
Giving a Research Presentation
A tale of two talks…

School of Arts of and Sciences
Department of Computer Science

Announcement

Two weeks: Student technical presentations

Logistics:

l  6 groups
l  Presentations split up over both days
l  Each group will receive reviews from:

  All classmates (“anonymous”)
 Me (not anonymous)

All talks must be emailed to me by start of class on
Tuesday September 24th!

Giving a talk isn’t easy the first time around…

Talk 1: Less than stellar talk

Discussion: Knee-jerk reactions

l  What made that talk bad?
l  What could be improved?
l  Structural elements of a good talk

Talk 2: A (hopefully) improved talk

Discussion: Presentation elements

l  Style and delivery
l  Slide layout and effects

Brace yourselves for mediocrity…

Adam J. Lee and Ting Yu, "Towards Quantitative Analysis of Proofs of
Authorization: Applications, Framework, and Techniques," in
Proceedings of the 23rd IEEE Computer Security Foundations
Symposium (CSF 2010), July 2010.

Towards	
 Quan,ta,ve	
 Analysis	
 of	
 Proofs	

of	
 Authoriza,on:	
 Applica,ons,	

Framework,	
 and	
 Techniques	
 	

	

Adam	
 J.	
 Lee	
 (University	
 of	
 PiEsburgh)	

Ting	
 Yu	
 (North	
 Carolina	
 State	
 University)	

Proofs	
 of	
 Authoriza,on	

•  Trust	
 management	
 systems	
 are	
 used	
 for	

access	
 control	
 in	
 open	
 systems	

•  Logical	
 proofs	
 are	
 constructed	
 at	
 run,me	
 to	

determine	
 whether	
 a	
 given	
 principal	
 is	

allowed	
 to	
 access	
 some	
 specific	
 resource	

•  Rather	
 than	
 simply	
 interpre,ng	
 a	
 proof	
 as	
 a	

binary	
 decision,	
 we	
 aim	
 to	
 analyze	
 these	

proofs	
 in	
 a	
 more	
 quan,ta,ve	
 manner	

Framework	

Conceptually,	
 a	
 trust	
 management	
 system	

contains	

– A	
 set	
 P	
 of	
 principals	

– A	
 set	
 S	
 of	
 resources	

– A	
 set	
 C	
 of	
 creden,als	
 that	
 make	
 policy	
 statements	

•  Abstrac,on:	
 	
 s	
 <-­‐	
 q,	
 signed	
 by	
 p	

–  P	
 says	
 that	
 anyone	
 that	
 sa,sfies	
 q	
 can	
 access	
 s	

–  P	
 must	
 control	
 s	

– An	
 inference	
 scheme	
 F	
 :	
 P	
 x	
 S	
 x	
 2C	
 -­‐>	
 {true,	
 false}	

Views	

•  We	
 assume	
 principals	
 have	
 some	
 view	
 of	
 the	

system.	

•  This	
 allows	
 us	
 to	
 define	
 proof	
 scoring	

func,ons,	
 score:	
 P	
 x	
 S	
 x	
 V	
 -­‐>	
 T	

Proper,es	
 of	
 Scoring	
 Func,ons	

Required	
 Proper,es	

1.  Determinis,c	

2.  Simple	
 ordering	

•  F(A,s,C)=T	
 ⋀	
 F(B,x,C)=F	
 →	
 score(A,s,v)	
 >	
 score(B,s,v)	

3.  Authoriza,on	
 relevant	

Op,onal	
 Proper,es	

4.  Interpretable	

5.  Bounded	

6.  Monotonic	

Overview	
 of	
 RT0	

Basics	

–  Public	
 keys	
 iden,fy	
 users	

–  Roles	
 group	
 users	

	

Four	
 types	
 of	
 rules	

–  Simple	
 member:	
 	
 A.R	
 <-­‐	
 B	

–  Simple	
 containment:	
 	
 A.R	
 <-­‐	
 B.R’	

–  Linking	
 containment:	
 A.R	
 <-­‐	
 A.R1.R2	

–  Intersec,on	
 containment:	
 A.R	
 <-­‐	
 B1.R1	
 ∩	
 …	
 ∩	
 Bn.Rn	

Policies	
 built	
 up	
 using	
 combina,ons	
 of	
 these	
 rules	

Scoring	
 Func,ons:	
 Take	
 1	

•  Assump,ons	

– Simplified	
 model	

– User	
 designing	
 func,on	
 only	
 knows	
 about	
 A.R	

•  Knows	
 all	
 rules	
 defining	
 A.R	

•  Understands	
 seman,cs	
 of	
 every	
 role	
 “used”	
 in	
 these	

rules	

– Each	
 creden,al	
 associated	
 with	
 a	
 vector	
 wi	

•  All	
 entries	
 >	
 0	

•  ||wi||1	
 =	
 1	

Scoring	
 Func,ons:	
 Take	
 1	

Algorithm 1 A simple recursive scoring scheme.
1: Function score(p ⌦ P, A.R ⌦ R, v ⇧ V) : R
2: // Filter credentials and initialize storage vector
3: C = {ci | ci ⌦ v.C ◆ head(c) = A.R}
4: Discard all ci ⌦ C of the form A.R ⌥ P �, P � ↵= P
5: s = [1, 0, . . . , 0] // vector in R|C|+1

6:
7: for all ci ⌦ C do
8: wi = v.A.weight(ci) // weight vector for ci

9: if ci = A.R ⌥ P then
10: t = [1, 1]
11: else if body(ci) = B1.R1 ✓ · · · ✓ Bk.Rk then
12: t = [1, B1.score(p, B1.R1), . . . , Bk.score(p, Bk.Rk)]
13: else if body(ci) = A.R1.R2 then
14: Find B ⇧ A.R1 such that �Bj ⌦ B : P ⌦ Bj .R2
15: t = [1, maxBj⇥B(Bj .score(p, B.R2))]

16: if t contains any 0 entries then
17: s[i] = 0
18: else
19: s[i] = t · wi

20:
21: // Get master weight vector and combine all weights
22: w = v.A.weight(A.R)
23: return s · w

by A, while information regarding roles other than A.R is
obtained by recursively issuing requests to the principals
defining these roles.

This naive authorization scoring scheme can be viewed
as a simplification of the RT proof construction process
that only builds proofs of height 1. Specifically, the root
of each proof tree is a node representing the role A.R
and the leaves of the proof tree are credentials asserting
a simple membership in the roles directly used to define
membership in A.R. This allows principals to hide the
details of exactly how membership in roles that they define is
determined from other principals in the system by replacing
sub-proofs encoding proof structure with simple membership
credentials asserting that membership has been verified. This
is similar in spirit to the proofs of authorization constructed
in the Minami-Kotz distributed proof system [24], which
hide the structure of a proof from unauthorized users.

Scoring Construction. Evaluating role memberships
given only this limited information can be viewed as a
process similar to the recursive resolution of DNS queries
or the lazy proof construction process used within the Grey
distributed proof system [2]. Algorithm 1 shows how such an
authorization scoring function can be designed. This naive
algorithm assumes that each credential ci defining some role
A.R is associated with a weight vector wi described in A’s
auxiliary information A. The first entry of this vector is a
constant factor and the remaining entries are scaling factors
for the scores computed for each role in the body of ci. the
score for a given credential is then computed as the linear
combination represented by the dot product of this vector
with the vector of scores gathered recursively for each role
in the body of ci.1 We require that every such wi contains

1The constant factor can be used to adjust the “baseline” score for a
proof of access generated using a given credential. Setting this term to
zero scores the proof using only the scores returned for each sub-proof.

only non-negative entries and that ||wi||1 = 1.
We further assume that each role A.R is associated with

another weight vector w, the first entry of which is, again, a
constant factor. The second entry in this vector is a scaling
factor that is associated with principals who are defined
through simple membership to be a member of A.R. The
remaining entries in w are scaling factors for the scores
computed for each credential ci that defines membership in
A.R The final score for the role A.R is then computed as
the linear combination represented by the dot product of w
and the scores calculated for each ci defining A.R. Again,
w is assumed to be encoded in the additional information
A maintained by the principal A, and we require that w
contains only non-negative entries and that ||w||1 = 1.

Example. To more concretely demonstrate the scoring
function defined in Algorithm 1, consider the following RT 0

role definitions:

Univ.auth CS.student ⇡ACM.member (3)
Univ.auth Univ.techDept.gradStudent (4)

This policy states that computer science students who
are ACM members, and graduate students within technical
departments at Univ to be members of the role Univ.auth.
Assume that the weight vector for credential (3) is defined
as [0, 0.7, 0.3], which gives more weight to the role defined
by the CS department at Univ than to the role defined by
the ACM. Further, assume that the master weight vector
for Univ.auth is defined as [0, 0.5, 0.25, 0.25], where the
entries in this vector reflect a constant factor of 0, and the
weights assigned to simple members of Univ.auth, creden-
tial (3), and credential (4), respectively. This implies that
simple membership in Univ.auth is strongly preferred over
proofs that involve delegation to other principals, and that
both types of delegated proofs are given equal preference.

Properties. Although extremely simple to implement, this
naive scoring function can be shown to satisfy a number of
the properties identified in Section III-B. In particular, we
have the following theorem:

Theorem 1: The function score : P⇤R⇤V ⌦ R defined
in Algorithm 1 satisfies the deterministic, simple ordering,
authorization relevant, bounded, and monotonic properties.

Proof: To prove the above claim, we address each
property one at a time:

• Deterministic. Note that the score function does not
make use of any randomized information. Provided that
system policies and weight vectors do not change, two
invocations of score(p, A.R, v) will always return the
same value.

• Simple Ordering. The check on Line 16 of Algo-
rithm 1 ensures that non-zero scores are only recorded
for members of a role, while non-members of a role

Scoring	
 Func,ons:	
 Take	
 1	

Proof	
 sketch:	

–  Determinis,c:	
 	
 Obvious	

–  Simple	
 ordering:	
 	
 Members	
 scored	
 with	
 a	
 posi,ve	
 value,	
 non-­‐
members	
 not	
 scored	
 (Line	
 16)	

–  Authoriza,on	
 relevant:	
 Only	
 creden,als	
 defining	
 A.R	
 used	
 when	

compu,ng	
 a	
 score	
 (Line	
 3)	

–  Bounded:	
 ||wi||1	
 =	
 1	
 for	
 all	
 creden,als	
 ci,	
 so	
 bounded	
 above	
 by	

1.	
 	
 All	
 entries	
 in	
 each	
 wi	
 >	
 0,	
 so	
 bounded	
 below	
 by	
 0.	

–  Monotonic:	
 No	
 nega,ve	
 entries	
 in	
 any	
 wi,	
 so	
 score	
 can	
 never	

decrease	
 by	
 gemng	
 more	
 informa,on	

Algorithm 1 A simple recursive scoring scheme.
1: Function score(p ⌦ P, A.R ⌦ R, v ⇧ V) : R
2: // Filter credentials and initialize storage vector
3: C = {ci | ci ⌦ v.C ◆ head(c) = A.R}
4: Discard all ci ⌦ C of the form A.R ⌥ P �, P � ↵= P
5: s = [1, 0, . . . , 0] // vector in R|C|+1

6:
7: for all ci ⌦ C do
8: wi = v.A.weight(ci) // weight vector for ci

9: if ci = A.R ⌥ P then
10: t = [1, 1]
11: else if body(ci) = B1.R1 ✓ · · · ✓ Bk.Rk then
12: t = [1, B1.score(p, B1.R1), . . . , Bk.score(p, Bk.Rk)]
13: else if body(ci) = A.R1.R2 then
14: Find B ⇧ A.R1 such that �Bj ⌦ B : P ⌦ Bj .R2
15: t = [1, maxBj⇥B(Bj .score(p, B.R2))]

16: if t contains any 0 entries then
17: s[i] = 0
18: else
19: s[i] = t · wi

20:
21: // Get master weight vector and combine all weights
22: w = v.A.weight(A.R)
23: return s · w

by A, while information regarding roles other than A.R is
obtained by recursively issuing requests to the principals
defining these roles.

This naive authorization scoring scheme can be viewed
as a simplification of the RT proof construction process
that only builds proofs of height 1. Specifically, the root
of each proof tree is a node representing the role A.R
and the leaves of the proof tree are credentials asserting
a simple membership in the roles directly used to define
membership in A.R. This allows principals to hide the
details of exactly how membership in roles that they define is
determined from other principals in the system by replacing
sub-proofs encoding proof structure with simple membership
credentials asserting that membership has been verified. This
is similar in spirit to the proofs of authorization constructed
in the Minami-Kotz distributed proof system [24], which
hide the structure of a proof from unauthorized users.

