C1, w1), . . . , (Cn, wn) for the role
A.R. The base case that we must consider is that a new
pair (Cs, ws) is discovered such that no weight wi is
less than ws. In this case, this new pair will introduce
a new term to the end of the summation calculated by
Equation 6, thereby increasing principal p’s score for
the role A.R.
Assume that (Cs, ws) can be inserted before up
to n terms in the sequence of (ci, wi) pairs while
still preserving the monotonicity requirement. Now,
assume that p has previously found proofs of au-
thorization with the sequence of weights S =
(C1, w1), . . . , (Ci, wi), . . . , (Ci+n, wi+n) and has now
discovered a (Cs, ws) pair such that ws > wi, thereby
needing to be inserted before n + 1 terms in the
sequence S. We first note that replacing (Ci, wi) with
(Cs, w) will generate a sequence S� that—when used
in conjunction with Equation 6—will produce a score
greater than that produced using S, since ws > wi

and all other terms are the same. By the inductive
hypothesis, (Ci, wi) can then be re-inserted before the
n final terms of S� while still preserving monotonicity.

We have therefore shown that the class of scoring func-
tions score : P ⇤R ⇤ V ⌦ R represented by Equation 6
satisfies the deterministic, simple ordering, authorization rel-
evant, bounded, and monotonic properties, provided that the
scaling function ⌃ : 2C ⇤ 22C ⌦ [0, 1] used to parameterize
the osets function is deterministic.

As was discussed earlier in this section, it is also possible
for the score function defined by Equation 6 to satisfy the
interpretation property. In particular, when using the trivial
scaling function ⌃( , ) = 1, a higher score implies that
more paths have been found. Similarly, when other notions
of robustness are encoded by representative ⌃ functions,

r � v.S
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Figure 2. One possible scenario in which hybrid authorization scoring
strategies could be beneficial. The oval denotes the security domain of the
principal carrying out the authorization scoring process.

score(p, A.R, v) > score(p�, A.R, v) implies that principal
p can produce more robust proofs of authorization that
principal p�, relative to the notion of robustness encoded
by the particular ⌃ function used.

C. Hybrid Scoring Functions

Although the authorization scoring functions discussed in
Sections IV-A and IV-B are useful, they in fact represent two
opposite extremes in terms of the information available to
the principal scoring proofs of authorization. The recursive
scoring function described by Algorithm 1 assumes that this
principal has access only to credentials defined within her
domain, while the scoring function encoded by Equations 6–
9 assumes that incomplete information is discovered at
runtime. In many cases, the information available to the
principal scoring proofs of authorization is likely to fall
somewhere between these two points.

Figure 2 illustrates one such scenario. In this situation, the
principal (Alice) scoring proofs of authorization is assumed
to have complete knowledge of the set of roles vA.S within
the domain encoded in her view vA. However, she is also
able to use, e.g., credential chain discovery techniques to
discover credentials defining roles outside of her domain,
with the proviso that she may not be able to uncover every
credential defining a particular role. Given that she has
complete knowledge of not only the structure of policies
within her domain, but also of the semantics of the roles
involved in these policies, Alice may wish to fine-tune her
mechanism for scoring membership within these roles to
reflect her “insider knowledge.” For instance, she could
accomplish this by developing very specific weight vectors
for use in conjunction with Algorithm 1.

At the same time, rather than delegating the scoring of
membership in roles outside of vA.S to the parties defining
those roles—as in Algorithm 1—Alice may wish to leverage
her ability to carry out distributed credential discovery
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processes. Given that the roles appearing on the “horizon”
of Alice’s domain appear within credentials defined in her
domain, she is likely to be aware of their semantics (e.g.,
that a BestBuy membership is easier to come by than a DoD
clearance). Although she may not be able to reliably interpret
every role used to prove membership in these horizon roles,
her knowledge of the horizon role itself may guide the choice
the particular ⌃ function used reason about the robustness of
proofs of membership of that role. In such a scenario, Alice
may wish to sequentially compose the scoring functions
defined in Sections IV-A and IV-B.

A More General Problem. The above scenario is really
a special case of a more general question: Given two proof
scoring functions that satisfy the requirements set forth in
Section III-B, is it possible to combine these functions in
such a way that the composite function retains the desir-
able characteristics of the original functions? In order to
show that this is, indeed, the case, we must first formalize
the notions of horizon, sequential composition, and order-
preserving homomorphism.

Definition 7 (Horizon): The horizon of a view v is de-
fined as the set of resources horizon(v) = {r | ⇣c �
ac(v.S) : r � body(c) ⇢ r /� v.S}. That is, horizon(v)
contains all resources mentioned in the body of policies
protecting resources in v.S that are not themselves in v.S.

Definition 8 (Sequential Composition): Assume that we
have a view v, a principal p, a resource r, and two au-
thorization scoring functions score1 and score2. We say
that score1 is sequentially composed with score2 if there
exists a resource r� � horizon(v), a principal p�, and a view
v� such that score2(p�, r�, v�) is calculated when calculating
score1(p, r, v).

Definition 9 (Order-Preserving Homomorphism): Let
score1 : P ⇤ S ⇤ V ⌦ T1 and score2 : P ⇤ S ⇤ V ⌦ T2

be two authorization scoring functions. Let t1 � T1 (resp.
t2 � T2) be a threshold such that if score1(p, s, v) ⇧ t1
(resp. score2(p, s, v) ⇧ t2) then p cannot access
resource s. Similarly, if score1(p, s, v) > t1 (resp.
score2(p, s, v) > t2) then p can access resource s. A
function f : T2 ⌦ T1 is an order-preserving homomorphism
from T2 to T1 if and only if (i) t ⇧ t2 ⌦ f(t) ⇧ t1, (ii)
f(t2) = t1, and (iii) t > t2 ⌦ f(t) > t1.

In the discussion above, Alice desires to sequentially
compose the scoring function defined in Algorithm 1 with
the scoring function defined by Equations 6–9. Furthermore,
the identity function f(x) �⌦ x is trivially an order-
preserving homomorphism between the (identical) totally-
ordered ranges of these two functions. We now have the
necessary machinery to prove the following theorem:

Theorem 3: Let score1 : P ⇤ S ⇤ V ⌦ T1 and score2 :
P ⇤ S ⇤ V ⌦ T2 be two authorization scoring functions

that satisfy the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties. If there exists
an order-preserving homomorphism f between T2 and T1,
then the sequential composition of score1 with score2 is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Proof: Showing that the sequential composition of
score1 with score2 is deterministic and bounded is straight-
forward. Using the (deterministic) outputs of score2 as
inputs to the (deterministic) function score1 will clearly
result in a deterministic output. Furthermore, since f maps
the outputs of score2 into a range that can be considered
by score1 and score1 is bounded, then the sequential
composition of score1 with score2 is also bounded.

Since score2 is authorization relevant, by Definition 5 it is
not influenced by irrelevant credentials. As a result, score1

will not be indirectly influenced by irrelevant credentials
via score2. Since score1 is authorization relevant, it is not
influenced by irrelevant credentials that it considers directly.
This implies that the sequential composition of score1 with
score2 is also uninfluenced by irrelevant credentials, and
thus authorization relevant by Definition 5. By a similar
argument, the sequential composition of score1 with score2

is also monotonic: relevant credentials considered directly by
score1 or indirectly via score2 can only increase the output
of sequential composition of score1 with score2.

Finally, we must address the simple ordering property.
Note that the order-preserving homomorphism f allows
score1 to reliably use the value f(score2(p�, r�, v�)) to
determine whether P � is authorized to access the horizon
resource r�. Given that score2 is assumed to be deterministic
and to satisfy the simple ordering property, this interpretation
of f(score2(p�, r�, v�)) is guaranteed to be correct. Further-
more, since score1 is also assumed to be deterministic and
to satisfy the simple ordering property, the output value
score(p, r, v) that is computed using this information is
also guaranteed to correctly reflect P ’s ability to access the
resource r. As a result, the sequential composition of score1

with score2 satisfies the simple ordering property.

