é“b University of Pittsburgh

Giving a Research Presentation |
A tale of two talks... |

School of Arts of and Sciences
Department of Computer Science




Announcement

Two weeks: Student technical presentations

Logistics:
® 6 groups
® Presentations split up over both days

® Each group will receive reviews from:
> All classmates (“anonymous”)
> Me (not anonymous)

All talks must be emailed to me by start of class on
Tuesday September 24th!




=, C1ving a talk isn’t easy the first time around...

Talk 1: Less than stellar talk

Discussion: Knee-jerk reactions
® What made that talk bad?
® What could be improved?
® Structural elements of a good talk

Talk 2: A (hopefully) improved talk

Discussion: Presentation elements
® Style and delivery
® Slide layout and effects




Brace yourselves for mediocrity...

Adam J. Lee and Ting Yu, "Towards Quantitative Analysis of Proofs of
Authorization: Applications, Framework, and Techniques," in
Proceedings of the 23rd IEEE Computer Security Foundations
Symposium (CSF 2010), July 2010.




Towards Quantitative Analysis of Proofs
of Authorization: Applications,
Framework, and Techniques

Adam J. Lee (University of Pittsburgh)
Ting Yu (North Carolina State University)




Proofs of Authorization

* Trust management systems are used for
access control in open systems

* Logical proofs are constructed at runtime to
determine whether a given principal is

allowed to access some specific resource

e Rather than simply interpreting a proof as a
binary decision, we aim to analyze these
proofs in a more quantitative manner




Framework

Conceptually, a trust management system
contains

— A set P of principals
— A set S of resources

— A set C of credentials that make policy statements

e Abstraction: s <-q, signed by p
— P says that anyone that satisfies q can access s
— P must control s

— An inference scheme F: Px S x 2¢ -> {true, false}




Views

 We assume principals have some view of the
system.

O rewvsS

res(s < q) — s (1) Q r¢vs

ac(s) — {c€ C | res(c) = s} 2)

Definition 1 (View): The view that some principal p € P
has of the protection state of a trust management system is
defined as a three tuple v, = (S C §,C C C, A), where
for each s € S, ac{s) C C, and A is the abstraction of any
auxiliary information that p has about the system.

Figure 1. Graphical representation of a system view.

* This allows us to define proof scoring
functions, score: PxSxV->T




Properties of Scoring Functions

Required Properties
1. Deterministic

2. Simple ordering
 F(A,s,C)=T A F(B,x,C)=F = score(A,s,v) > score(B,s,v)
3. Authorization relevant

Optional Properties

4. Interpretable
5. Bounded
6. Monotonic




Overview of RT,

Basics
— Public keys identify users
— Roles group users

Four types of rules
— Simple member: A.R<-B
— Simple containment: A.R <- B.R’
— Linking containment: A.R <- A.R1.R2

— Intersection containment: A R<-B,.R; n .. N B, .R,

Policies built up using combinations of these rules




Scoring Functions: Take 1

* Assumptions
— Simplified model
— User designing function only knows about A.R

* Knows all rules defining A.R

* Understands semantics of every role “used” in these
rules

— Each credential associated with a vector w,

e All entries >0
* [lw| ;=1




Scoring Functions: Take 1

Algorithm 1 A simple recursive scoring scheme. 0
1: Function score(p € P,AAR€ R,v CV): R

2: // Filter credentials and initialize storage vector

3: C={c;|ci €v.C ANhead(c) = A.R}

4: Discard all ¢; € C of the foom A.R «+— P’ , P’ # P C
5: s=1[1,0,...,0] // vector in RICI+1

6: f.
7: for all ¢; € C do ]
8: w; = v.A.weight(c;) // weight vector for c;

9: if cc = A.R «— P then I
10: t=[1,1]

11: else if body(c;) = B1.R1 N --- N Bg.Ry then

12: t = [1, By.score(p, B1.R1),. .., By.score(p, Br.Ry)] £
13: else if body(c;) = A.R1.R2 then 1l
14: Find B C A.R; such that VB; € B : P € B;.R

15: t =1, mazp; e (B;.score(p, B.R2))] a
16: if ¢ contains any O entries then U
17: s[i] =0

18: else v
19: s[i) =t - w; C
20:

21: // Get master weight vector and combine all weights

22: w = v.A.weight(A.R) f

23: return s - W
T




Scoring Functions: Take 1

Theorem 1: The function score : P xR x)V — R defined
in Algorithm 1 satisfies the deterministic, simple ordering,
authorization relevant, bounded, and monotonic properties.

Proof sketch:
— Deterministic: Obvious

— Simple ordering: Members scored with a positive value, non-
members not scored (Line 16)

— Authorization relevant: Only credentials defining A.R used when
computing a score (Line 3)

— Bounded: | |w,| |, =1 for all credentials ¢, so bounded above by
1. All entries in each w, > 0, so bounded below by 0.