Scoring Construction. Evaluating role memberships
given only this limited information can be viewed as a
process similar to the recursive resolution of DNS queries
or the lazy proof construction process used within the Grey
distributed proof system [2]. Algorithm 1 shows how such an
authorization scoring function can be designed. This naive
algorithm assumes that each credential ci defining some role
A.R is associated with a weight vector wi described in A’s
auxiliary information A. The first entry of this vector is a
constant factor and the remaining entries are scaling factors
for the scores computed for each role in the body of ci. the
score for a given credential is then computed as the linear
combination represented by the dot product of this vector
with the vector of scores gathered recursively for each role
in the body of ci.1 We require that every such wi contains

1The constant factor can be used to adjust the “baseline” score for a
proof of access generated using a given credential. Setting this term to
zero scores the proof using only the scores returned for each sub-proof.

only non-negative entries and that ||wi||1 = 1.
We further assume that each role A.R is associated with

another weight vector w, the first entry of which is, again, a
constant factor. The second entry in this vector is a scaling
factor that is associated with principals who are defined
through simple membership to be a member of A.R. The
remaining entries in w are scaling factors for the scores
computed for each credential ci that defines membership in
A.R The final score for the role A.R is then computed as
the linear combination represented by the dot product of w
and the scores calculated for each ci defining A.R. Again,
w is assumed to be encoded in the additional information
A maintained by the principal A, and we require that w
contains only non-negative entries and that ||w||1 = 1.

Example. To more concretely demonstrate the scoring
function defined in Algorithm 1, consider the following RT 0

role definitions:

Univ.auth CS.student ⇡ACM.member (3)
Univ.auth Univ.techDept.gradStudent (4)

This policy states that computer science students who
are ACM members, and graduate students within technical
departments at Univ to be members of the role Univ.auth.
Assume that the weight vector for credential (3) is defined
as [0, 0.7, 0.3], which gives more weight to the role defined
by the CS department at Univ than to the role defined by
the ACM. Further, assume that the master weight vector
for Univ.auth is defined as [0, 0.5, 0.25, 0.25], where the
entries in this vector reflect a constant factor of 0, and the
weights assigned to simple members of Univ.auth, creden-
tial (3), and credential (4), respectively. This implies that
simple membership in Univ.auth is strongly preferred over
proofs that involve delegation to other principals, and that
both types of delegated proofs are given equal preference.

Properties. Although extremely simple to implement, this
naive scoring function can be shown to satisfy a number of
the properties identified in Section III-B. In particular, we
have the following theorem:

Theorem 1: The function score : P⇤R⇤V ⌦ R defined
in Algorithm 1 satisfies the deterministic, simple ordering,
authorization relevant, bounded, and monotonic properties.

Proof: To prove the above claim, we address each
property one at a time:

• Deterministic. Note that the score function does not
make use of any randomized information. Provided that
system policies and weight vectors do not change, two
invocations of score(p, A.R, v) will always return the
same value.

• Simple Ordering. The check on Line 16 of Algo-
rithm 1 ensures that non-zero scores are only recorded
for members of a role, while non-members of a role

Scoring	
 Func,ons:	
 Take	
 2	

•  Assump,ons	

– More	
 general	
 system	
 model	

– User	
 knows	
 nothing	
 about	
 policies	

•  Structural	
 informa,on	
 is	
 discovered	
 at	
 run,me	

•  Like	
 RT,	
 SecPAL,	
 Gray,	
 etc.	

•  Basic	
 idea:	
 Compute	
 score	
 based	
 on	
 number	

of	
 ways	
 that	
 a	
 policy	
 can	
 be	
 sa,sfied	

Scoring	
 Func,ons:	
 Take	
 2	

decreasing order of their robustness as reported by ⌃.

score(p, A.R, v) =
⇤

(Ci,wi)⌦osets�(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ⌃. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ⌃ function:

⌃len(Cs,) = ⇤maxp⇥paths(Cs)(length(p)) (7)

⌃ind(Cs, C) = 1�
maxCi⌦C\{Cs}(|Cs ⇡ Ci|)

|Cs|
(8)

⌃li(Cs, C) = � · ⌃len(Cs,) + ⇥ · ⌃ind(Cs, C) (9)

In particular, the function ⌃len defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant ⇤ � [0, 1] to this
power. Since longer paths will produce lower scaling factors,
⌃len gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ⌃ind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ⌃ind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ⌃len and ⌃ind

using the constants �,⇥ � [0, 1] chosen such that �+⇥ = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (10)
Univ.auth Univ.techDept.gradStudent (11)

Univ.techDep CS (12)
CS.student CS.ugrad (13)

CS.student CS.gradStudent (14)
CS.gradStudent Alice (15)
ACM.member Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student CS.gradStudent Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent Alice). If we let C =
{C1, C2}, v = �⌘, {(10), . . . , (16)}, ⌘�, and ⇤ = 0.9, we
have the following:

⌃len(C1, C) = 0.93 = 0.729
⌃len(C2, C) = 0.92 = 0.81

⌃ind(C1, C) = 1� |C1 ⇡ C2|
|C1|

= 1� 1
4

=
3
4

⌃ind(C2, C) = 1� |C2 ⇡ C1|
|C2|

= 1� 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 · 1

4 = 13
24 ⌥ 0.5417.

Properties. The class of scoring functions described by
Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ⌃(,) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ⇤
R ⇤ V ⌦ R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
⌃ : 2C⇤22C ⌦ [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ⌃ function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ⌃ is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osets⇥(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant

Weigh,ng	
 func,ons	
 ω	
 :	
 2C	
 x	
 22C	
 -­‐>	
 [0,1]	
 weight	
 the	
 contribu,on	

of	
 each	
 proof	

	

decreasing order of their robustness as reported by ⌃.

score(p, A.R, v) =
⇤

(Ci,wi)⌦osets�(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ⌃. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ⌃ function:

⌃len(Cs,) = ⇤maxp⇥paths(Cs)(length(p)) (7)

⌃ind(Cs, C) = 1�
maxCi⌦C\{Cs}(|Cs ⇡ Ci|)

|Cs|
(8)

⌃li(Cs, C) = � · ⌃len(Cs,) + ⇥ · ⌃ind(Cs, C) (9)

In particular, the function ⌃len defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant ⇤ � [0, 1] to this
power. Since longer paths will produce lower scaling factors,
⌃len gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ⌃ind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ⌃ind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ⌃len and ⌃ind

using the constants �,⇥ � [0, 1] chosen such that �+⇥ = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (10)
Univ.auth Univ.techDept.gradStudent (11)

Univ.techDep CS (12)
CS.student CS.ugrad (13)

CS.student CS.gradStudent (14)
CS.gradStudent Alice (15)
ACM.member Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student CS.gradStudent Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent Alice). If we let C =
{C1, C2}, v = �⌘, {(10), . . . , (16)}, ⌘�, and ⇤ = 0.9, we
have the following:

⌃len(C1, C) = 0.93 = 0.729
⌃len(C2, C) = 0.92 = 0.81

⌃ind(C1, C) = 1� |C1 ⇡ C2|
|C1|

= 1� 1
4

=
3
4

⌃ind(C2, C) = 1� |C2 ⇡ C1|
|C2|

= 1� 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 · 1

4 = 13
24 ⌥ 0.5417.

Properties. The class of scoring functions described by
Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ⌃(,) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ⇤
R ⇤ V ⌦ R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
⌃ : 2C⇤22C ⌦ [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ⌃ function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ⌃ is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osets⇥(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant

Scoring	
 Func,ons:	
 Take	
 2	

•  Proof	
 sketch	

– Determinis,c:	
 ω	
 is	
 determinis,c,	
 so	
 score	
 is	
 too	

–  Simple	
 ordering:	
 Same	
 as	
 func,on	
 #1	

– Authoriza,on	
 relevant:	
 trivial	
 by	
 def’n	
 of	
 proofs	
 of	

authoriza,on	

–  Bounded:	
 	
 Based	
 on	
 geometric	
 series	
 in	
 score	

converging	
 to	
 1	
 when	
 summed	
 infinitely	

decreasing order of their robustness as reported by ⌃.

score(p, A.R, v) =
⇤

(Ci,wi)⌦osets�(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ⌃. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ⌃ function:

⌃len(Cs,) = ⇤maxp⇥paths(Cs)(length(p)) (7)

⌃ind(Cs, C) = 1�
maxCi⌦C\{Cs}(|Cs ⇡ Ci|)

|Cs|
(8)

⌃li(Cs, C) = � · ⌃len(Cs,) + ⇥ · ⌃ind(Cs, C) (9)

In particular, the function ⌃len defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant ⇤ � [0, 1] to this
power. Since longer paths will produce lower scaling factors,
⌃len gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ⌃ind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ⌃ind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ⌃len and ⌃ind

using the constants �,⇥ � [0, 1] chosen such that �+⇥ = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (10)
Univ.auth Univ.techDept.gradStudent (11)

Univ.techDep CS (12)
CS.student CS.ugrad (13)

CS.student CS.gradStudent (14)
CS.gradStudent Alice (15)
ACM.member Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student CS.gradStudent Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent Alice). If we let C =
{C1, C2}, v = �⌘, {(10), . . . , (16)}, ⌘�, and ⇤ = 0.9, we
have the following:

⌃len(C1, C) = 0.93 = 0.729
⌃len(C2, C) = 0.92 = 0.81

⌃ind(C1, C) = 1� |C1 ⇡ C2|
|C1|

= 1� 1
4

=
3
4

⌃ind(C2, C) = 1� |C2 ⇡ C1|
|C2|

= 1� 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 · 1

4 = 13
24 ⌥ 0.5417.

Properties. The class of scoring functions described by
Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ⌃(,) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ⇤
R ⇤ V ⌦ R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
⌃ : 2C⇤22C ⌦ [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ⌃ function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ⌃ is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osets⇥(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant

Scoring	
 Func,ons:	
 Take	
 2	

•  Proof	
 Sketch	
 (cont)	

to the proof of membership in A.R. Since osets only
ranks and returns minimal proofs for A.R, Equation 6
does not consider any irrelevant information when
scoring proofs of authorization. As such, irrelevant
information cannot influence the score produced by
Equation 6.

• Bounded. Note that sum of the infinite geometric series⇥
i=1

1
2

i converges to 1. Since every term in this
summation is positive, we have that ✏1⌃j :

⇥j
i=1

1
2

i
<⇥j+1

i=1
1
2

i. As a result, the sum of any sub-series of
the infinite series will converge to some value in the
range [0, 1). Equation 6 is nothing more than such a
summation in which each term is scaled by a weight
wi � [0, 1]. As a result, Equation 6 is bounded below
by 0 and bounded above by 1.

• Monotonic. To prove the monotonicity of Equation 6,
we proceed by induction. We first assume that principal
p has previously discovered the (ordered) collection of
proofs and weights (C1, w1), . . . , (Cn, wn) for the role
A.R. The base case that we must consider is that a new
pair (Cs, ws) is discovered such that no weight wi is
less than ws. In this case, this new pair will introduce
a new term to the end of the summation calculated by
Equation 6, thereby increasing principal p’s score for
the role A.R.
Assume that (Cs, ws) can be inserted before up
to n terms in the sequence of (ci, wi) pairs while
still preserving the monotonicity requirement. Now,
assume that p has previously found proofs of au-
thorization with the sequence of weights S =
(C1, w1), . . . , (Ci, wi), . . . , (Ci+n, wi+n) and has now
discovered a (Cs, ws) pair such that ws > wi, thereby
needing to be inserted before n + 1 terms in the
sequence S. We first note that replacing (Ci, wi) with
(Cs, w) will generate a sequence S� that—when used
in conjunction with Equation 6—will produce a score
greater than that produced using S, since ws > wi

and all other terms are the same. By the inductive
hypothesis, (Ci, wi) can then be re-inserted before the
n final terms of S� while still preserving monotonicity.

We have therefore shown that the class of scoring func-
tions score : P ⇤R ⇤ V ⌦ R represented by Equation 6
satisfies the deterministic, simple ordering, authorization rel-
evant, bounded, and monotonic properties, provided that the
scaling function ⌃ : 2C ⇤ 22C ⌦ [0, 1] used to parameterize
the osets function is deterministic.