As a result of the above theorem, we immediately have
the following corollary stating that the two classes of autho-
rization scoring functions discussed earlier in this section
can be sequentially composed with one another:

Corollary 1: The result of sequentially composing the
authorization scoring functions defined by Algorithm 1 and
Equations 6–9 using the order-preserving homomorphism
f(x) �⌦ x is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

It is also interesting to note that Theorem 3 tells us that
principals can make use of any number of authorization
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processes. Given that the roles appearing on the “horizon”
of Alice’s domain appear within credentials defined in her
domain, she is likely to be aware of their semantics (e.g.,
that a BestBuy membership is easier to come by than a DoD
clearance). Although she may not be able to reliably interpret
every role used to prove membership in these horizon roles,
her knowledge of the horizon role itself may guide the choice
the particular ⌃ function used reason about the robustness of
proofs of membership of that role. In such a scenario, Alice
may wish to sequentially compose the scoring functions
defined in Sections IV-A and IV-B.

A More General Problem. The above scenario is really
a special case of a more general question: Given two proof
scoring functions that satisfy the requirements set forth in
Section III-B, is it possible to combine these functions in
such a way that the composite function retains the desir-
able characteristics of the original functions? In order to
show that this is, indeed, the case, we must first formalize
the notions of horizon, sequential composition, and order-
preserving homomorphism.

Definition 7 (Horizon): The horizon of a view v is de-
fined as the set of resources horizon(v) = {r | ⇣c �
ac(v.S) : r � body(c) ⇢ r /� v.S}. That is, horizon(v)
contains all resources mentioned in the body of policies
protecting resources in v.S that are not themselves in v.S.

Definition 8 (Sequential Composition): Assume that we
have a view v, a principal p, a resource r, and two au-
thorization scoring functions score1 and score2. We say
that score1 is sequentially composed with score2 if there
exists a resource r� � horizon(v), a principal p�, and a view
v� such that score2(p�, r�, v�) is calculated when calculating
score1(p, r, v).

Definition 9 (Order-Preserving Homomorphism): Let
score1 : P ⇤ S ⇤ V ⌦ T1 and score2 : P ⇤ S ⇤ V ⌦ T2

be two authorization scoring functions. Let t1 � T1 (resp.
t2 � T2) be a threshold such that if score1(p, s, v) ⇧ t1
(resp. score2(p, s, v) ⇧ t2) then p cannot access
resource s. Similarly, if score1(p, s, v) > t1 (resp.
score2(p, s, v) > t2) then p can access resource s. A
function f : T2 ⌦ T1 is an order-preserving homomorphism
from T2 to T1 if and only if (i) t ⇧ t2 ⌦ f(t) ⇧ t1, (ii)
f(t2) = t1, and (iii) t > t2 ⌦ f(t) > t1.

In the discussion above, Alice desires to sequentially
compose the scoring function defined in Algorithm 1 with
the scoring function defined by Equations 6–9. Furthermore,
the identity function f(x) �⌦ x is trivially an order-
preserving homomorphism between the (identical) totally-
ordered ranges of these two functions. We now have the
necessary machinery to prove the following theorem:

Theorem 3: Let score1 : P ⇤ S ⇤ V ⌦ T1 and score2 :
P ⇤ S ⇤ V ⌦ T2 be two authorization scoring functions

that satisfy the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties. If there exists
an order-preserving homomorphism f between T2 and T1,
then the sequential composition of score1 with score2 is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Proof: Showing that the sequential composition of
score1 with score2 is deterministic and bounded is straight-
forward. Using the (deterministic) outputs of score2 as
inputs to the (deterministic) function score1 will clearly
result in a deterministic output. Furthermore, since f maps
the outputs of score2 into a range that can be considered
by score1 and score1 is bounded, then the sequential
composition of score1 with score2 is also bounded.

Since score2 is authorization relevant, by Definition 5 it is
not influenced by irrelevant credentials. As a result, score1

will not be indirectly influenced by irrelevant credentials
via score2. Since score1 is authorization relevant, it is not
influenced by irrelevant credentials that it considers directly.
This implies that the sequential composition of score1 with
score2 is also uninfluenced by irrelevant credentials, and
thus authorization relevant by Definition 5. By a similar
argument, the sequential composition of score1 with score2

is also monotonic: relevant credentials considered directly by
score1 or indirectly via score2 can only increase the output
of sequential composition of score1 with score2.

Finally, we must address the simple ordering property.
Note that the order-preserving homomorphism f allows
score1 to reliably use the value f(score2(p�, r�, v�)) to
determine whether P � is authorized to access the horizon
resource r�. Given that score2 is assumed to be deterministic
and to satisfy the simple ordering property, this interpretation
of f(score2(p�, r�, v�)) is guaranteed to be correct. Further-
more, since score1 is also assumed to be deterministic and
to satisfy the simple ordering property, the output value
score(p, r, v) that is computed using this information is
also guaranteed to correctly reflect P ’s ability to access the
resource r. As a result, the sequential composition of score1

with score2 satisfies the simple ordering property.

As a result of the above theorem, we immediately have
the following corollary stating that the two classes of autho-
rization scoring functions discussed earlier in this section
can be sequentially composed with one another:

Corollary 1: The result of sequentially composing the
authorization scoring functions defined by Algorithm 1 and
Equations 6–9 using the order-preserving homomorphism
f(x) �⌦ x is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

It is also interesting to note that Theorem 3 tells us that
principals can make use of any number of authorization

processes. Given that the roles appearing on the “horizon”
of Alice’s domain appear within credentials defined in her
domain, she is likely to be aware of their semantics (e.g.,
that a BestBuy membership is easier to come by than a DoD
clearance). Although she may not be able to reliably interpret
every role used to prove membership in these horizon roles,
her knowledge of the horizon role itself may guide the choice
the particular ⌃ function used reason about the robustness of
proofs of membership of that role. In such a scenario, Alice
may wish to sequentially compose the scoring functions
defined in Sections IV-A and IV-B.

A More General Problem. The above scenario is really
a special case of a more general question: Given two proof
scoring functions that satisfy the requirements set forth in
Section III-B, is it possible to combine these functions in
such a way that the composite function retains the desir-
able characteristics of the original functions? In order to
show that this is, indeed, the case, we must first formalize
the notions of horizon, sequential composition, and order-
preserving homomorphism.

Definition 7 (Horizon): The horizon of a view v is de-
fined as the set of resources horizon(v) = {r | ⇣c �
ac(v.S) : r � body(c) ⇢ r /� v.S}. That is, horizon(v)
contains all resources mentioned in the body of policies
protecting resources in v.S that are not themselves in v.S.

Definition 8 (Sequential Composition): Assume that we
have a view v, a principal p, a resource r, and two au-
thorization scoring functions score1 and score2. We say
that score1 is sequentially composed with score2 if there
exists a resource r� � horizon(v), a principal p�, and a view
v� such that score2(p�, r�, v�) is calculated when calculating
score1(p, r, v).

Definition 9 (Order-Preserving Homomorphism): Let
score1 : P ⇤ S ⇤ V ⌦ T1 and score2 : P ⇤ S ⇤ V ⌦ T2

be two authorization scoring functions. Let t1 � T1 (resp.
t2 � T2) be a threshold such that if score1(p, s, v) ⇧ t1
(resp. score2(p, s, v) ⇧ t2) then p cannot access
resource s. Similarly, if score1(p, s, v) > t1 (resp.
score2(p, s, v) > t2) then p can access resource s. A
function f : T2 ⌦ T1 is an order-preserving homomorphism
from T2 to T1 if and only if (i) t ⇧ t2 ⌦ f(t) ⇧ t1, (ii)
f(t2) = t1, and (iii) t > t2 ⌦ f(t) > t1.

In the discussion above, Alice desires to sequentially
compose the scoring function defined in Algorithm 1 with
the scoring function defined by Equations 6–9. Furthermore,
the identity function f(x) �⌦ x is trivially an order-
preserving homomorphism between the (identical) totally-
ordered ranges of these two functions. We now have the
necessary machinery to prove the following theorem:

Theorem 3: Let score1 : P ⇤ S ⇤ V ⌦ T1 and score2 :
P ⇤ S ⇤ V ⌦ T2 be two authorization scoring functions

that satisfy the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties. If there exists
an order-preserving homomorphism f between T2 and T1,
then the sequential composition of score1 with score2 is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Proof: Showing that the sequential composition of
score1 with score2 is deterministic and bounded is straight-
forward. Using the (deterministic) outputs of score2 as
inputs to the (deterministic) function score1 will clearly
result in a deterministic output. Furthermore, since f maps
the outputs of score2 into a range that can be considered
by score1 and score1 is bounded, then the sequential
composition of score1 with score2 is also bounded.

Since score2 is authorization relevant, by Definition 5 it is
not influenced by irrelevant credentials. As a result, score1

will not be indirectly influenced by irrelevant credentials
via score2. Since score1 is authorization relevant, it is not
influenced by irrelevant credentials that it considers directly.
This implies that the sequential composition of score1 with
score2 is also uninfluenced by irrelevant credentials, and
thus authorization relevant by Definition 5. By a similar
argument, the sequential composition of score1 with score2

is also monotonic: relevant credentials considered directly by
score1 or indirectly via score2 can only increase the output
of sequential composition of score1 with score2.

Finally, we must address the simple ordering property.
Note that the order-preserving homomorphism f allows
score1 to reliably use the value f(score2(p�, r�, v�)) to
determine whether P � is authorized to access the horizon
resource r�. Given that score2 is assumed to be deterministic
and to satisfy the simple ordering property, this interpretation
of f(score2(p�, r�, v�)) is guaranteed to be correct. Further-
more, since score1 is also assumed to be deterministic and
to satisfy the simple ordering property, the output value
score(p, r, v) that is computed using this information is
also guaranteed to correctly reflect P ’s ability to access the
resource r. As a result, the sequential composition of score1

with score2 satisfies the simple ordering property.

As a result of the above theorem, we immediately have
the following corollary stating that the two classes of autho-
rization scoring functions discussed earlier in this section
can be sequentially composed with one another:

Corollary 1: The result of sequentially composing the
authorization scoring functions defined by Algorithm 1 and
Equations 6–9 using the order-preserving homomorphism
f(x) �⌦ x is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

It is also interesting to note that Theorem 3 tells us that
principals can make use of any number of authorization
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processes. Given that the roles appearing on the “horizon”
of Alice’s domain appear within credentials defined in her
domain, she is likely to be aware of their semantics (e.g.,
that a BestBuy membership is easier to come by than a DoD
clearance). Although she may not be able to reliably interpret
every role used to prove membership in these horizon roles,
her knowledge of the horizon role itself may guide the choice
the particular ⌃ function used reason about the robustness of
proofs of membership of that role. In such a scenario, Alice
may wish to sequentially compose the scoring functions
defined in Sections IV-A and IV-B.

A More General Problem. The above scenario is really
a special case of a more general question: Given two proof
scoring functions that satisfy the requirements set forth in
Section III-B, is it possible to combine these functions in
such a way that the composite function retains the desir-
able characteristics of the original functions? In order to
show that this is, indeed, the case, we must first formalize
the notions of horizon, sequential composition, and order-
preserving homomorphism.

Definition 7 (Horizon): The horizon of a view v is de-
fined as the set of resources horizon(v) = {r | ⇣c �
ac(v.S) : r � body(c) ⇢ r /� v.S}. That is, horizon(v)
contains all resources mentioned in the body of policies
protecting resources in v.S that are not themselves in v.S.

Definition 8 (Sequential Composition): Assume that we
have a view v, a principal p, a resource r, and two au-
thorization scoring functions score1 and score2. We say
that score1 is sequentially composed with score2 if there
exists a resource r� � horizon(v), a principal p�, and a view
v� such that score2(p�, r�, v�) is calculated when calculating
score1(p, r, v).

Definition 9 (Order-Preserving Homomorphism): Let
score1 : P ⇤ S ⇤ V ⌦ T1 and score2 : P ⇤ S ⇤ V ⌦ T2

be two authorization scoring functions. Let t1 � T1 (resp.
t2 � T2) be a threshold such that if score1(p, s, v) ⇧ t1
(resp. score2(p, s, v) ⇧ t2) then p cannot access
resource s. Similarly, if score1(p, s, v) > t1 (resp.
score2(p, s, v) > t2) then p can access resource s. A
function f : T2 ⌦ T1 is an order-preserving homomorphism
from T2 to T1 if and only if (i) t ⇧ t2 ⌦ f(t) ⇧ t1, (ii)
f(t2) = t1, and (iii) t > t2 ⌦ f(t) > t1.

In the discussion above, Alice desires to sequentially
compose the scoring function defined in Algorithm 1 with
the scoring function defined by Equations 6–9. Furthermore,
the identity function f(x) �⌦ x is trivially an order-
preserving homomorphism between the (identical) totally-
ordered ranges of these two functions. We now have the
necessary machinery to prove the following theorem:

Theorem 3: Let score1 : P ⇤ S ⇤ V ⌦ T1 and score2 :
P ⇤ S ⇤ V ⌦ T2 be two authorization scoring functions

that satisfy the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties. If there exists
an order-preserving homomorphism f between T2 and T1,
then the sequential composition of score1 with score2 is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Proof: Showing that the sequential composition of
score1 with score2 is deterministic and bounded is straight-
forward. Using the (deterministic) outputs of score2 as
inputs to the (deterministic) function score1 will clearly
result in a deterministic output. Furthermore, since f maps
the outputs of score2 into a range that can be considered
by score1 and score1 is bounded, then the sequential
composition of score1 with score2 is also bounded.

Since score2 is authorization relevant, by Definition 5 it is
not influenced by irrelevant credentials. As a result, score1

will not be indirectly influenced by irrelevant credentials
via score2. Since score1 is authorization relevant, it is not
influenced by irrelevant credentials that it considers directly.
This implies that the sequential composition of score1 with
score2 is also uninfluenced by irrelevant credentials, and
thus authorization relevant by Definition 5. By a similar
argument, the sequential composition of score1 with score2

is also monotonic: relevant credentials considered directly by
score1 or indirectly via score2 can only increase the output
of sequential composition of score1 with score2.

Finally, we must address the simple ordering property.
Note that the order-preserving homomorphism f allows
score1 to reliably use the value f(score2(p�, r�, v�)) to
determine whether P � is authorized to access the horizon
resource r�. Given that score2 is assumed to be deterministic
and to satisfy the simple ordering property, this interpretation
of f(score2(p�, r�, v�)) is guaranteed to be correct. Further-
more, since score1 is also assumed to be deterministic and
to satisfy the simple ordering property, the output value
score(p, r, v) that is computed using this information is
also guaranteed to correctly reflect P ’s ability to access the
resource r. As a result, the sequential composition of score1

with score2 satisfies the simple ordering property.