As was discussed earlier in this section, it is also possible
for the score function defined by Equation 6 to satisfy the
interpretation property. In particular, when using the trivial
scaling function ⌃(,) = 1, a higher score implies that
more paths have been found. Similarly, when other notions
of robustness are encoded by representative ⌃ functions,

r � v.S

r /� v.S

Figure 2. One possible scenario in which hybrid authorization scoring
strategies could be beneficial. The oval denotes the security domain of the
principal carrying out the authorization scoring process.

score(p, A.R, v) > score(p�, A.R, v) implies that principal
p can produce more robust proofs of authorization that
principal p�, relative to the notion of robustness encoded
by the particular ⌃ function used.

C. Hybrid Scoring Functions

Although the authorization scoring functions discussed in
Sections IV-A and IV-B are useful, they in fact represent two
opposite extremes in terms of the information available to
the principal scoring proofs of authorization. The recursive
scoring function described by Algorithm 1 assumes that this
principal has access only to credentials defined within her
domain, while the scoring function encoded by Equations 6–
9 assumes that incomplete information is discovered at
runtime. In many cases, the information available to the
principal scoring proofs of authorization is likely to fall
somewhere between these two points.

Figure 2 illustrates one such scenario. In this situation, the
principal (Alice) scoring proofs of authorization is assumed
to have complete knowledge of the set of roles vA.S within
the domain encoded in her view vA. However, she is also
able to use, e.g., credential chain discovery techniques to
discover credentials defining roles outside of her domain,
with the proviso that she may not be able to uncover every
credential defining a particular role. Given that she has
complete knowledge of not only the structure of policies
within her domain, but also of the semantics of the roles
involved in these policies, Alice may wish to fine-tune her
mechanism for scoring membership within these roles to
reflect her “insider knowledge.” For instance, she could
accomplish this by developing very specific weight vectors
for use in conjunction with Algorithm 1.

At the same time, rather than delegating the scoring of
membership in roles outside of vA.S to the parties defining
those roles—as in Algorithm 1—Alice may wish to leverage
her ability to carry out distributed credential discovery

Composing	
 Scoring	
 Func,ons	

Mo,va,on	

– Perfect	
 informa,on	
 known	
 within	
 a	
 security	
 domain	

– Less	
 informa,on	
 known	
 outside	
 of	
 security	
 domain	

to the proof of membership in A.R. Since osets only
ranks and returns minimal proofs for A.R, Equation 6
does not consider any irrelevant information when
scoring proofs of authorization. As such, irrelevant
information cannot influence the score produced by
Equation 6.

• Bounded. Note that sum of the infinite geometric series⇥
i=1

1
2

i converges to 1. Since every term in this
summation is positive, we have that ✏1⌃j :

⇥j
i=1

1
2

i
<⇥j+1

i=1
1
2

i. As a result, the sum of any sub-series of
the infinite series will converge to some value in the
range [0, 1). Equation 6 is nothing more than such a
summation in which each term is scaled by a weight
wi � [0, 1]. As a result, Equation 6 is bounded below
by 0 and bounded above by 1.

• Monotonic. To prove the monotonicity of Equation 6,
we proceed by induction. We first assume that principal
p has previously discovered the (ordered) collection of
proofs and weights (C1, w1), . . . , (Cn, wn) for the role
A.R. The base case that we must consider is that a new
pair (Cs, ws) is discovered such that no weight wi is
less than ws. In this case, this new pair will introduce
a new term to the end of the summation calculated by
Equation 6, thereby increasing principal p’s score for
the role A.R.
Assume that (Cs, ws) can be inserted before up
to n terms in the sequence of (ci, wi) pairs while
still preserving the monotonicity requirement. Now,
assume that p has previously found proofs of au-
thorization with the sequence of weights S =
(C1, w1), . . . , (Ci, wi), . . . , (Ci+n, wi+n) and has now
discovered a (Cs, ws) pair such that ws > wi, thereby
needing to be inserted before n + 1 terms in the
sequence S. We first note that replacing (Ci, wi) with
(Cs, w) will generate a sequence S� that—when used
in conjunction with Equation 6—will produce a score
greater than that produced using S, since ws > wi

and all other terms are the same. By the inductive
hypothesis, (Ci, wi) can then be re-inserted before the
n final terms of S� while still preserving monotonicity.

We have therefore shown that the class of scoring func-
tions score : P ⇤R ⇤ V ⌦ R represented by Equation 6
satisfies the deterministic, simple ordering, authorization rel-
evant, bounded, and monotonic properties, provided that the
scaling function ⌃ : 2C ⇤ 22C ⌦ [0, 1] used to parameterize
the osets function is deterministic.

As was discussed earlier in this section, it is also possible
for the score function defined by Equation 6 to satisfy the
interpretation property. In particular, when using the trivial
scaling function ⌃(,) = 1, a higher score implies that
more paths have been found. Similarly, when other notions
of robustness are encoded by representative ⌃ functions,

r � v.S

r /� v.S

Figure 2. One possible scenario in which hybrid authorization scoring
strategies could be beneficial. The oval denotes the security domain of the
principal carrying out the authorization scoring process.

score(p, A.R, v) > score(p�, A.R, v) implies that principal
p can produce more robust proofs of authorization that
principal p�, relative to the notion of robustness encoded
by the particular ⌃ function used.

C. Hybrid Scoring Functions

Although the authorization scoring functions discussed in
Sections IV-A and IV-B are useful, they in fact represent two
opposite extremes in terms of the information available to
the principal scoring proofs of authorization. The recursive
scoring function described by Algorithm 1 assumes that this
principal has access only to credentials defined within her
domain, while the scoring function encoded by Equations 6–
9 assumes that incomplete information is discovered at
runtime. In many cases, the information available to the
principal scoring proofs of authorization is likely to fall
somewhere between these two points.

Figure 2 illustrates one such scenario. In this situation, the
principal (Alice) scoring proofs of authorization is assumed
to have complete knowledge of the set of roles vA.S within
the domain encoded in her view vA. However, she is also
able to use, e.g., credential chain discovery techniques to
discover credentials defining roles outside of her domain,
with the proviso that she may not be able to uncover every
credential defining a particular role. Given that she has
complete knowledge of not only the structure of policies
within her domain, but also of the semantics of the roles
involved in these policies, Alice may wish to fine-tune her
mechanism for scoring membership within these roles to
reflect her “insider knowledge.” For instance, she could
accomplish this by developing very specific weight vectors
for use in conjunction with Algorithm 1.

At the same time, rather than delegating the scoring of
membership in roles outside of vA.S to the parties defining
those roles—as in Algorithm 1—Alice may wish to leverage
her ability to carry out distributed credential discovery

Defini,ons	

processes. Given that the roles appearing on the “horizon”
of Alice’s domain appear within credentials defined in her
domain, she is likely to be aware of their semantics (e.g.,
that a BestBuy membership is easier to come by than a DoD
clearance). Although she may not be able to reliably interpret
every role used to prove membership in these horizon roles,
her knowledge of the horizon role itself may guide the choice
the particular ⌃ function used reason about the robustness of
proofs of membership of that role. In such a scenario, Alice
may wish to sequentially compose the scoring functions
defined in Sections IV-A and IV-B.

A More General Problem. The above scenario is really
a special case of a more general question: Given two proof
scoring functions that satisfy the requirements set forth in
Section III-B, is it possible to combine these functions in
such a way that the composite function retains the desir-
able characteristics of the original functions? In order to
show that this is, indeed, the case, we must first formalize
the notions of horizon, sequential composition, and order-
preserving homomorphism.

Definition 7 (Horizon): The horizon of a view v is de-
fined as the set of resources horizon(v) = {r | ⇣c �
ac(v.S) : r � body(c) ⇢ r /� v.S}. That is, horizon(v)
contains all resources mentioned in the body of policies
protecting resources in v.S that are not themselves in v.S.

Definition 8 (Sequential Composition): Assume that we
have a view v, a principal p, a resource r, and two au-
thorization scoring functions score1 and score2. We say
that score1 is sequentially composed with score2 if there
exists a resource r� � horizon(v), a principal p�, and a view
v� such that score2(p�, r�, v�) is calculated when calculating
score1(p, r, v).

Definition 9 (Order-Preserving Homomorphism): Let
score1 : P ⇤ S ⇤ V ⌦ T1 and score2 : P ⇤ S ⇤ V ⌦ T2

be two authorization scoring functions. Let t1 � T1 (resp.
t2 � T2) be a threshold such that if score1(p, s, v) ⇧ t1
(resp. score2(p, s, v) ⇧ t2) then p cannot access
resource s. Similarly, if score1(p, s, v) > t1 (resp.
score2(p, s, v) > t2) then p can access resource s. A
function f : T2 ⌦ T1 is an order-preserving homomorphism
from T2 to T1 if and only if (i) t ⇧ t2 ⌦ f(t) ⇧ t1, (ii)
f(t2) = t1, and (iii) t > t2 ⌦ f(t) > t1.

In the discussion above, Alice desires to sequentially
compose the scoring function defined in Algorithm 1 with
the scoring function defined by Equations 6–9. Furthermore,
the identity function f(x) �⌦ x is trivially an order-
preserving homomorphism between the (identical) totally-
ordered ranges of these two functions. We now have the
necessary machinery to prove the following theorem:

Theorem 3: Let score1 : P ⇤ S ⇤ V ⌦ T1 and score2 :
P ⇤ S ⇤ V ⌦ T2 be two authorization scoring functions

that satisfy the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties. If there exists
an order-preserving homomorphism f between T2 and T1,
then the sequential composition of score1 with score2 is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Proof: Showing that the sequential composition of
score1 with score2 is deterministic and bounded is straight-
forward. Using the (deterministic) outputs of score2 as
inputs to the (deterministic) function score1 will clearly
result in a deterministic output. Furthermore, since f maps
the outputs of score2 into a range that can be considered
by score1 and score1 is bounded, then the sequential
composition of score1 with score2 is also bounded.

Since score2 is authorization relevant, by Definition 5 it is
not influenced by irrelevant credentials. As a result, score1

will not be indirectly influenced by irrelevant credentials
via score2. Since score1 is authorization relevant, it is not
influenced by irrelevant credentials that it considers directly.
This implies that the sequential composition of score1 with
score2 is also uninfluenced by irrelevant credentials, and
thus authorization relevant by Definition 5. By a similar
argument, the sequential composition of score1 with score2

is also monotonic: relevant credentials considered directly by
score1 or indirectly via score2 can only increase the output
of sequential composition of score1 with score2.

Finally, we must address the simple ordering property.
Note that the order-preserving homomorphism f allows
score1 to reliably use the value f(score2(p�, r�, v�)) to
determine whether P � is authorized to access the horizon
resource r�. Given that score2 is assumed to be deterministic
and to satisfy the simple ordering property, this interpretation
of f(score2(p�, r�, v�)) is guaranteed to be correct. Further-
more, since score1 is also assumed to be deterministic and
to satisfy the simple ordering property, the output value
score(p, r, v) that is computed using this information is
also guaranteed to correctly reflect P ’s ability to access the
resource r. As a result, the sequential composition of score1

with score2 satisfies the simple ordering property.

As a result of the above theorem, we immediately have
the following corollary stating that the two classes of autho-
rization scoring functions discussed earlier in this section
can be sequentially composed with one another:

Corollary 1: The result of sequentially composing the
authorization scoring functions defined by Algorithm 1 and
Equations 6–9 using the order-preserving homomorphism
f(x) �⌦ x is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

It is also interesting to note that Theorem 3 tells us that
principals can make use of any number of authorization

Composi,on	
 Theorem	

processes. Given that the roles appearing on the “horizon”
of Alice’s domain appear within credentials defined in her
domain, she is likely to be aware of their semantics (e.g.,
that a BestBuy membership is easier to come by than a DoD
clearance). Although she may not be able to reliably interpret
every role used to prove membership in these horizon roles,
her knowledge of the horizon role itself may guide the choice
the particular ⌃ function used reason about the robustness of
proofs of membership of that role. In such a scenario, Alice
may wish to sequentially compose the scoring functions
defined in Sections IV-A and IV-B.

A More General Problem. The above scenario is really
a special case of a more general question: Given two proof
scoring functions that satisfy the requirements set forth in
Section III-B, is it possible to combine these functions in
such a way that the composite function retains the desir-
able characteristics of the original functions? In order to
show that this is, indeed, the case, we must first formalize
the notions of horizon, sequential composition, and order-
preserving homomorphism.

Definition 7 (Horizon): The horizon of a view v is de-
fined as the set of resources horizon(v) = {r | ⇣c �
ac(v.S) : r � body(c) ⇢ r /� v.S}. That is, horizon(v)
contains all resources mentioned in the body of policies
protecting resources in v.S that are not themselves in v.S.