As a result of the above theorem, we immediately have
the following corollary stating that the two classes of autho-
rization scoring functions discussed earlier in this section
can be sequentially composed with one another:

Corollary 1: The result of sequentially composing the
authorization scoring functions defined by Algorithm 1 and
Equations 6–9 using the order-preserving homomorphism
f(x) �⌦ x is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

It is also interesting to note that Theorem 3 tells us that
principals can make use of any number of authorization

scoring functions to compute authorization scores for each
of the resources along the horizon of their domain. More
concretely, in the scenario described by Figure 2, Alice can
use a different authorization scoring function for each grey
node on the horizon of her domain:

Corollary 2: Let score : P ⇤ S ⇤ V ⌦ T1 be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Lastly, the ability to sequentially compose two authorization
scoring functions inductively gives us the ability to sequen-
tially compose any number of such functions:

Corollary 3: Let score1 : P⇤S⇤V ⌦ T1, . . . , scoren :
P ⇤ S ⇤ V ⌦ Tn be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let fn�1 : Tn ⌦
Tn�1, . . . , f1 : T2 ⌦ T1 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing score1, . . . , scoren using
f1, . . . , fn�1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

V. SCORING NON-MEMBERS OF A ROLE

The ability to construct machine verifiable proofs of
authorization is one of the greatest strengths of trust manage-
ment approaches to authorization. However, the unyielding
reliance on these rigid proofs is also a considerable pitfall.
Since the proof construction process is guided by the policies
within the system, these policies must exhaustively cover
every possible scenario in which access to some resource
should be granted. As a result, these systems can fail during
emergencies or other unexpected circumstances simply be-
cause policy administrators did not consider some particular
case when writing the policies for their domain.

When this type of failure is manifest in the physical world,
policies are often overridden in accordance with judgement
calls made by qualified individuals. However, making these
types of decisions in an automated system can be tricky. The
ability to assess how close some unauthorized principal is to
being granted access to a resource could, to a limited extent,
help to automate this process. At the very least, this can
act as a primitive risk metric that helps classify users who
are “close” to satisfying a policy from those who are “far”
from satisfying the policy. This, in turn, could be useful for
helping to guide the decision making of a human auditor

who can be brought into the process. In this section, we
explore how these types of decisions can be made within
the context of the framework presented in this paper.

Scoring Construction. To describe one possible mecha-
nism for scoring the non-members of a particular role, we
present modifications to the authorization scoring function
described by Equations 6–9. Intuitively, the scoring con-
struction presented in this section builds upon the earlier
construction by also considering partial proofs. In order
to identify partial proofs, we need to first understand what
types of proofs may be produced for a particular role. We
formalize this notion through the use of canonical proofs:

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C from the universe of
all possible credentials such that F (p, A.R, C) = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

Given a canonical proof C for a principal p and a role
A.R, it is entirely possible that some subset C � of the
credentials in C are not actually defined within the system.
The existence of the canonical proof C simply implies that
if each credential c � C is discovered, then p will be
granted access to A.R. We also note that, a user need not
be omniscient in order to materialize csets(p, A.R): this
set of canonical proofs is actually uncovered as a side-effect
of the RT credential chain discovery process [23]. Given
csets(p, A.R), we can then construct the set of all partial
proofs regarding p’s membership in A.R using the function
psets : P ⇤R⇤ V ⌦ 2C ⇤ 2C defined below:

psets(p, A.R, v) = {(Cp, Cc) | Cc � csets(p, A.R) (17)
⇢Cp = v.C ⇡ Cc ⇢ Cp �= Cc}

The above function computes all partial matches between
the set of credentials in v.C and the canonical proofs in
csets(p, A.R). Given this set of (partial, canonical) proof
pairs, we can now evaluate the quality of a partial proof. To
do this, we introduce the functions leaves : 2C ⌦ 2C and
⇧ : 2C ⇤ 2C ⌦ [0, 1]:

leaves(C) = {c � C | c of the form A.R p} (18)

⇧(Cp, Cc) =
|leaves(Cp ⇡ Cc)|

|leaves(Cc)|
(19)

The leaves function extracts the simple membership
credentials from a set C of credentials. The ⇧ function
then calculates the quality of a partial proof by calculating
the percentage of the simple membership credentials in
the corresponding canonical proof that are contained in the
partial proof. To see why credentials other than simple mem-
berships are ignored by ⇧, consider the chain of delegation
A.R  B1.R1  · · ·  Bn.Rn. The canonical proof for
principal p in role A.R would contain n simple containment

scoring functions to compute authorization scores for each
of the resources along the horizon of their domain. More
concretely, in the scenario described by Figure 2, Alice can
use a different authorization scoring function for each grey
node on the horizon of her domain:

Corollary 2: Let score : P ⇤ S ⇤ V ⌦ T1 be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Lastly, the ability to sequentially compose two authorization
scoring functions inductively gives us the ability to sequen-
tially compose any number of such functions:

Corollary 3: Let score1 : P⇤S⇤V ⌦ T1, . . . , scoren :
P ⇤ S ⇤ V ⌦ Tn be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let fn�1 : Tn ⌦
Tn�1, . . . , f1 : T2 ⌦ T1 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing score1, . . . , scoren using
f1, . . . , fn�1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

V. SCORING NON-MEMBERS OF A ROLE

The ability to construct machine verifiable proofs of
authorization is one of the greatest strengths of trust manage-
ment approaches to authorization. However, the unyielding
reliance on these rigid proofs is also a considerable pitfall.
Since the proof construction process is guided by the policies
within the system, these policies must exhaustively cover
every possible scenario in which access to some resource
should be granted. As a result, these systems can fail during
emergencies or other unexpected circumstances simply be-
cause policy administrators did not consider some particular
case when writing the policies for their domain.

When this type of failure is manifest in the physical world,
policies are often overridden in accordance with judgement
calls made by qualified individuals. However, making these
types of decisions in an automated system can be tricky. The
ability to assess how close some unauthorized principal is to
being granted access to a resource could, to a limited extent,
help to automate this process. At the very least, this can
act as a primitive risk metric that helps classify users who
are “close” to satisfying a policy from those who are “far”
from satisfying the policy. This, in turn, could be useful for
helping to guide the decision making of a human auditor

who can be brought into the process. In this section, we
explore how these types of decisions can be made within
the context of the framework presented in this paper.

Scoring Construction. To describe one possible mecha-
nism for scoring the non-members of a particular role, we
present modifications to the authorization scoring function
described by Equations 6–9. Intuitively, the scoring con-
struction presented in this section builds upon the earlier
construction by also considering partial proofs. In order
to identify partial proofs, we need to first understand what
types of proofs may be produced for a particular role. We
formalize this notion through the use of canonical proofs:

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C from the universe of
all possible credentials such that F (p, A.R, C) = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

Given a canonical proof C for a principal p and a role
A.R, it is entirely possible that some subset C � of the
credentials in C are not actually defined within the system.
The existence of the canonical proof C simply implies that
if each credential c � C is discovered, then p will be
granted access to A.R. We also note that, a user need not
be omniscient in order to materialize csets(p, A.R): this
set of canonical proofs is actually uncovered as a side-effect
of the RT credential chain discovery process [23]. Given
csets(p, A.R), we can then construct the set of all partial
proofs regarding p’s membership in A.R using the function
psets : P ⇤R⇤ V ⌦ 2C ⇤ 2C defined below:

psets(p, A.R, v) = {(Cp, Cc) | Cc � csets(p, A.R) (17)
⇢Cp = v.C ⇡ Cc ⇢ Cp �= Cc}

The above function computes all partial matches between
the set of credentials in v.C and the canonical proofs in
csets(p, A.R). Given this set of (partial, canonical) proof
pairs, we can now evaluate the quality of a partial proof. To
do this, we introduce the functions leaves : 2C ⌦ 2C and
⇧ : 2C ⇤ 2C ⌦ [0, 1]:

leaves(C) = {c � C | c of the form A.R p} (18)

⇧(Cp, Cc) =
|leaves(Cp ⇡ Cc)|

|leaves(Cc)|
(19)

The leaves function extracts the simple membership
credentials from a set C of credentials. The ⇧ function
then calculates the quality of a partial proof by calculating
the percentage of the simple membership credentials in
the corresponding canonical proof that are contained in the
partial proof. To see why credentials other than simple mem-
berships are ignored by ⇧, consider the chain of delegation
A.R  B1.R1  · · ·  Bn.Rn. The canonical proof for
principal p in role A.R would contain n simple containment
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scoring functions to compute authorization scores for each
of the resources along the horizon of their domain. More
concretely, in the scenario described by Figure 2, Alice can
use a different authorization scoring function for each grey
node on the horizon of her domain:

Corollary 2: Let score : P ⇤ S ⇤ V ⌦ T1 be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Lastly, the ability to sequentially compose two authorization
scoring functions inductively gives us the ability to sequen-
tially compose any number of such functions:

Corollary 3: Let score1 : P⇤S⇤V ⌦ T1, . . . , scoren :
P ⇤ S ⇤ V ⌦ Tn be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let fn�1 : Tn ⌦
Tn�1, . . . , f1 : T2 ⌦ T1 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing score1, . . . , scoren using
f1, . . . , fn�1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

V. SCORING NON-MEMBERS OF A ROLE

The ability to construct machine verifiable proofs of
authorization is one of the greatest strengths of trust manage-
ment approaches to authorization. However, the unyielding
reliance on these rigid proofs is also a considerable pitfall.
Since the proof construction process is guided by the policies
within the system, these policies must exhaustively cover
every possible scenario in which access to some resource
should be granted. As a result, these systems can fail during
emergencies or other unexpected circumstances simply be-
cause policy administrators did not consider some particular
case when writing the policies for their domain.

When this type of failure is manifest in the physical world,
policies are often overridden in accordance with judgement
calls made by qualified individuals. However, making these
types of decisions in an automated system can be tricky. The
ability to assess how close some unauthorized principal is to
being granted access to a resource could, to a limited extent,
help to automate this process. At the very least, this can
act as a primitive risk metric that helps classify users who
are “close” to satisfying a policy from those who are “far”
from satisfying the policy. This, in turn, could be useful for
helping to guide the decision making of a human auditor

who can be brought into the process. In this section, we
explore how these types of decisions can be made within
the context of the framework presented in this paper.

Scoring Construction. To describe one possible mecha-
nism for scoring the non-members of a particular role, we
present modifications to the authorization scoring function
described by Equations 6–9. Intuitively, the scoring con-
struction presented in this section builds upon the earlier
construction by also considering partial proofs. In order
to identify partial proofs, we need to first understand what
types of proofs may be produced for a particular role. We
formalize this notion through the use of canonical proofs:

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C from the universe of
all possible credentials such that F (p, A.R, C) = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

Given a canonical proof C for a principal p and a role
A.R, it is entirely possible that some subset C � of the
credentials in C are not actually defined within the system.
The existence of the canonical proof C simply implies that
if each credential c � C is discovered, then p will be
granted access to A.R. We also note that, a user need not
be omniscient in order to materialize csets(p, A.R): this
set of canonical proofs is actually uncovered as a side-effect
of the RT credential chain discovery process [23]. Given
csets(p, A.R), we can then construct the set of all partial
proofs regarding p’s membership in A.R using the function
psets : P ⇤R⇤ V ⌦ 2C ⇤ 2C defined below:

psets(p, A.R, v) = {(Cp, Cc) | Cc � csets(p, A.R) (17)
⇢Cp = v.C ⇡ Cc ⇢ Cp �= Cc}

The above function computes all partial matches between
the set of credentials in v.C and the canonical proofs in
csets(p, A.R). Given this set of (partial, canonical) proof
pairs, we can now evaluate the quality of a partial proof. To
do this, we introduce the functions leaves : 2C ⌦ 2C and
⇧ : 2C ⇤ 2C ⌦ [0, 1]:

leaves(C) = {c � C | c of the form A.R p} (18)

⇧(Cp, Cc) =
|leaves(Cp ⇡ Cc)|

|leaves(Cc)|
(19)

The leaves function extracts the simple membership
credentials from a set C of credentials. The ⇧ function
then calculates the quality of a partial proof by calculating
the percentage of the simple membership credentials in
the corresponding canonical proof that are contained in the
partial proof. To see why credentials other than simple mem-
berships are ignored by ⇧, consider the chain of delegation
A.R  B1.R1  · · ·  Bn.Rn. The canonical proof for
principal p in role A.R would contain n simple containment

scoring functions to compute authorization scores for each
of the resources along the horizon of their domain. More
concretely, in the scenario described by Figure 2, Alice can
use a different authorization scoring function for each grey
node on the horizon of her domain:

Corollary 2: Let score : P ⇤ S ⇤ V ⌦ T1 be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Lastly, the ability to sequentially compose two authorization
scoring functions inductively gives us the ability to sequen-
tially compose any number of such functions:

Corollary 3: Let score1 : P⇤S⇤V ⌦ T1, . . . , scoren :
P ⇤ S ⇤ V ⌦ Tn be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let fn�1 : Tn ⌦
Tn�1, . . . , f1 : T2 ⌦ T1 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing score1, . . . , scoren using
f1, . . . , fn�1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

V. SCORING NON-MEMBERS OF A ROLE

The ability to construct machine verifiable proofs of
authorization is one of the greatest strengths of trust manage-
ment approaches to authorization. However, the unyielding
reliance on these rigid proofs is also a considerable pitfall.
Since the proof construction process is guided by the policies
within the system, these policies must exhaustively cover
every possible scenario in which access to some resource
should be granted. As a result, these systems can fail during
emergencies or other unexpected circumstances simply be-
cause policy administrators did not consider some particular
case when writing the policies for their domain.

When this type of failure is manifest in the physical world,
policies are often overridden in accordance with judgement
calls made by qualified individuals. However, making these
types of decisions in an automated system can be tricky. The
ability to assess how close some unauthorized principal is to
being granted access to a resource could, to a limited extent,
help to automate this process. At the very least, this can
act as a primitive risk metric that helps classify users who
are “close” to satisfying a policy from those who are “far”
from satisfying the policy. This, in turn, could be useful for
helping to guide the decision making of a human auditor

who can be brought into the process. In this section, we
explore how these types of decisions can be made within
the context of the framework presented in this paper.

Scoring Construction. To describe one possible mecha-
nism for scoring the non-members of a particular role, we
present modifications to the authorization scoring function
described by Equations 6–9. Intuitively, the scoring con-
struction presented in this section builds upon the earlier
construction by also considering partial proofs. In order
to identify partial proofs, we need to first understand what
types of proofs may be produced for a particular role. We
formalize this notion through the use of canonical proofs:

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C from the universe of
all possible credentials such that F (p, A.R, C) = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

Given a canonical proof C for a principal p and a role
A.R, it is entirely possible that some subset C � of the
credentials in C are not actually defined within the system.
The existence of the canonical proof C simply implies that
if each credential c � C is discovered, then p will be
granted access to A.R. We also note that, a user need not
be omniscient in order to materialize csets(p, A.R): this
set of canonical proofs is actually uncovered as a side-effect
of the RT credential chain discovery process [23]. Given
csets(p, A.R), we can then construct the set of all partial
proofs regarding p’s membership in A.R using the function
psets : P ⇤R⇤ V ⌦ 2C ⇤ 2C defined below:

psets(p, A.R, v) = {(Cp, Cc) | Cc � csets(p, A.R) (17)
⇢Cp = v.C ⇡ Cc ⇢ Cp �= Cc}

The above function computes all partial matches between
the set of credentials in v.C and the canonical proofs in
csets(p, A.R). Given this set of (partial, canonical) proof
pairs, we can now evaluate the quality of a partial proof. To
do this, we introduce the functions leaves : 2C ⌦ 2C and
⇧ : 2C ⇤ 2C ⌦ [0, 1]:

leaves(C) = {c � C | c of the form A.R p} (18)

⇧(Cp, Cc) =
|leaves(Cp ⇡ Cc)|

|leaves(Cc)|
(19)

The leaves function extracts the simple membership
credentials from a set C of credentials. The ⇧ function
then calculates the quality of a partial proof by calculating
the percentage of the simple membership credentials in
the corresponding canonical proof that are contained in the
partial proof. To see why credentials other than simple mem-
berships are ignored by ⇧, consider the chain of delegation
A.R  B1.R1  · · ·  Bn.Rn. The canonical proof for
principal p in role A.R would contain n simple containment
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  credentials and one simple membership credential (i.e., the
credential Bn.Rn  p). Note that of these n+1 credentials,
only one is specific to p. If n is large, then p would appear
“close” to being a member of A.R even though she does
not meet any of the requirements for membership. The ⇧
function eliminates this type of bias.