Definition 8 (Sequential Composition): Assume that we
have a view v, a principal p, a resource r, and two au-
thorization scoring functions score1 and score2. We say
that score1 is sequentially composed with score2 if there
exists a resource r� � horizon(v), a principal p�, and a view
v� such that score2(p�, r�, v�) is calculated when calculating
score1(p, r, v).

Definition 9 (Order-Preserving Homomorphism): Let
score1 : P ⇤ S ⇤ V ⌦ T1 and score2 : P ⇤ S ⇤ V ⌦ T2

be two authorization scoring functions. Let t1 � T1 (resp.
t2 � T2) be a threshold such that if score1(p, s, v) ⇧ t1
(resp. score2(p, s, v) ⇧ t2) then p cannot access
resource s. Similarly, if score1(p, s, v) > t1 (resp.
score2(p, s, v) > t2) then p can access resource s. A
function f : T2 ⌦ T1 is an order-preserving homomorphism
from T2 to T1 if and only if (i) t ⇧ t2 ⌦ f(t) ⇧ t1, (ii)
f(t2) = t1, and (iii) t > t2 ⌦ f(t) > t1.

In the discussion above, Alice desires to sequentially
compose the scoring function defined in Algorithm 1 with
the scoring function defined by Equations 6–9. Furthermore,
the identity function f(x) �⌦ x is trivially an order-
preserving homomorphism between the (identical) totally-
ordered ranges of these two functions. We now have the
necessary machinery to prove the following theorem:

Theorem 3: Let score1 : P ⇤ S ⇤ V ⌦ T1 and score2 :
P ⇤ S ⇤ V ⌦ T2 be two authorization scoring functions

that satisfy the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties. If there exists
an order-preserving homomorphism f between T2 and T1,
then the sequential composition of score1 with score2 is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Proof: Showing that the sequential composition of
score1 with score2 is deterministic and bounded is straight-
forward. Using the (deterministic) outputs of score2 as
inputs to the (deterministic) function score1 will clearly
result in a deterministic output. Furthermore, since f maps
the outputs of score2 into a range that can be considered
by score1 and score1 is bounded, then the sequential
composition of score1 with score2 is also bounded.

Since score2 is authorization relevant, by Definition 5 it is
not influenced by irrelevant credentials. As a result, score1

will not be indirectly influenced by irrelevant credentials
via score2. Since score1 is authorization relevant, it is not
influenced by irrelevant credentials that it considers directly.
This implies that the sequential composition of score1 with
score2 is also uninfluenced by irrelevant credentials, and
thus authorization relevant by Definition 5. By a similar
argument, the sequential composition of score1 with score2

is also monotonic: relevant credentials considered directly by
score1 or indirectly via score2 can only increase the output
of sequential composition of score1 with score2.

Finally, we must address the simple ordering property.
Note that the order-preserving homomorphism f allows
score1 to reliably use the value f(score2(p�, r�, v�)) to
determine whether P � is authorized to access the horizon
resource r�. Given that score2 is assumed to be deterministic
and to satisfy the simple ordering property, this interpretation
of f(score2(p�, r�, v�)) is guaranteed to be correct. Further-
more, since score1 is also assumed to be deterministic and
to satisfy the simple ordering property, the output value
score(p, r, v) that is computed using this information is
also guaranteed to correctly reflect P ’s ability to access the
resource r. As a result, the sequential composition of score1

with score2 satisfies the simple ordering property.

As a result of the above theorem, we immediately have
the following corollary stating that the two classes of autho-
rization scoring functions discussed earlier in this section
can be sequentially composed with one another:

Corollary 1: The result of sequentially composing the
authorization scoring functions defined by Algorithm 1 and
Equations 6–9 using the order-preserving homomorphism
f(x) �⌦ x is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

It is also interesting to note that Theorem 3 tells us that
principals can make use of any number of authorization

processes. Given that the roles appearing on the “horizon”
of Alice’s domain appear within credentials defined in her
domain, she is likely to be aware of their semantics (e.g.,
that a BestBuy membership is easier to come by than a DoD
clearance). Although she may not be able to reliably interpret
every role used to prove membership in these horizon roles,
her knowledge of the horizon role itself may guide the choice
the particular ⌃ function used reason about the robustness of
proofs of membership of that role. In such a scenario, Alice
may wish to sequentially compose the scoring functions
defined in Sections IV-A and IV-B.

A More General Problem. The above scenario is really
a special case of a more general question: Given two proof
scoring functions that satisfy the requirements set forth in
Section III-B, is it possible to combine these functions in
such a way that the composite function retains the desir-
able characteristics of the original functions? In order to
show that this is, indeed, the case, we must first formalize
the notions of horizon, sequential composition, and order-
preserving homomorphism.

Definition 7 (Horizon): The horizon of a view v is de-
fined as the set of resources horizon(v) = {r | ⇣c �
ac(v.S) : r � body(c) ⇢ r /� v.S}. That is, horizon(v)
contains all resources mentioned in the body of policies
protecting resources in v.S that are not themselves in v.S.

Definition 8 (Sequential Composition): Assume that we
have a view v, a principal p, a resource r, and two au-
thorization scoring functions score1 and score2. We say
that score1 is sequentially composed with score2 if there
exists a resource r� � horizon(v), a principal p�, and a view
v� such that score2(p�, r�, v�) is calculated when calculating
score1(p, r, v).

Definition 9 (Order-Preserving Homomorphism): Let
score1 : P ⇤ S ⇤ V ⌦ T1 and score2 : P ⇤ S ⇤ V ⌦ T2

be two authorization scoring functions. Let t1 � T1 (resp.
t2 � T2) be a threshold such that if score1(p, s, v) ⇧ t1
(resp. score2(p, s, v) ⇧ t2) then p cannot access
resource s. Similarly, if score1(p, s, v) > t1 (resp.
score2(p, s, v) > t2) then p can access resource s. A
function f : T2 ⌦ T1 is an order-preserving homomorphism
from T2 to T1 if and only if (i) t ⇧ t2 ⌦ f(t) ⇧ t1, (ii)
f(t2) = t1, and (iii) t > t2 ⌦ f(t) > t1.

In the discussion above, Alice desires to sequentially
compose the scoring function defined in Algorithm 1 with
the scoring function defined by Equations 6–9. Furthermore,
the identity function f(x) �⌦ x is trivially an order-
preserving homomorphism between the (identical) totally-
ordered ranges of these two functions. We now have the
necessary machinery to prove the following theorem:

Theorem 3: Let score1 : P ⇤ S ⇤ V ⌦ T1 and score2 :
P ⇤ S ⇤ V ⌦ T2 be two authorization scoring functions

that satisfy the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties. If there exists
an order-preserving homomorphism f between T2 and T1,
then the sequential composition of score1 with score2 is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Proof: Showing that the sequential composition of
score1 with score2 is deterministic and bounded is straight-
forward. Using the (deterministic) outputs of score2 as
inputs to the (deterministic) function score1 will clearly
result in a deterministic output. Furthermore, since f maps
the outputs of score2 into a range that can be considered
by score1 and score1 is bounded, then the sequential
composition of score1 with score2 is also bounded.

Since score2 is authorization relevant, by Definition 5 it is
not influenced by irrelevant credentials. As a result, score1

will not be indirectly influenced by irrelevant credentials
via score2. Since score1 is authorization relevant, it is not
influenced by irrelevant credentials that it considers directly.
This implies that the sequential composition of score1 with
score2 is also uninfluenced by irrelevant credentials, and
thus authorization relevant by Definition 5. By a similar
argument, the sequential composition of score1 with score2

is also monotonic: relevant credentials considered directly by
score1 or indirectly via score2 can only increase the output
of sequential composition of score1 with score2.

Finally, we must address the simple ordering property.
Note that the order-preserving homomorphism f allows
score1 to reliably use the value f(score2(p�, r�, v�)) to
determine whether P � is authorized to access the horizon
resource r�. Given that score2 is assumed to be deterministic
and to satisfy the simple ordering property, this interpretation
of f(score2(p�, r�, v�)) is guaranteed to be correct. Further-
more, since score1 is also assumed to be deterministic and
to satisfy the simple ordering property, the output value
score(p, r, v) that is computed using this information is
also guaranteed to correctly reflect P ’s ability to access the
resource r. As a result, the sequential composition of score1

with score2 satisfies the simple ordering property.

As a result of the above theorem, we immediately have
the following corollary stating that the two classes of autho-
rization scoring functions discussed earlier in this section
can be sequentially composed with one another:

Corollary 1: The result of sequentially composing the
authorization scoring functions defined by Algorithm 1 and
Equations 6–9 using the order-preserving homomorphism
f(x) �⌦ x is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

It is also interesting to note that Theorem 3 tells us that
principals can make use of any number of authorization

Neat	
 Corollaries	

processes. Given that the roles appearing on the “horizon”
of Alice’s domain appear within credentials defined in her
domain, she is likely to be aware of their semantics (e.g.,
that a BestBuy membership is easier to come by than a DoD
clearance). Although she may not be able to reliably interpret
every role used to prove membership in these horizon roles,
her knowledge of the horizon role itself may guide the choice
the particular ⌃ function used reason about the robustness of
proofs of membership of that role. In such a scenario, Alice
may wish to sequentially compose the scoring functions
defined in Sections IV-A and IV-B.

A More General Problem. The above scenario is really
a special case of a more general question: Given two proof
scoring functions that satisfy the requirements set forth in
Section III-B, is it possible to combine these functions in
such a way that the composite function retains the desir-
able characteristics of the original functions? In order to
show that this is, indeed, the case, we must first formalize
the notions of horizon, sequential composition, and order-
preserving homomorphism.

Definition 7 (Horizon): The horizon of a view v is de-
fined as the set of resources horizon(v) = {r | ⇣c �
ac(v.S) : r � body(c) ⇢ r /� v.S}. That is, horizon(v)
contains all resources mentioned in the body of policies
protecting resources in v.S that are not themselves in v.S.

Definition 8 (Sequential Composition): Assume that we
have a view v, a principal p, a resource r, and two au-
thorization scoring functions score1 and score2. We say
that score1 is sequentially composed with score2 if there
exists a resource r� � horizon(v), a principal p�, and a view
v� such that score2(p�, r�, v�) is calculated when calculating
score1(p, r, v).

Definition 9 (Order-Preserving Homomorphism): Let
score1 : P ⇤ S ⇤ V ⌦ T1 and score2 : P ⇤ S ⇤ V ⌦ T2

be two authorization scoring functions. Let t1 � T1 (resp.
t2 � T2) be a threshold such that if score1(p, s, v) ⇧ t1
(resp. score2(p, s, v) ⇧ t2) then p cannot access
resource s. Similarly, if score1(p, s, v) > t1 (resp.
score2(p, s, v) > t2) then p can access resource s. A
function f : T2 ⌦ T1 is an order-preserving homomorphism
from T2 to T1 if and only if (i) t ⇧ t2 ⌦ f(t) ⇧ t1, (ii)
f(t2) = t1, and (iii) t > t2 ⌦ f(t) > t1.

In the discussion above, Alice desires to sequentially
compose the scoring function defined in Algorithm 1 with
the scoring function defined by Equations 6–9. Furthermore,
the identity function f(x) �⌦ x is trivially an order-
preserving homomorphism between the (identical) totally-
ordered ranges of these two functions. We now have the
necessary machinery to prove the following theorem:

Theorem 3: Let score1 : P ⇤ S ⇤ V ⌦ T1 and score2 :
P ⇤ S ⇤ V ⌦ T2 be two authorization scoring functions

that satisfy the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties. If there exists
an order-preserving homomorphism f between T2 and T1,
then the sequential composition of score1 with score2 is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Proof: Showing that the sequential composition of
score1 with score2 is deterministic and bounded is straight-
forward. Using the (deterministic) outputs of score2 as
inputs to the (deterministic) function score1 will clearly
result in a deterministic output. Furthermore, since f maps
the outputs of score2 into a range that can be considered
by score1 and score1 is bounded, then the sequential
composition of score1 with score2 is also bounded.

Since score2 is authorization relevant, by Definition 5 it is
not influenced by irrelevant credentials. As a result, score1

will not be indirectly influenced by irrelevant credentials
via score2. Since score1 is authorization relevant, it is not
influenced by irrelevant credentials that it considers directly.
This implies that the sequential composition of score1 with
score2 is also uninfluenced by irrelevant credentials, and
thus authorization relevant by Definition 5. By a similar
argument, the sequential composition of score1 with score2

is also monotonic: relevant credentials considered directly by
score1 or indirectly via score2 can only increase the output
of sequential composition of score1 with score2.

Finally, we must address the simple ordering property.
Note that the order-preserving homomorphism f allows
score1 to reliably use the value f(score2(p�, r�, v�)) to
determine whether P � is authorized to access the horizon
resource r�. Given that score2 is assumed to be deterministic
and to satisfy the simple ordering property, this interpretation
of f(score2(p�, r�, v�)) is guaranteed to be correct. Further-
more, since score1 is also assumed to be deterministic and
to satisfy the simple ordering property, the output value
score(p, r, v) that is computed using this information is
also guaranteed to correctly reflect P ’s ability to access the
resource r. As a result, the sequential composition of score1

with score2 satisfies the simple ordering property.

As a result of the above theorem, we immediately have
the following corollary stating that the two classes of autho-
rization scoring functions discussed earlier in this section
can be sequentially composed with one another:

Corollary 1: The result of sequentially composing the
authorization scoring functions defined by Algorithm 1 and
Equations 6–9 using the order-preserving homomorphism
f(x) �⌦ x is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

It is also interesting to note that Theorem 3 tells us that
principals can make use of any number of authorization

scoring functions to compute authorization scores for each
of the resources along the horizon of their domain. More
concretely, in the scenario described by Figure 2, Alice can
use a different authorization scoring function for each grey
node on the horizon of her domain:

Corollary 2: Let score : P ⇤ S ⇤ V ⌦ T1 be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Lastly, the ability to sequentially compose two authorization
scoring functions inductively gives us the ability to sequen-
tially compose any number of such functions:

Corollary 3: Let score1 : P⇤S⇤V ⌦ T1, . . . , scoren :
P ⇤ S ⇤ V ⌦ Tn be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let fn�1 : Tn ⌦
Tn�1, . . . , f1 : T2 ⌦ T1 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing score1, . . . , scoren using
f1, . . . , fn�1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

V. SCORING NON-MEMBERS OF A ROLE

The ability to construct machine verifiable proofs of
authorization is one of the greatest strengths of trust manage-
ment approaches to authorization. However, the unyielding
reliance on these rigid proofs is also a considerable pitfall.
Since the proof construction process is guided by the policies
within the system, these policies must exhaustively cover
every possible scenario in which access to some resource
should be granted. As a result, these systems can fail during
emergencies or other unexpected circumstances simply be-
cause policy administrators did not consider some particular
case when writing the policies for their domain.

When this type of failure is manifest in the physical world,
policies are often overridden in accordance with judgement
calls made by qualified individuals. However, making these
types of decisions in an automated system can be tricky. The
ability to assess how close some unauthorized principal is to
being granted access to a resource could, to a limited extent,
help to automate this process. At the very least, this can
act as a primitive risk metric that helps classify users who
are “close” to satisfying a policy from those who are “far”
from satisfying the policy. This, in turn, could be useful for
helping to guide the decision making of a human auditor

who can be brought into the process. In this section, we
explore how these types of decisions can be made within
the context of the framework presented in this paper.

Scoring Construction. To describe one possible mecha-
nism for scoring the non-members of a particular role, we
present modifications to the authorization scoring function
described by Equations 6–9. Intuitively, the scoring con-
struction presented in this section builds upon the earlier
construction by also considering partial proofs. In order
to identify partial proofs, we need to first understand what
types of proofs may be produced for a particular role. We
formalize this notion through the use of canonical proofs:

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C from the universe of
all possible credentials such that F (p, A.R, C) = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

Given a canonical proof C for a principal p and a role
A.R, it is entirely possible that some subset C � of the
credentials in C are not actually defined within the system.
The existence of the canonical proof C simply implies that
if each credential c � C is discovered, then p will be
granted access to A.R. We also note that, a user need not
be omniscient in order to materialize csets(p, A.R): this
set of canonical proofs is actually uncovered as a side-effect
of the RT credential chain discovery process [23]. Given
csets(p, A.R), we can then construct the set of all partial
proofs regarding p’s membership in A.R using the function
psets : P ⇤R⇤ V ⌦ 2C ⇤ 2C defined below:

psets(p, A.R, v) = {(Cp, Cc) | Cc � csets(p, A.R) (17)
⇢Cp = v.C ⇡ Cc ⇢ Cp �= Cc}

The above function computes all partial matches between
the set of credentials in v.C and the canonical proofs in
csets(p, A.R). Given this set of (partial, canonical) proof
pairs, we can now evaluate the quality of a partial proof. To
do this, we introduce the functions leaves : 2C ⌦ 2C and
⇧ : 2C ⇤ 2C ⌦ [0, 1]:

leaves(C) = {c � C | c of the form A.R p} (18)

⇧(Cp, Cc) =
|leaves(Cp ⇡ Cc)|

|leaves(Cc)|
(19)

The leaves function extracts the simple membership
credentials from a set C of credentials. The ⇧ function
then calculates the quality of a partial proof by calculating
the percentage of the simple membership credentials in
the corresponding canonical proof that are contained in the
partial proof. To see why credentials other than simple mem-
berships are ignored by ⇧, consider the chain of delegation
A.R B1.R1 · · · Bn.Rn. The canonical proof for
principal p in role A.R would contain n simple containment

scoring functions to compute authorization scores for each
of the resources along the horizon of their domain. More
concretely, in the scenario described by Figure 2, Alice can
use a different authorization scoring function for each grey
node on the horizon of her domain:

Corollary 2: Let score : P ⇤ S ⇤ V ⌦ T1 be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Lastly, the ability to sequentially compose two authorization
scoring functions inductively gives us the ability to sequen-
tially compose any number of such functions:

Corollary 3: Let score1 : P⇤S⇤V ⌦ T1, . . . , scoren :
P ⇤ S ⇤ V ⌦ Tn be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let fn�1 : Tn ⌦
Tn�1, . . . , f1 : T2 ⌦ T1 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing score1, . . . , scoren using
f1, . . . , fn�1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

V. SCORING NON-MEMBERS OF A ROLE

The ability to construct machine verifiable proofs of
authorization is one of the greatest strengths of trust manage-
ment approaches to authorization. However, the unyielding
reliance on these rigid proofs is also a considerable pitfall.
Since the proof construction process is guided by the policies
within the system, these policies must exhaustively cover
every possible scenario in which access to some resource
should be granted. As a result, these systems can fail during
emergencies or other unexpected circumstances simply be-
cause policy administrators did not consider some particular
case when writing the policies for their domain.

When this type of failure is manifest in the physical world,
policies are often overridden in accordance with judgement
calls made by qualified individuals. However, making these
types of decisions in an automated system can be tricky. The
ability to assess how close some unauthorized principal is to
being granted access to a resource could, to a limited extent,
help to automate this process. At the very least, this can
act as a primitive risk metric that helps classify users who
are “close” to satisfying a policy from those who are “far”
from satisfying the policy. This, in turn, could be useful for
helping to guide the decision making of a human auditor

who can be brought into the process. In this section, we
explore how these types of decisions can be made within
the context of the framework presented in this paper.

Scoring Construction. To describe one possible mecha-
nism for scoring the non-members of a particular role, we
present modifications to the authorization scoring function
described by Equations 6–9. Intuitively, the scoring con-
struction presented in this section builds upon the earlier
construction by also considering partial proofs. In order
to identify partial proofs, we need to first understand what
types of proofs may be produced for a particular role. We
formalize this notion through the use of canonical proofs:

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C from the universe of
all possible credentials such that F (p, A.R, C) = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

Given a canonical proof C for a principal p and a role
A.R, it is entirely possible that some subset C � of the
credentials in C are not actually defined within the system.
The existence of the canonical proof C simply implies that
if each credential c � C is discovered, then p will be
granted access to A.R. We also note that, a user need not
be omniscient in order to materialize csets(p, A.R): this
set of canonical proofs is actually uncovered as a side-effect
of the RT credential chain discovery process [23]. Given
csets(p, A.R), we can then construct the set of all partial
proofs regarding p’s membership in A.R using the function
psets : P ⇤R⇤ V ⌦ 2C ⇤ 2C defined below:

psets(p, A.R, v) = {(Cp, Cc) | Cc � csets(p, A.R) (17)
⇢Cp = v.C ⇡ Cc ⇢ Cp �= Cc}

The above function computes all partial matches between
the set of credentials in v.C and the canonical proofs in
csets(p, A.R). Given this set of (partial, canonical) proof
pairs, we can now evaluate the quality of a partial proof. To
do this, we introduce the functions leaves : 2C ⌦ 2C and
⇧ : 2C ⇤ 2C ⌦ [0, 1]:

leaves(C) = {c � C | c of the form A.R p} (18)

⇧(Cp, Cc) =
|leaves(Cp ⇡ Cc)|

|leaves(Cc)|
(19)

The leaves function extracts the simple membership
credentials from a set C of credentials. The ⇧ function
then calculates the quality of a partial proof by calculating
the percentage of the simple membership credentials in
the corresponding canonical proof that are contained in the
partial proof. To see why credentials other than simple mem-
berships are ignored by ⇧, consider the chain of delegation
A.R B1.R1 · · · Bn.Rn. The canonical proof for
principal p in role A.R would contain n simple containment

Arbitrary	
 composi,on	
 along	
 horizon	
 Arbitrary	
 depth	
 of	
 composi,on	

Scoring	
 Func,ons:	
 Take	
 3	

•  Preliminaries	

scoring functions to compute authorization scores for each
of the resources along the horizon of their domain. More
concretely, in the scenario described by Figure 2, Alice can
use a different authorization scoring function for each grey
node on the horizon of her domain:

Corollary 2: Let score : P ⇤ S ⇤ V ⌦ T1 be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Lastly, the ability to sequentially compose two authorization
scoring functions inductively gives us the ability to sequen-
tially compose any number of such functions:

Corollary 3: Let score1 : P⇤S⇤V ⌦ T1, . . . , scoren :
P ⇤ S ⇤ V ⌦ Tn be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let fn�1 : Tn ⌦
Tn�1, . . . , f1 : T2 ⌦ T1 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing score1, . . . , scoren using
f1, . . . , fn�1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

V. SCORING NON-MEMBERS OF A ROLE

The ability to construct machine verifiable proofs of
authorization is one of the greatest strengths of trust manage-
ment approaches to authorization. However, the unyielding
reliance on these rigid proofs is also a considerable pitfall.
Since the proof construction process is guided by the policies
within the system, these policies must exhaustively cover
every possible scenario in which access to some resource
should be granted. As a result, these systems can fail during
emergencies or other unexpected circumstances simply be-
cause policy administrators did not consider some particular
case when writing the policies for their domain.

When this type of failure is manifest in the physical world,
policies are often overridden in accordance with judgement
calls made by qualified individuals. However, making these
types of decisions in an automated system can be tricky. The
ability to assess how close some unauthorized principal is to
being granted access to a resource could, to a limited extent,
help to automate this process. At the very least, this can
act as a primitive risk metric that helps classify users who
are “close” to satisfying a policy from those who are “far”
from satisfying the policy. This, in turn, could be useful for
helping to guide the decision making of a human auditor

who can be brought into the process. In this section, we
explore how these types of decisions can be made within
the context of the framework presented in this paper.