If we let opsets(p, A.R, v) represent the set
{(w, Cp, Cc) | (Cp, Cc) � psets(p, A.R, v) ⇢ w =
⇧(Cp, Cc)} sorted in decreasing order of wi, we can then
define an authorization scoring function capable of scoring
non-members of roles:

⌅(x) =
�

1 if x ⌃ 1
0 otherwise (20)

score(p, A.R, v) = ⌅(|sets(v.C)|) (21)
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Under the constraint that � + ⇥ = 1, the range of the
above scoring function is [0, 2). Furthermore, this function
has the properties that (i) score(p, A.R, v) ⌃ 1 ↵ P is a
member of A.R and (ii) score(p, A.R, v) < 1 ↵ P is not
a member of A.R.

Example. To briefly demonstrate the class of scoring
functions defined in this section, consider the following set
of RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (22)
Univ.auth Univ.techDept.gradStudent (23)

Univ.techDep CS (24)
CS.student CS.ugrad (25)

CS.student CS.gradStudent (26)
CS.ugrad Bob (27)

In this scenario, it is clear that Bob cannot prove member-
ship in the Univ.auth role. However, there exists one canon-
ical proof that overlaps with the simple memberships that
Bob possesses: Cc = {(22), (25), (27), ACM.member  
Bob}. Bob’s corresponding partial proof is Cp =
{(22), (25), (27)}. Since ⇧(Cp, Cc) = 1

2 , we have that
score(Bob, Univ.auth, v) = �

4 . Due to the fact that ⇥ ⇧ 1,
Bob’s score for the role Univ.auth falls below the mem-
bership threshold of 1.

Properties. The class of scoring functions described in
this section possesses the same properties as each of the
classes of scoring functions described in Section IV. Namely,
we have the following theorem:

Theorem 4: The class of non-member scoring functions
score : P ⇤ R ⇤ V ⌦ R represented by Equations 17–
21 satisfies the deterministic, simple ordering, authorization

relevant, bounded, and monotonic properties, provided that
the scaling function ⌃ : 2C ⇤ 22C ⌦ [0, 1] used to
parameterize the osets function is deterministic.

We omit the details of the proof of Theorem 4, as it
essentially mirrors the proof of Theorem 2. We further
note that the authorization scoring function described by
Algorithm 1 can also be modified to score the non-members
of a particular role. We do not discuss these modifications,
however, as they present little novelty beyond that which has
already been discussed in this section.

VI. DISCUSSION

This work is a first step towards quantitative analysis of
trust management proofs of authorization. Many interesting
directions can be explored based on the general framework
and the current design of authorization scoring functions.

Extensions to Richer Policy Models. For simplicity, our
discussion so far is based on RT0. However, our general
framework can easily accommodate other trust models with
richer structures and semantics. One natural extension is to
support RT 1, which supports parameterized views, or CTM
which combines credential-based trust and reputation-based
trust [20]. Clearly, parameterized views and reputations
greatly expand the design space of authorization scoring
functions. In particular, besides credential structures, the
strength of a principal’s proofs of authorization may be
further refined in terms of role attributes and reputations. We
may also consider a variety of aggregations of role attributes
when considering disjoint minimal proofs.

Another important extension is to consider other types of
auxiliary information besides weights of roles. One interest-
ing type of auxiliary information is the correlation between
roles. For example, IEEE members and ACM members
might be correlated; i.e., a member of IEEE is more likely
to be a member of ACM, and vice versa. If this relationship
is captured in A, then an IEEE member might be partially
trusted to access resources that are explicitly accessible to
ACM members. Essentially, these types of correlations help
us better model risks when temporarily granting access to
unauthorized principals.

Evaluating Top-k Style Queries. In this paper we focus
on the semantics of authorization scoring functions. One
important issue is to efficiently evaluate these functions.
This is particularly so when answering top-k style queries.
The naive approach, which first computes the authorization
score of each principal and then selects k principals with the
highest scores, is unlikely to be efficient in large decentral-
ized systems. Though top-k queries have been extensively
studied in database research (for a survey see [13]), it is
unclear whether existing database techniques can be applied
in our problem, as authorization scoring functions tend to be
much more complicated than simple linear combination of
multiple attributes. Also, as most trust management systems
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credentials and one simple membership credential (i.e., the
credential Bn.Rn  p). Note that of these n+1 credentials,
only one is specific to p. If n is large, then p would appear
“close” to being a member of A.R even though she does
not meet any of the requirements for membership. The ⇧
function eliminates this type of bias.

If we let opsets(p, A.R, v) represent the set
{(w, Cp, Cc) | (Cp, Cc) � psets(p, A.R, v) ⇢ w =
⇧(Cp, Cc)} sorted in decreasing order of wi, we can then
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non-members of roles:
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above scoring function is [0, 2). Furthermore, this function
has the properties that (i) score(p, A.R, v) ⌃ 1 ↵ P is a
member of A.R and (ii) score(p, A.R, v) < 1 ↵ P is not
a member of A.R.

Example. To briefly demonstrate the class of scoring
functions defined in this section, consider the following set
of RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (22)
Univ.auth Univ.techDept.gradStudent (23)

Univ.techDep CS (24)
CS.student CS.ugrad (25)

CS.student CS.gradStudent (26)
CS.ugrad Bob (27)

In this scenario, it is clear that Bob cannot prove member-
ship in the Univ.auth role. However, there exists one canon-
ical proof that overlaps with the simple memberships that
Bob possesses: Cc = {(22), (25), (27), ACM.member  
Bob}. Bob’s corresponding partial proof is Cp =
{(22), (25), (27)}. Since ⇧(Cp, Cc) = 1

2 , we have that
score(Bob, Univ.auth, v) = �

4 . Due to the fact that ⇥ ⇧ 1,
Bob’s score for the role Univ.auth falls below the mem-
bership threshold of 1.

Properties. The class of scoring functions described in
this section possesses the same properties as each of the
classes of scoring functions described in Section IV. Namely,
we have the following theorem:

Theorem 4: The class of non-member scoring functions
score : P ⇤ R ⇤ V ⌦ R represented by Equations 17–
21 satisfies the deterministic, simple ordering, authorization

relevant, bounded, and monotonic properties, provided that
the scaling function ⌃ : 2C ⇤ 22C ⌦ [0, 1] used to
parameterize the osets function is deterministic.

We omit the details of the proof of Theorem 4, as it
essentially mirrors the proof of Theorem 2. We further
note that the authorization scoring function described by
Algorithm 1 can also be modified to score the non-members
of a particular role. We do not discuss these modifications,
however, as they present little novelty beyond that which has
already been discussed in this section.

VI. DISCUSSION

This work is a first step towards quantitative analysis of
trust management proofs of authorization. Many interesting
directions can be explored based on the general framework
and the current design of authorization scoring functions.

Extensions to Richer Policy Models. For simplicity, our
discussion so far is based on RT0. However, our general
framework can easily accommodate other trust models with
richer structures and semantics. One natural extension is to
support RT 1, which supports parameterized views, or CTM
which combines credential-based trust and reputation-based
trust [20]. Clearly, parameterized views and reputations
greatly expand the design space of authorization scoring
functions. In particular, besides credential structures, the
strength of a principal’s proofs of authorization may be
further refined in terms of role attributes and reputations. We
may also consider a variety of aggregations of role attributes
when considering disjoint minimal proofs.