Scoring Construction. To describe one possible mecha-
nism for scoring the non-members of a particular role, we
present modifications to the authorization scoring function
described by Equations 6–9. Intuitively, the scoring con-
struction presented in this section builds upon the earlier
construction by also considering partial proofs. In order
to identify partial proofs, we need to first understand what
types of proofs may be produced for a particular role. We
formalize this notion through the use of canonical proofs:

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C from the universe of
all possible credentials such that F (p, A.R, C) = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

Given a canonical proof C for a principal p and a role
A.R, it is entirely possible that some subset C � of the
credentials in C are not actually defined within the system.
The existence of the canonical proof C simply implies that
if each credential c � C is discovered, then p will be
granted access to A.R. We also note that, a user need not
be omniscient in order to materialize csets(p, A.R): this
set of canonical proofs is actually uncovered as a side-effect
of the RT credential chain discovery process [23]. Given
csets(p, A.R), we can then construct the set of all partial
proofs regarding p’s membership in A.R using the function
psets : P ⇤R⇤ V ⌦ 2C ⇤ 2C defined below:

psets(p, A.R, v) = {(Cp, Cc) | Cc � csets(p, A.R) (17)
⇢Cp = v.C ⇡ Cc ⇢ Cp �= Cc}

The above function computes all partial matches between
the set of credentials in v.C and the canonical proofs in
csets(p, A.R). Given this set of (partial, canonical) proof
pairs, we can now evaluate the quality of a partial proof. To
do this, we introduce the functions leaves : 2C ⌦ 2C and
⇧ : 2C ⇤ 2C ⌦ [0, 1]:

leaves(C) = {c � C | c of the form A.R p} (18)

⇧(Cp, Cc) =
|leaves(Cp ⇡ Cc)|

|leaves(Cc)|
(19)

The leaves function extracts the simple membership
credentials from a set C of credentials. The ⇧ function
then calculates the quality of a partial proof by calculating
the percentage of the simple membership credentials in
the corresponding canonical proof that are contained in the
partial proof. To see why credentials other than simple mem-
berships are ignored by ⇧, consider the chain of delegation
A.R B1.R1 · · · Bn.Rn. The canonical proof for
principal p in role A.R would contain n simple containment

scoring functions to compute authorization scores for each
of the resources along the horizon of their domain. More
concretely, in the scenario described by Figure 2, Alice can
use a different authorization scoring function for each grey
node on the horizon of her domain:

Corollary 2: Let score : P ⇤ S ⇤ V ⌦ T1 be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Lastly, the ability to sequentially compose two authorization
scoring functions inductively gives us the ability to sequen-
tially compose any number of such functions:

Corollary 3: Let score1 : P⇤S⇤V ⌦ T1, . . . , scoren :
P ⇤ S ⇤ V ⌦ Tn be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let fn�1 : Tn ⌦
Tn�1, . . . , f1 : T2 ⌦ T1 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing score1, . . . , scoren using
f1, . . . , fn�1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

V. SCORING NON-MEMBERS OF A ROLE

The ability to construct machine verifiable proofs of
authorization is one of the greatest strengths of trust manage-
ment approaches to authorization. However, the unyielding
reliance on these rigid proofs is also a considerable pitfall.
Since the proof construction process is guided by the policies
within the system, these policies must exhaustively cover
every possible scenario in which access to some resource
should be granted. As a result, these systems can fail during
emergencies or other unexpected circumstances simply be-
cause policy administrators did not consider some particular
case when writing the policies for their domain.

When this type of failure is manifest in the physical world,
policies are often overridden in accordance with judgement
calls made by qualified individuals. However, making these
types of decisions in an automated system can be tricky. The
ability to assess how close some unauthorized principal is to
being granted access to a resource could, to a limited extent,
help to automate this process. At the very least, this can
act as a primitive risk metric that helps classify users who
are “close” to satisfying a policy from those who are “far”
from satisfying the policy. This, in turn, could be useful for
helping to guide the decision making of a human auditor

who can be brought into the process. In this section, we
explore how these types of decisions can be made within
the context of the framework presented in this paper.

Scoring Construction. To describe one possible mecha-
nism for scoring the non-members of a particular role, we
present modifications to the authorization scoring function
described by Equations 6–9. Intuitively, the scoring con-
struction presented in this section builds upon the earlier
construction by also considering partial proofs. In order
to identify partial proofs, we need to first understand what
types of proofs may be produced for a particular role. We
formalize this notion through the use of canonical proofs:

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C from the universe of
all possible credentials such that F (p, A.R, C) = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

Given a canonical proof C for a principal p and a role
A.R, it is entirely possible that some subset C � of the
credentials in C are not actually defined within the system.
The existence of the canonical proof C simply implies that
if each credential c � C is discovered, then p will be
granted access to A.R. We also note that, a user need not
be omniscient in order to materialize csets(p, A.R): this
set of canonical proofs is actually uncovered as a side-effect
of the RT credential chain discovery process [23]. Given
csets(p, A.R), we can then construct the set of all partial
proofs regarding p’s membership in A.R using the function
psets : P ⇤R⇤ V ⌦ 2C ⇤ 2C defined below:

psets(p, A.R, v) = {(Cp, Cc) | Cc � csets(p, A.R) (17)
⇢Cp = v.C ⇡ Cc ⇢ Cp �= Cc}

The above function computes all partial matches between
the set of credentials in v.C and the canonical proofs in
csets(p, A.R). Given this set of (partial, canonical) proof
pairs, we can now evaluate the quality of a partial proof. To
do this, we introduce the functions leaves : 2C ⌦ 2C and
⇧ : 2C ⇤ 2C ⌦ [0, 1]:

leaves(C) = {c � C | c of the form A.R p} (18)

⇧(Cp, Cc) =
|leaves(Cp ⇡ Cc)|

|leaves(Cc)|
(19)

The leaves function extracts the simple membership
credentials from a set C of credentials. The ⇧ function
then calculates the quality of a partial proof by calculating
the percentage of the simple membership credentials in
the corresponding canonical proof that are contained in the
partial proof. To see why credentials other than simple mem-
berships are ignored by ⇧, consider the chain of delegation
A.R B1.R1 · · · Bn.Rn. The canonical proof for
principal p in role A.R would contain n simple containment

scoring functions to compute authorization scores for each
of the resources along the horizon of their domain. More
concretely, in the scenario described by Figure 2, Alice can
use a different authorization scoring function for each grey
node on the horizon of her domain:

Corollary 2: Let score : P ⇤ S ⇤ V ⌦ T1 be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Lastly, the ability to sequentially compose two authorization
scoring functions inductively gives us the ability to sequen-
tially compose any number of such functions:

Corollary 3: Let score1 : P⇤S⇤V ⌦ T1, . . . , scoren :
P ⇤ S ⇤ V ⌦ Tn be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let fn�1 : Tn ⌦
Tn�1, . . . , f1 : T2 ⌦ T1 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing score1, . . . , scoren using
f1, . . . , fn�1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

V. SCORING NON-MEMBERS OF A ROLE

The ability to construct machine verifiable proofs of
authorization is one of the greatest strengths of trust manage-
ment approaches to authorization. However, the unyielding
reliance on these rigid proofs is also a considerable pitfall.
Since the proof construction process is guided by the policies
within the system, these policies must exhaustively cover
every possible scenario in which access to some resource
should be granted. As a result, these systems can fail during
emergencies or other unexpected circumstances simply be-
cause policy administrators did not consider some particular
case when writing the policies for their domain.

When this type of failure is manifest in the physical world,
policies are often overridden in accordance with judgement
calls made by qualified individuals. However, making these
types of decisions in an automated system can be tricky. The
ability to assess how close some unauthorized principal is to
being granted access to a resource could, to a limited extent,
help to automate this process. At the very least, this can
act as a primitive risk metric that helps classify users who
are “close” to satisfying a policy from those who are “far”
from satisfying the policy. This, in turn, could be useful for
helping to guide the decision making of a human auditor

who can be brought into the process. In this section, we
explore how these types of decisions can be made within
the context of the framework presented in this paper.

Scoring Construction. To describe one possible mecha-
nism for scoring the non-members of a particular role, we
present modifications to the authorization scoring function
described by Equations 6–9. Intuitively, the scoring con-
struction presented in this section builds upon the earlier
construction by also considering partial proofs. In order
to identify partial proofs, we need to first understand what
types of proofs may be produced for a particular role. We
formalize this notion through the use of canonical proofs:

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C from the universe of
all possible credentials such that F (p, A.R, C) = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

Given a canonical proof C for a principal p and a role
A.R, it is entirely possible that some subset C � of the
credentials in C are not actually defined within the system.
The existence of the canonical proof C simply implies that
if each credential c � C is discovered, then p will be
granted access to A.R. We also note that, a user need not
be omniscient in order to materialize csets(p, A.R): this
set of canonical proofs is actually uncovered as a side-effect
of the RT credential chain discovery process [23]. Given
csets(p, A.R), we can then construct the set of all partial
proofs regarding p’s membership in A.R using the function
psets : P ⇤R⇤ V ⌦ 2C ⇤ 2C defined below:

psets(p, A.R, v) = {(Cp, Cc) | Cc � csets(p, A.R) (17)
⇢Cp = v.C ⇡ Cc ⇢ Cp �= Cc}

The above function computes all partial matches between
the set of credentials in v.C and the canonical proofs in
csets(p, A.R). Given this set of (partial, canonical) proof
pairs, we can now evaluate the quality of a partial proof. To
do this, we introduce the functions leaves : 2C ⌦ 2C and
⇧ : 2C ⇤ 2C ⌦ [0, 1]:

leaves(C) = {c � C | c of the form A.R p} (18)

⇧(Cp, Cc) =
|leaves(Cp ⇡ Cc)|

|leaves(Cc)|
(19)

The leaves function extracts the simple membership
credentials from a set C of credentials. The ⇧ function
then calculates the quality of a partial proof by calculating
the percentage of the simple membership credentials in
the corresponding canonical proof that are contained in the
partial proof. To see why credentials other than simple mem-
berships are ignored by ⇧, consider the chain of delegation
A.R B1.R1 · · · Bn.Rn. The canonical proof for
principal p in role A.R would contain n simple containment

Scoring	
 Func,ons:	
 Take	
 3	
 credentials and one simple membership credential (i.e., the
credential Bn.Rn p). Note that of these n+1 credentials,
only one is specific to p. If n is large, then p would appear
“close” to being a member of A.R even though she does
not meet any of the requirements for membership. The ⇧
function eliminates this type of bias.

If we let opsets(p, A.R, v) represent the set
{(w, Cp, Cc) | (Cp, Cc) � psets(p, A.R, v) ⇢ w =
⇧(Cp, Cc)} sorted in decreasing order of wi, we can then
define an authorization scoring function capable of scoring
non-members of roles:

⌅(x) =
�

1 if x ⌃ 1
0 otherwise (20)

score(p, A.R, v) = ⌅(|sets(v.C)|) (21)

+�
⇤

(wi,Ci)⌦osets�(v.C,A.R)

wi ·
1
2

i

+⇥
⇤

(w,Cp,Cc)i⌦opsets(p,A.R,v)

w · 1
2

i

Under the constraint that � + ⇥ = 1, the range of the
above scoring function is [0, 2). Furthermore, this function
has the properties that (i) score(p, A.R, v) ⌃ 1 ↵ P is a
member of A.R and (ii) score(p, A.R, v) < 1 ↵ P is not
a member of A.R.

Example. To briefly demonstrate the class of scoring
functions defined in this section, consider the following set
of RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (22)
Univ.auth Univ.techDept.gradStudent (23)

Univ.techDep CS (24)
CS.student CS.ugrad (25)

CS.student CS.gradStudent (26)
CS.ugrad Bob (27)

In this scenario, it is clear that Bob cannot prove member-
ship in the Univ.auth role. However, there exists one canon-
ical proof that overlaps with the simple memberships that
Bob possesses: Cc = {(22), (25), (27), ACM.member
Bob}. Bob’s corresponding partial proof is Cp =
{(22), (25), (27)}. Since ⇧(Cp, Cc) = 1

2 , we have that
score(Bob, Univ.auth, v) = �

4 . Due to the fact that ⇥ ⇧ 1,
Bob’s score for the role Univ.auth falls below the mem-
bership threshold of 1.

Properties. The class of scoring functions described in
this section possesses the same properties as each of the
classes of scoring functions described in Section IV. Namely,
we have the following theorem:

Theorem 4: The class of non-member scoring functions
score : P ⇤ R ⇤ V ⌦ R represented by Equations 17–
21 satisfies the deterministic, simple ordering, authorization

relevant, bounded, and monotonic properties, provided that
the scaling function ⌃ : 2C ⇤ 22C ⌦ [0, 1] used to
parameterize the osets function is deterministic.

We omit the details of the proof of Theorem 4, as it
essentially mirrors the proof of Theorem 2. We further
note that the authorization scoring function described by
Algorithm 1 can also be modified to score the non-members
of a particular role. We do not discuss these modifications,
however, as they present little novelty beyond that which has
already been discussed in this section.

VI. DISCUSSION

This work is a first step towards quantitative analysis of
trust management proofs of authorization. Many interesting
directions can be explored based on the general framework
and the current design of authorization scoring functions.

Extensions to Richer Policy Models. For simplicity, our
discussion so far is based on RT0. However, our general
framework can easily accommodate other trust models with
richer structures and semantics. One natural extension is to
support RT 1, which supports parameterized views, or CTM
which combines credential-based trust and reputation-based
trust [20]. Clearly, parameterized views and reputations
greatly expand the design space of authorization scoring
functions. In particular, besides credential structures, the
strength of a principal’s proofs of authorization may be
further refined in terms of role attributes and reputations. We
may also consider a variety of aggregations of role attributes
when considering disjoint minimal proofs.

Another important extension is to consider other types of
auxiliary information besides weights of roles. One interest-
ing type of auxiliary information is the correlation between
roles. For example, IEEE members and ACM members
might be correlated; i.e., a member of IEEE is more likely
to be a member of ACM, and vice versa. If this relationship
is captured in A, then an IEEE member might be partially
trusted to access resources that are explicitly accessible to
ACM members. Essentially, these types of correlations help
us better model risks when temporarily granting access to
unauthorized principals.

Evaluating Top-k Style Queries. In this paper we focus
on the semantics of authorization scoring functions. One
important issue is to efficiently evaluate these functions.
This is particularly so when answering top-k style queries.
The naive approach, which first computes the authorization
score of each principal and then selects k principals with the
highest scores, is unlikely to be efficient in large decentral-
ized systems. Though top-k queries have been extensively
studied in database research (for a survey see [13]), it is
unclear whether existing database techniques can be applied
in our problem, as authorization scoring functions tend to be
much more complicated than simple linear combination of
multiple attributes. Also, as most trust management systems

Goal:	
 	
 Score	
 role	
 membership,	
 as	
 well	
 as	
 non-­‐membership	

•  Membership:	
 	
 Obvious	
 reasons	

•  Non-­‐membership:	
 	
 Approximate	
 pricing	

Scoring	
 Func,ons:	
 	
 Take	
 3	

credentials and one simple membership credential (i.e., the
credential Bn.Rn p). Note that of these n+1 credentials,
only one is specific to p. If n is large, then p would appear
“close” to being a member of A.R even though she does
not meet any of the requirements for membership. The ⇧
function eliminates this type of bias.

If we let opsets(p, A.R, v) represent the set
{(w, Cp, Cc) | (Cp, Cc) � psets(p, A.R, v) ⇢ w =
⇧(Cp, Cc)} sorted in decreasing order of wi, we can then
define an authorization scoring function capable of scoring
non-members of roles:

⌅(x) =
�

1 if x ⌃ 1
0 otherwise (20)

score(p, A.R, v) = ⌅(|sets(v.C)|) (21)

+�
⇤

(wi,Ci)⌦osets�(v.C,A.R)

wi ·
1
2

i

+⇥
⇤

(w,Cp,Cc)i⌦opsets(p,A.R,v)

w · 1
2

i

Under the constraint that � + ⇥ = 1, the range of the
above scoring function is [0, 2). Furthermore, this function
has the properties that (i) score(p, A.R, v) ⌃ 1 ↵ P is a
member of A.R and (ii) score(p, A.R, v) < 1 ↵ P is not
a member of A.R.

Example. To briefly demonstrate the class of scoring
functions defined in this section, consider the following set
of RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (22)
Univ.auth Univ.techDept.gradStudent (23)

Univ.techDep CS (24)
CS.student CS.ugrad (25)

CS.student CS.gradStudent (26)
CS.ugrad Bob (27)

In this scenario, it is clear that Bob cannot prove member-
ship in the Univ.auth role. However, there exists one canon-
ical proof that overlaps with the simple memberships that
Bob possesses: Cc = {(22), (25), (27), ACM.member
Bob}. Bob’s corresponding partial proof is Cp =
{(22), (25), (27)}. Since ⇧(Cp, Cc) = 1

2 , we have that
score(Bob, Univ.auth, v) = �

4 . Due to the fact that ⇥ ⇧ 1,
Bob’s score for the role Univ.auth falls below the mem-
bership threshold of 1.

Properties. The class of scoring functions described in
this section possesses the same properties as each of the
classes of scoring functions described in Section IV. Namely,
we have the following theorem:

Theorem 4: The class of non-member scoring functions
score : P ⇤ R ⇤ V ⌦ R represented by Equations 17–
21 satisfies the deterministic, simple ordering, authorization

relevant, bounded, and monotonic properties, provided that
the scaling function ⌃ : 2C ⇤ 22C ⌦ [0, 1] used to
parameterize the osets function is deterministic.

We omit the details of the proof of Theorem 4, as it
essentially mirrors the proof of Theorem 2. We further
note that the authorization scoring function described by
Algorithm 1 can also be modified to score the non-members
of a particular role. We do not discuss these modifications,
however, as they present little novelty beyond that which has
already been discussed in this section.

VI. DISCUSSION

This work is a first step towards quantitative analysis of
trust management proofs of authorization. Many interesting
directions can be explored based on the general framework
and the current design of authorization scoring functions.

Extensions to Richer Policy Models. For simplicity, our
discussion so far is based on RT0. However, our general
framework can easily accommodate other trust models with
richer structures and semantics. One natural extension is to
support RT 1, which supports parameterized views, or CTM
which combines credential-based trust and reputation-based
trust [20]. Clearly, parameterized views and reputations
greatly expand the design space of authorization scoring
functions. In particular, besides credential structures, the
strength of a principal’s proofs of authorization may be
further refined in terms of role attributes and reputations. We
may also consider a variety of aggregations of role attributes
when considering disjoint minimal proofs.

Another important extension is to consider other types of
auxiliary information besides weights of roles. One interest-
ing type of auxiliary information is the correlation between
roles. For example, IEEE members and ACM members
might be correlated; i.e., a member of IEEE is more likely
to be a member of ACM, and vice versa. If this relationship
is captured in A, then an IEEE member might be partially
trusted to access resources that are explicitly accessible to
ACM members. Essentially, these types of correlations help
us better model risks when temporarily granting access to
unauthorized principals.

Evaluating Top-k Style Queries. In this paper we focus
on the semantics of authorization scoring functions. One
important issue is to efficiently evaluate these functions.
This is particularly so when answering top-k style queries.
The naive approach, which first computes the authorization
score of each principal and then selects k principals with the
highest scores, is unlikely to be efficient in large decentral-
ized systems. Though top-k queries have been extensively
studied in database research (for a survey see [13]), it is
unclear whether existing database techniques can be applied
in our problem, as authorization scoring functions tend to be
much more complicated than simple linear combination of
multiple attributes. Also, as most trust management systems

credentials and one simple membership credential (i.e., the
credential Bn.Rn p). Note that of these n+1 credentials,
only one is specific to p. If n is large, then p would appear
“close” to being a member of A.R even though she does
not meet any of the requirements for membership. The ⇧
function eliminates this type of bias.

If we let opsets(p, A.R, v) represent the set
{(w, Cp, Cc) | (Cp, Cc) � psets(p, A.R, v) ⇢ w =
⇧(Cp, Cc)} sorted in decreasing order of wi, we can then
define an authorization scoring function capable of scoring
non-members of roles:

⌅(x) =
�

1 if x ⌃ 1
0 otherwise (20)

score(p, A.R, v) = ⌅(|sets(v.C)|) (21)

+�
⇤

(wi,Ci)⌦osets�(v.C,A.R)

wi ·
1
2

i

+⇥
⇤

(w,Cp,Cc)i⌦opsets(p,A.R,v)

w · 1
2

i

Under the constraint that � + ⇥ = 1, the range of the
above scoring function is [0, 2). Furthermore, this function
has the properties that (i) score(p, A.R, v) ⌃ 1 ↵ P is a
member of A.R and (ii) score(p, A.R, v) < 1 ↵ P is not
a member of A.R.

Example. To briefly demonstrate the class of scoring
functions defined in this section, consider the following set
of RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (22)
Univ.auth Univ.techDept.gradStudent (23)

Univ.techDep CS (24)
CS.student CS.ugrad (25)

CS.student CS.gradStudent (26)
CS.ugrad Bob (27)

In this scenario, it is clear that Bob cannot prove member-
ship in the Univ.auth role. However, there exists one canon-
ical proof that overlaps with the simple memberships that
Bob possesses: Cc = {(22), (25), (27), ACM.member
Bob}. Bob’s corresponding partial proof is Cp =
{(22), (25), (27)}. Since ⇧(Cp, Cc) = 1

2 , we have that
score(Bob, Univ.auth, v) = �

4 . Due to the fact that ⇥ ⇧ 1,
Bob’s score for the role Univ.auth falls below the mem-
bership threshold of 1.

Properties. The class of scoring functions described in
this section possesses the same properties as each of the
classes of scoring functions described in Section IV. Namely,
we have the following theorem:

Theorem 4: The class of non-member scoring functions
score : P ⇤ R ⇤ V ⌦ R represented by Equations 17–
21 satisfies the deterministic, simple ordering, authorization

relevant, bounded, and monotonic properties, provided that
the scaling function ⌃ : 2C ⇤ 22C ⌦ [0, 1] used to
parameterize the osets function is deterministic.

We omit the details of the proof of Theorem 4, as it
essentially mirrors the proof of Theorem 2. We further
note that the authorization scoring function described by
Algorithm 1 can also be modified to score the non-members
of a particular role. We do not discuss these modifications,
however, as they present little novelty beyond that which has
already been discussed in this section.

VI. DISCUSSION

This work is a first step towards quantitative analysis of
trust management proofs of authorization. Many interesting
directions can be explored based on the general framework
and the current design of authorization scoring functions.

Extensions to Richer Policy Models. For simplicity, our
discussion so far is based on RT0. However, our general
framework can easily accommodate other trust models with
richer structures and semantics. One natural extension is to
support RT 1, which supports parameterized views, or CTM
which combines credential-based trust and reputation-based
trust [20]. Clearly, parameterized views and reputations
greatly expand the design space of authorization scoring
functions. In particular, besides credential structures, the
strength of a principal’s proofs of authorization may be
further refined in terms of role attributes and reputations. We
may also consider a variety of aggregations of role attributes
when considering disjoint minimal proofs.

Another important extension is to consider other types of
auxiliary information besides weights of roles. One interest-
ing type of auxiliary information is the correlation between
roles. For example, IEEE members and ACM members
might be correlated; i.e., a member of IEEE is more likely
to be a member of ACM, and vice versa. If this relationship
is captured in A, then an IEEE member might be partially
trusted to access resources that are explicitly accessible to
ACM members. Essentially, these types of correlations help
us better model risks when temporarily granting access to
unauthorized principals.

Evaluating Top-k Style Queries. In this paper we focus
on the semantics of authorization scoring functions. One
important issue is to efficiently evaluate these functions.
This is particularly so when answering top-k style queries.
The naive approach, which first computes the authorization
score of each principal and then selects k principals with the
highest scores, is unlikely to be efficient in large decentral-
ized systems. Though top-k queries have been extensively
studied in database research (for a survey see [13]), it is
unclear whether existing database techniques can be applied
in our problem, as authorization scoring functions tend to be
much more complicated than simple linear combination of
multiple attributes. Also, as most trust management systems

Proof	
 is	
 similar	
 to	
 previous	
 case	

	

Interes,ng	
 observa,on:	
 	
 Meets	
 proper,es	
 needed	
 by	

composi,on	
 theorem	

Conclusions	

•  Proofs	
 have	
 a	
 lot	
 more	
 informa,on	
 than	
 the	

binary	
 yes/no	
 decision	
 that	
 we	
 use	
 them	
 for	

•  We	
 developed	
 a	
 formal	
 framework	
 for	
 scoring	

these	
 proofs	
 of	
 authoriza,on	

•  Cases	
 explored	

– Perfect	
 informa,on	
 a	
 priori	

– No	
 informa,on	
 a	
 priori	

– Arbitrary	
 combina,ons	

–  Incomplete	
 proofs	

Discuss: What was wrong with that talk?

Issues with content:
l  Why should we care about the problem?
l  How will the results be useful in practice?
l  Had no idea where talk was going!
l  Missing context to understand problem setup

Issues with delivery:

l  Lack of eye contact
l  Lecturing to the board/laptop, not the audience
l  Blurry fonts
l  Too much text
l  …

Time is usually limited
l  Conference talk: 20 minutes or so
l  Job talk: < 1 hour

This is not a lot of time…

Bottom line: Your talk should be an advertisement for your paper(s)

Structure your talk based on your audience and
the time that you have

Your audience: Generally smart individuals
l  Computer Scientists? Yes
l  In your area? Maybe
l  Knowledgeable about your problem? Probably not

That’s not a lot of time, how should I structure my talk
to relate to these people?

This is a hard
problem…

… with interesting
applications…

… that builds on
prior work…

… in a verifiable
way

Two sub-parts:
l  You do something that has not

been done
l  You use neat technological

advancements to do this

Hint: Try to give audience one good take-home point

It’s not just what you say, but how you say it

Body language says a lot
l  Make eye contact with your audience

  Corollary: Face your audience

l  Some movement is good
l  Don’t speak too fast (or too slow!)