Another important extension is to consider other types of
auxiliary information besides weights of roles. One interest-
ing type of auxiliary information is the correlation between
roles. For example, IEEE members and ACM members
might be correlated; i.e., a member of IEEE is more likely
to be a member of ACM, and vice versa. If this relationship
is captured in A, then an IEEE member might be partially
trusted to access resources that are explicitly accessible to
ACM members. Essentially, these types of correlations help
us better model risks when temporarily granting access to
unauthorized principals.

Evaluating Top-k Style Queries. In this paper we focus
on the semantics of authorization scoring functions. One
important issue is to efficiently evaluate these functions.
This is particularly so when answering top-k style queries.
The naive approach, which first computes the authorization
score of each principal and then selects k principals with the
highest scores, is unlikely to be efficient in large decentral-
ized systems. Though top-k queries have been extensively
studied in database research (for a survey see [13]), it is
unclear whether existing database techniques can be applied
in our problem, as authorization scoring functions tend to be
much more complicated than simple linear combination of
multiple attributes. Also, as most trust management systems
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Discuss: What was wrong with that talk? 

Issues with content: 
l  Why should we care about the problem? 
l  How will the results be useful in practice? 
l  Had no idea where talk was going! 
l  Missing context to understand problem setup 

 
Issues with delivery: 

l  Lack of eye contact 
l  Lecturing to the board/laptop, not the audience 
l  Blurry fonts 
l  Too much text 
l  … 



Time is usually limited 
l  Conference talk:  20 minutes or so 
l  Job talk:  < 1 hour 

 
This is not a lot of time… 
 
 
Bottom line:  Your talk should be an advertisement for your paper(s) 

Structure your talk based on your audience and 
the time that you have 

Your audience:  Generally smart individuals 
l  Computer Scientists?  Yes 
l  In your area?  Maybe 
l  Knowledgeable about your problem?  Probably not 



That’s not a lot of time, how should I structure my talk 
to relate to these people? 

This is a hard 
problem… 

… with interesting 
applications… 

… that builds on 
prior work… 

… in a verifiable 
way 

Two sub-parts: 
l  You do something that has not 

been done 
l  You use neat technological 

advancements to do this 

Hint:  Try to give audience one good take-home point 



It’s not just what you say, but how you say it 

Body language says a lot 
l  Make eye contact with your audience 

  Corollary:  Face your audience 

l  Some movement is good 
l  Don’t speak too fast (or too slow!) 

Make useful slides 
l  Provide a topic outline to structure your talk 
l  One primary idea per slide 
l  Use slide titles to convey take-away message 
l  Do not read your slides! 
l  A picture is worth a thousand words… 



Let’s try to put some of this into practice… 
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Like most access control systems, distributed proof construction 
systems are typically used to support binary decisions 

Note that… 
l  Both proofs are valid 
l  The first proof is far simpler than the second 
l  Why focus only on the destination (validity)?  What about the journey (context)? 

Acme.Access ← Acme.Mgr 

Acme.Mgr← Alice 

Alice 

Acme.Access ← Acme.PMgr.Asst 

Acme.PMgr← Acme.POrg.Mgr 

Acme.POrg← MegaCorp MegaCorp.Mgr← Bob 

Mega
Corp 

Bob Chuck 

Bob.Asst← Chuck 

✔ ✔ 

Example:  Access to a company database 



Proofs of authorization reveal a great deal of information about 
the conditions under which some access was granted 

Authorization robustness 
l  How many proofs can some user generate? 
l  Are these proofs concise, or do they use odd delegations? 
l  How dependent on system state are these proofs? 
l  Applications:  Anomaly detection, policy audit 

vs. 

User-to-user comparison 
l  Policies are requirements 
l  How well do various individuals 

satisfy them? 
l  Applications:  Top-k analysis, 

group formation 

Examination of incomplete proofs 
l  Policies aren’t always perfect… 
l  How close is an unauthorized user 

to accessing a resource? 
l  Applications:  Risk assessment, 

policy revision 



What are we not doing? 

Point-based access control & trust management 
l  E.g., Yao et al. 2006 
l  Privacy-preserving compliance checking of point-based policies 

Reputation-based trust management 
l  E.g., Kamvar et al. 2003, Xiong and Liu 2003, Josang et al. 2007 
l  Aggregation-based trust, different than credential-based proofs 

Risk-based access control 
l  E.g., MITRE 2003, Aziz et al. 2006, Cheng et al. 2007 
l  More on this later… 

 
Reasoning under uncertain information 

l  E.g., Dempster 1976, Shafer 1976, Cox 2004 
l  Focus is on uncertain information and/or inference rules 



Talk Outline 

n  Model for quantitative proof analysis 

n  Proof scoring functions 
l  Desiderata 
l  An example scoring construction 
l  Functional composition 

n  Scoring incomplete proofs of authorization 

n  (Lots of) future directions 



RT0 is the simplest language in the RT family 

Principals are represented by public keys 
 
Policies are constructed using four basic types of assertion 

1.  Simple membership:  Alice.Friend ← Bob 
  Bob is a member of Alice’s “Friend” role 

2.  Simple containment:  Acme.Contractor ← WidgetTech.Employee 
  WidgetTech employees are “Contractors” at Acme 

3.  Intersection containment:  Tech.Disct ← StateU.Student ∩ IEEE.member 
  Students at Univ who are IEEE members are eligible for a discount 

4.  Linking containment:  Acme.PMgr← Acme.POrg.Mgr 
  Members of the “Mgr” role defined by any member of “Acme.POrg” are 

members of Acme’s “PMgr” role 



Modeling Authorization Scoring Functions 

An RT0 trust management system consists of: 
l  A set P of principals 
l  A set R of roles/resources 
l  A set C of credentials 
l  An inference scheme F : P × R × 2C → {True, False} 

 
Each principal has their own view of the system 

l  A set R ⊆ R for which they have complete knowledge 
l  A set C ⊆ C of credentials 

  ac(r) ≡ { c ∈ C | head(c) = r } 
 ∀ r ∈ R : ac(r) ⊆ C 

l  A store of auxiliary information A 
  Ignored in this talk, see paper for details 

Proofs are scored relative to some principal’s view 
l  score : P × R × V → T 

Very large… 

r ∈ v.R 

r’ ∉ v.R 



What properties should a proof scoring function have? 

Necessary properties ensure that proof scores “make sense” 
l  Deterministic 
l  Simple ordering: 

 ∀ v ∈ V : F(p1, r, v.C) ∧ ¬F(p2, r, v.C) → score(p1, r, v) ≥ score(p2, r, v) 

l  Authorization relevant: 
 if F(p, r, C) = True, then C is a proof for p to access r 
 if F(p, r, C’) = False for all C’ ⊂ C, C is a minimal proof 
 Only credentials belonging to some minimal proof influence score 

Desirable properties are beneficial, but not strictly necessary 
l  Bounded: ∃ b1, b2 : ∀ p, r, v : b1 ≤ score(p, r, v) ≤ b2 

l  Monotonic: v ⊆ v’ → score(p, r, v) ≤ score(p, r, v’) 

What might some interesting classes of authorization scoring 
functions look like? 



Scoring proofs generated with incomplete views 

Assumption:  Principals start with empty views and discover 
minimal proofs of authorization at runtime 

l  Credential chain discovery in RT 
l  Distributed proof construction in, e.g., Grey or Cassandra 
l  Etc. 