Make useful slides
l  Provide a topic outline to structure your talk
l  One primary idea per slide
l  Use slide titles to convey take-away message
l  Do not read your slides!
l  A picture is worth a thousand words…

Let’s try to put some of this into practice…

Towards Quantitative Analysis of Proofs of Authorization:
Applications, Framework, and Techniques

Adam J. Lee
adamlee@cs.pitt.edu

Department of Computer Science
University of Pittsburgh

Ting Yu
yu@csc.ncsu.edu

Department of Computer Science
North Carolina State University

Like most access control systems, distributed proof construction
systems are typically used to support binary decisions

Note that…
l  Both proofs are valid
l  The first proof is far simpler than the second
l  Why focus only on the destination (validity)? What about the journey (context)?

Acme.Access ← Acme.Mgr

Acme.Mgr← Alice

Alice

Acme.Access ← Acme.PMgr.Asst

Acme.PMgr← Acme.POrg.Mgr

Acme.POrg← MegaCorp MegaCorp.Mgr← Bob

Mega
Corp

Bob Chuck

Bob.Asst← Chuck

✔ ✔

Example: Access to a company database

Proofs of authorization reveal a great deal of information about
the conditions under which some access was granted

Authorization robustness
l  How many proofs can some user generate?
l  Are these proofs concise, or do they use odd delegations?
l  How dependent on system state are these proofs?
l  Applications: Anomaly detection, policy audit

vs.

User-to-user comparison
l  Policies are requirements
l  How well do various individuals

satisfy them?
l  Applications: Top-k analysis,

group formation

Examination of incomplete proofs
l  Policies aren’t always perfect…
l  How close is an unauthorized user

to accessing a resource?
l  Applications: Risk assessment,

policy revision

What are we not doing?

Point-based access control & trust management
l  E.g., Yao et al. 2006
l  Privacy-preserving compliance checking of point-based policies

Reputation-based trust management
l  E.g., Kamvar et al. 2003, Xiong and Liu 2003, Josang et al. 2007
l  Aggregation-based trust, different than credential-based proofs

Risk-based access control
l  E.g., MITRE 2003, Aziz et al. 2006, Cheng et al. 2007
l  More on this later…

Reasoning under uncertain information

l  E.g., Dempster 1976, Shafer 1976, Cox 2004
l  Focus is on uncertain information and/or inference rules

Talk Outline

n  Model for quantitative proof analysis

n  Proof scoring functions
l  Desiderata
l  An example scoring construction
l  Functional composition

n  Scoring incomplete proofs of authorization

n  (Lots of) future directions

RT0 is the simplest language in the RT family

Principals are represented by public keys

Policies are constructed using four basic types of assertion

1.  Simple membership: Alice.Friend ← Bob
  Bob is a member of Alice’s “Friend” role

2.  Simple containment: Acme.Contractor ← WidgetTech.Employee
  WidgetTech employees are “Contractors” at Acme

3.  Intersection containment: Tech.Disct ← StateU.Student ∩ IEEE.member
  Students at Univ who are IEEE members are eligible for a discount

4.  Linking containment: Acme.PMgr← Acme.POrg.Mgr
  Members of the “Mgr” role defined by any member of “Acme.POrg” are

members of Acme’s “PMgr” role

Modeling Authorization Scoring Functions

An RT0 trust management system consists of:
l  A set P of principals
l  A set R of roles/resources
l  A set C of credentials
l  An inference scheme F : P × R × 2C → {True, False}

Each principal has their own view of the system

l  A set R ⊆ R for which they have complete knowledge
l  A set C ⊆ C of credentials

  ac(r) ≡ { c ∈ C | head(c) = r }
 ∀ r ∈ R : ac(r) ⊆ C

l  A store of auxiliary information A
  Ignored in this talk, see paper for details

Proofs are scored relative to some principal’s view
l  score : P × R × V → T

Very large…

r ∈ v.R

r’ ∉ v.R

What properties should a proof scoring function have?

Necessary properties ensure that proof scores “make sense”
l  Deterministic
l  Simple ordering:

 ∀ v ∈ V : F(p1, r, v.C) ∧ ¬F(p2, r, v.C) → score(p1, r, v) ≥ score(p2, r, v)

l  Authorization relevant:
 if F(p, r, C) = True, then C is a proof for p to access r
 if F(p, r, C’) = False for all C’ ⊂ C, C is a minimal proof
 Only credentials belonging to some minimal proof influence score

Desirable properties are beneficial, but not strictly necessary
l  Bounded: ∃ b1, b2 : ∀ p, r, v : b1 ≤ score(p, r, v) ≤ b2

l  Monotonic: v ⊆ v’ → score(p, r, v) ≤ score(p, r, v’)

What might some interesting classes of authorization scoring
functions look like?

Scoring proofs generated with incomplete views

Assumption: Principals start with empty views and discover
minimal proofs of authorization at runtime

l  Credential chain discovery in RT
l  Distributed proof construction in, e.g., Grey or Cassandra
l  Etc.

Let sets(C, r) represent the minimal proofs for r contained in C

One simple scoring construction is the following:

This function:

l  Defines robustness as the number of proofs that a principal can generate
l  Exponentially decays the contribution of proofs as they are discovered

score(p, r, v) =
|sets(v.C,r)|�

i=1

1
2

i

This simple notion of robustness is not very exciting,
but can easily be tuned

Consider a function that weights a minimal
proof (possibly) by comparing it with other minimal proofs

Examples:

l 

l 

l 

l  Linear combinations of the above

Our scoring construction can then be rewritten as:

� : 2C � 22C ⇥ [0, 1]

⇥card(Cs, ·) = �|Cs|

Prefer simple structure ⇥len(Cs, ·) = �maxp�paths(Cs)(length(p))

Prefer limited delegation

�ind(Cs, C) = 1�
maxCi�C\Cs

(|Cs ⇥ Ci|)
|Cs|

Prefer multiple, largely
independent proofs

score(p, r, v) =
�

(Ci,wi)�osets�(v.C,r)

wi · 1
2

i

Example, Redux

Using ωlen:
l  score(Alice, Acme.Access, v1) = 0.365
l  score(Chuck, Acme.Access, v2) = 0.328

Note that ωind is irrelevant in this case…

Acme.Access ← Acme.Mgr

Acme.Mgr← Alice

Alice

Acme.Access ← Acme.PMgr.Asst

Acme.PMgr← Acme.POrg.Mgr

Acme.POrg← MegaCorp MegaCorp.Mgr← Bob

Mega
Corp

Bob Chuck

Bob.Asst← Chuck

✔
✔

Using ωcard:
l  score(Alice, Acme.Access, v1) = 0.365
l  score(Chuck, Acme.Access, v2) = 0.215

This proof scoring function satisfies our desiderata

Theorem: Provided that the function ω used to parameterize
osets is deterministic, the authorization scoring function

satisfies the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties.

The above scoring function

l  is certainly not the only such authorization scoring function
l  may not be the best scoring function for all situations
l  may only be sensible to use on certain parts of a proof

However, it is an interesting building block…

score(p, r, v) =
�

(Ci,wi)�osets�(v.C,r)

wi · 1
2

i

In many situations, defining the proof scoring function
to use could be a difficult task

Example: Security administrators within an organization

Perfect information within domain
n Exact knowledge of resource/role semantics
n Very precise weighting and analysis
n Hand-tuned scoring is possible

On-demand information outside of domain
n Known semantics for horizon resources
n Full semantic knowledge of proof is unlikely
n Structure is discovered at runtime

Under what circumstances can good “building block” functions
be composed to construct proof scoring functions while still

preserving the properties of each building block?

Fortunately, reasonable proof scoring functions maintain their
properties under sequential composition

Definition: Assume that we have
l  Principals p and p’
l  Resources r and r’
l  Views v and v’
l  Functions score and score’

We say that score is sequentially composed with
score’ if r’ ∈ horizon(v) and score’(p’, r’, v’) is
calculated when calculating score(p, r, v).

Theorem*: Let score1 : P × S × V → T and score2 : P × S × V → T be
two authorization scoring functions that satisfy the deterministic, simple
ordering, authorization relevant, bounded, and monotonic properties.
The sequential composition of these functions also satisfies the
deterministic, simple ordering, authorization relevant, bounded, and
monotonic properties.

horizon(v)

So far, we have focused on scoring complete
proofs of authorization

If a policy is out of date or incomplete, users who should be able
to do something might not be able to

Risk-based access control is one approach to limiting inflexibility

l  Place a (typically monetary) cap on the amount of risk/damage permissible
l  Tokenize this risk/damage and distributed it to users
l  Compute “risk prices” for every resource in the system
l  If users can pay the access price, they are permitted access

While this would be significantly more flexible than policy-based
approaches, pricing access to individual resources is non-trivial

Alternate approach: Rather than pricing resources per user for
every user, price deviations from expected policies

To price deviations from an expected policy, we first need to be
able to quantify the degree of these deviations

A natural generalization of our framework provides one approach
for doing exactly this

Step 1: Find the canonical proofs of authorization for the resource

l  All minimal sets of credentials C such that F(p, r, C) = True
  Note: These credentials may not all be materialized in the system

l  Call the result csets(p, r)
l  Note: The RT credential chain discovery process does this for us

Step 2: Find partial matches between v.C and csets(p, r)
l  psets(p, r, v) = {(Cp, Cc) | Cc ∈ csets(p, r) ∧ Cp = v.C ∩ Cc ∧ Cp ≠ Cc}

Step 3: Evaluate the quality of each partial match
l  leaves(C) = { c ∈ C | c of the form r ← p }
l  ψ(Cp, Cc) = |leaves(Cp ∩ Cc)| / |leaves(Cc)|
l  opsets(p, r, v) = { (w, Cp, Cc) | (Cp, Cc) ∈ psets(p, r, v) ∧ w = ψ(Cp, Cc) }

Step 4: Tying it all together

Note: This function satisfies the deterministic, simple ordering,
authorization relevant, bounded, and monotonic properties

Due to our composition theorem, this function can act as a
template function that can be sequentially composed with other
reasonable authorization scoring functions

⇤(x) =
�

1 if x ⇥ 1
0 otherwise

score(p, r, v) = ⇤(|sets(v.C)|)

+�
⇥

(wi,Ci)�osets�(v.C,r)

wi · 1
2

i

+⇥
⇥

(w,Cp,Cc)i�opsets(p,r,v)

w · 1
2

i

Ensures non-member
scores always below 1

Score complete proofs…

…and partial proofs

This work is just a first step…

Question 1: These types of scoring functions seem sensible, but
do they make sense in the context of real policies?

Question 2: RT0 is a very simple language. What would scoring
constructions for more feature-rich languages look like?

l  Credentials with internal structure (e.g., RT1)
l  Flexible rule structure (e.g., SecPAL, Grey)
l  Reasoning over aggregates like reputation (e.g., CTM, WBSNs)
l  …

Medicine Academic Departments Defense

Efficiency and functional extensions…

Question 3: How can we efficiently construct cost-minimizing
approximate proofs of authorization?

l  Can we prune the state-space as we search?
l  Applications to risk-based access control

Question 4: How can we efficiently execute top-k queries over
(distributed) authorization datasets?

Group formation Evaluating Policy Utilization

Conclusions

Interesting applications of reasoning about proofs of authorization
l  User-to-user ranking of proofs
l  User-to-ideal assessment of proof quality/robustness/etc.
l  Understanding the changing needs of an organization
l  Risk-aware authorization reasoning
l  …

Our goals for this initial work
l  Develop a formal model for proof scoring
l  Identify necessary and desirable criteria for scoring functions
l  Demonstrate that these criteria are attainable in practice
l  Understand the situations in which scoring functions can be composed

There is still much to be done…

Thank you!

Towards Quantitative Analysis of Proofs of Authorization:
Applications, Framework, and Techniques

Adam J. Lee
adamlee@cs.pitt.edu

Department of Computer Science
University of Pittsburgh

Ting Yu
yu@csc.ncsu.edu

Department of Computer Science
North Carolina State University

Discuss: Why was this talk (hopefully) better than the
first run through?

General tips and tricks…

Practice makes better
l  Alone: Work on your “script,” smooth out transitions
l  Research group: Get used to other people being around
l  Broader population: Assess comprehensibility to outsiders

Do you really want that laser pointer?

“Flash” is good, but too much flash is distracting

l  Good: Animations to progressively build large diagrams or equations
l  Bad: Animating every slide transition and every line of text…

Get out of your head and into your talk J

e.g., other grad student friends,
department seminars, etc…