Let sets(C, r) represent the minimal proofs for r contained in C 
 
One simple scoring construction is the following: 
 
 
 
This function: 

l  Defines robustness as the number of proofs that a principal can generate 
l  Exponentially decays the contribution of proofs as they are discovered 

score(p, r, v) =
|sets(v.C,r)|�

i=1

1
2

i



This simple notion of robustness is not very exciting, 
but can easily be tuned 

Consider a function                                   that weights a minimal 
proof (possibly) by comparing it with other minimal proofs 
 
Examples: 

l   
 
l   
 
l  
  
l  Linear combinations of the above 

 
Our scoring construction can then be rewritten as: 

� : 2C � 22C ⇥ [0, 1]

⇥card(Cs, ·) = �|Cs|

Prefer simple structure ⇥len(Cs, ·) = �maxp�paths(Cs)(length(p))

Prefer limited delegation 

�ind(Cs, C) = 1�
maxCi�C\Cs

(|Cs ⇥ Ci|)
|Cs|

Prefer multiple, largely 
independent proofs 

score(p, r, v) =
�

(Ci,wi)�osets�(v.C,r)

wi · 1
2

i



Example, Redux 

Using ωlen: 
l  score(Alice, Acme.Access, v1) = 0.365 
l  score(Chuck, Acme.Access, v2) = 0.328 

Note that ωind is irrelevant in this case… 

Acme.Access ← Acme.Mgr 

Acme.Mgr← Alice 

Alice 

Acme.Access ← Acme.PMgr.Asst 

Acme.PMgr← Acme.POrg.Mgr 

Acme.POrg← MegaCorp MegaCorp.Mgr← Bob 

Mega
Corp 

Bob Chuck 

Bob.Asst← Chuck 

✔ 
✔ 

Using ωcard: 
l  score(Alice, Acme.Access, v1) = 0.365  
l  score(Chuck, Acme.Access, v2) = 0.215 



This proof scoring function satisfies our desiderata 

Theorem:  Provided that the function ω used to parameterize 
osets is deterministic, the authorization scoring function 
 
 
 
satisfies the deterministic, simple ordering, authorization 
relevant, bounded, and monotonic properties. 
 
 
The above scoring function 

l  is certainly not the only such authorization scoring function 
l  may not be the best scoring function for all situations 
l  may only be sensible to use on certain parts of a proof 

However, it is an interesting building block… 

score(p, r, v) =
�

(Ci,wi)�osets�(v.C,r)

wi · 1
2

i



In many situations, defining the proof scoring function 
to use could be a difficult task 

Example:  Security administrators within an organization 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Perfect information within domain 
n Exact knowledge of resource/role semantics 
n Very precise weighting and analysis 
n Hand-tuned scoring is possible 

On-demand information outside of domain 
n Known semantics for horizon resources 
n Full semantic knowledge of proof is unlikely 
n Structure is discovered at runtime 

Under what circumstances can good “building block” functions 
be composed to construct proof scoring functions while still 

preserving the properties of each building block? 



Fortunately, reasonable proof scoring functions maintain their 
properties under sequential composition 

Definition:  Assume that we have 
l  Principals p and p’ 
l  Resources r and r’ 
l  Views v and v’ 
l  Functions score and score’ 

We say that score is sequentially composed with 
score’ if r’ ∈ horizon(v) and score’(p’, r’, v’) is 
calculated when calculating score(p, r, v).   
 
 
Theorem*:  Let score1 : P × S × V → T and score2 : P × S × V → T be 
two authorization scoring functions that satisfy the deterministic, simple 
ordering, authorization relevant, bounded, and monotonic properties.  
The sequential composition of these functions also satisfies the 
deterministic, simple ordering, authorization relevant, bounded, and 
monotonic properties. 

horizon(v) 



So far, we have focused on scoring complete 
proofs of authorization 

If a policy is out of date or incomplete, users who should be able 
to do something might not be able to 
 
Risk-based access control is one approach to limiting inflexibility 

l  Place a (typically monetary) cap on the amount of risk/damage permissible 
l  Tokenize this risk/damage and distributed it to users 
l  Compute “risk prices” for every resource in the system 
l  If users can pay the access price, they are permitted access 

While this would be significantly more flexible than policy-based 
approaches, pricing access to individual resources is non-trivial 
 
Alternate approach:  Rather than pricing resources per user for 
every user, price deviations from expected policies 



To price deviations from an expected policy, we first need to be 
able to quantify the degree of these deviations 

A natural generalization of our framework provides one approach 
for doing exactly this 
 
Step 1:  Find the canonical proofs of authorization for the resource 

l  All minimal sets of credentials C such that F(p, r, C) = True 
  Note:  These credentials may not all be materialized in the system 

l  Call the result csets(p, r) 
l  Note: The RT credential chain discovery process does this for us 

Step 2:  Find partial matches between v.C and csets(p, r) 
l  psets(p, r, v) = {(Cp, Cc) | Cc ∈ csets(p, r) ∧ Cp = v.C ∩ Cc ∧ Cp ≠ Cc} 

Step 3:  Evaluate the quality of each partial match 
l  leaves(C) = { c ∈ C | c of the form r ← p } 
l  ψ(Cp, Cc) = |leaves(Cp ∩ Cc)| / |leaves(Cc)| 
l  opsets(p, r, v) = { (w, Cp, Cc) | (Cp, Cc) ∈ psets(p, r, v) ∧ w = ψ(Cp, Cc)  } 



Step 4:  Tying it all together 

Note:  This function satisfies the deterministic, simple ordering, 
authorization relevant, bounded, and monotonic properties 
 
Due to our composition theorem, this function can act as a 
template function that can be sequentially composed with other 
reasonable authorization scoring functions 

⇤(x) =
�

1 if x ⇥ 1
0 otherwise

score(p, r, v) = ⇤(|sets(v.C)|)

+�
⇥

(wi,Ci)�osets�(v.C,r)

wi · 1
2

i

+⇥
⇥

(w,Cp,Cc)i�opsets(p,r,v)

w · 1
2

i

Ensures non-member 
scores always below 1 

Score complete proofs… 

…and partial proofs 



This work is just a first step… 

Question 1:  These types of scoring functions seem sensible, but 
do they make sense in the context of real policies?  

 

Question 2:  RT0 is a very simple language.  What would scoring 
constructions for more feature-rich languages look like? 

l  Credentials with internal structure (e.g., RT1)  
l  Flexible rule structure (e.g., SecPAL, Grey) 
l  Reasoning over aggregates like reputation (e.g., CTM, WBSNs) 
l  … 

Medicine Academic Departments Defense 



Efficiency and functional extensions… 

Question 3:  How can we efficiently construct cost-minimizing 
approximate proofs of authorization? 

l  Can we prune the state-space as we search? 
l  Applications to risk-based access control 

Question 4:  How can we efficiently execute top-k queries over 
(distributed) authorization datasets? 

Group formation Evaluating Policy Utilization 



Conclusions 

Interesting applications of reasoning about proofs of authorization 
l  User-to-user ranking of proofs 
l  User-to-ideal assessment of proof quality/robustness/etc. 
l  Understanding the changing needs of an organization 
l  Risk-aware authorization reasoning 
l  … 

Our goals for this initial work 
l  Develop a formal model for proof scoring 
l  Identify necessary and desirable criteria for scoring functions 
l  Demonstrate that these criteria are attainable in practice 
l  Understand the situations in which scoring functions can be composed 
 

There is still much to be done… 



Thank you! 

Towards Quantitative Analysis of Proofs of Authorization:  
Applications, Framework, and Techniques 

Adam J. Lee 
adamlee@cs.pitt.edu 

Department of Computer Science 
University of Pittsburgh 

Ting Yu 
yu@csc.ncsu.edu 

Department of Computer Science 
North Carolina State University 



Discuss:  Why was this talk (hopefully) better than the 
first run through? 



General tips and tricks… 

Practice makes better 
l  Alone:  Work on your “script,” smooth out transitions 
l  Research group:  Get used to other people being around 
l  Broader population:  Assess comprehensibility to outsiders 

Do you really want that laser pointer? 
 
“Flash” is good, but too much flash is distracting 

l  Good:  Animations to progressively build large diagrams or equations 
l  Bad:  Animating every slide transition and every line of text… 

Get out of your head and into your talk J 

e.g., other grad student friends, 
department seminars, etc… 