— Monotonic: No negative entries in any w,, SO score can never
decrease by getting more information




Scoring Functions: Take 2

* Assumptions
— More general system model
— User knows nothing about policies

e Structural information is discovered at runtime
 Like RT, SecPAL, Gray, etc.

e Basic idea: Compute score based on number
of ways that a policy can be satisfied




Scoring Functions: Take 2

1i

score(p, A.R = it =

(p, AR, ) > wi-
(C;,w;)€o0sets,, (v.C,A.R)

Weighting functions w : 2¢ x 2%¢ -> [0,1] weight the contribution
of each proof

Wien (Cs, _) = ~yMa*pepaths(Cs) (length(p))
maxc,ec\(c.}(|Cs N Cil)
|Cs]
wii(Cs, C) = a - wien(Cs, ) + B - wing(Cs, C)

wind(csa C) =1




Scoring Functions: Take 2

Theorem 2: The class of scoring functions score : P X
R x V — R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
w:2€%22° [0, 1] used to parameterize the osets function
1s deterministic.

* Proof sketch
— Deterministic: w is deterministic, so score is too
— Simple ordering: Same as function #1

— Authorization relevant: trivial by def’'n of proofs of
authorization

— Bounded: Based on geometric series in score
converging to 1 when summed infinitely




Scoring Functions: Take 2

* Proof Sketch (cont)

Monotonic. To prove the monotonicity of Equation 6,
we proceed by induction. We first assume that principal
p has previously discovered the (ordered) collection of
proofs and weights (Cy,w1), ..., (Cp,wy) for the role
A.R. The base case that we must consider is that a new
pair (Cs,w;) is discovered such that no weight w; is
less than w;,. In this case, this new pair will introduce
a new term to the end of the summation calculated by
Equation 6, thereby increasing principal p’s score for
the role A.R.

Assume that (Cs,w,) can be inserted before up
to n terms in the sequence of (c¢;,w;) pairs while
still preserving the monotonicity requirement. Now,
assume that p has previously found proofs of au-
thorization with the sequence of weights S =
(Cl, wl), ceey (Cl, U)Z'), cey (C¢+n, an) and has now
discovered a (C, ws) pair such that wy > w;, thereby
needing to be inserted before n + 1 terms in the
sequence S. We first note that replacing (C;, w;) with
(Cs,w) will generate a sequence S’ that—when used
in conjunction with Equation 6—will produce a score
greater than that produced using S, since ws > w;
and all other terms are the same. By the inductive
hypothesis, (C;,w;) can then be re-inserted before the
n final terms of S’ while still preserving monotonicity.




Composing Scoring Functions

Motivation

— Perfect information known within a security domain
— Less information known outside of security domain

Orewns
Oré¢ovS
7y
AN
S \
//I / /( )
) N ! N/
] N / N\
{ ~ -
) / Y, ¢ )
\ < ) ) [
’ \ ) 2




Definitions
Definition 7 (Horizon): The horizon of a view v is de-
fined as the set of resources horizon(v) = {r | dc €
ac(v.S) : r € body(c) A r ¢ v.S}. That is, horizon(v)
contains all resources mentioned in the body of policies
protecting resources in v.S that are not themselves in v.S.

Definition 8 (Sequential Composition): Assume that we
have a view v, a principal p, a resource r, and two au-
thorization scoring functions score; and score;. We say
that score; is sequentially composed with scores if there
exists a resource ' € horizon(v), a principal p’, and a view
v” such that scores (p’, 7/, v") is calculated when calculating
score; (p,r, v).

Definition 9 (Order-Preserving Homomorphism): Let
score; : PxSxV — Ty and scores : Px S xV — T,
be two authorization scoring functions. Let t; € 77 (resp.
to € 7T3) be a threshold such that if score;(p,s,v) < t;
(resp. scores(p,s,v) < t3) then p cannot access
resource s. Similarly, if scorei(p,s,v) > t1 (resp.
scores(p, s,v) > tg) then p can access resource s. A
function f : 7o — 77 is an order-preserving homomorphism
from 75 to 77 if and only if (i) t < to — f(t) < t1, (ii)
f(tg) =1t1,and (111) t >ty — f(t) > 1.




Composition Theorem

Theorem 3: Let score; : P xS xV — 77 and scores :
P xS xV — 75 be two authorization scoring functions
that satisfy the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties. If there exists
an order-preserving homomorphism f between 75 and 77,
then the sequential composition of score; with scores is

also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.




Neat Corollaries

Corollary 1: The result of sequentially composing the
authorization scoring functions defined by Algorithm 1 and
Equations 6-9 using the order-preserving homomorphism
f(x) — x is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,

bounded, and monotonic.

Corollary 2: Let score PxS xV — 7T, be a
authorization scoring function that satisfies the determinis-
tic, simple ordering, authorization relevant, bounded, and
monotonic properties and let v be a view. The result of se-
quentially composing score with an arbitrary any number of
other deterministic, simple ordering, authorization relevant,
bounded, and monotonic authorization scoring functions
along horizon(v) is an authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Arbitrary composition along horizon

Corollary 3: Letscore; : PxSxV — 7q,...,8c0re, :
P xS xV — 7, be proof scoring functions that satisfy
the deterministic, simple ordering, authorization relevant,
bounded, and monotonic properties, and let f, 1 : 7, —
Tn-1,---,f1 + To — 717 be order-preserving homomor-
phisms mapping between the ranges of these functions. The
result of sequentially composing scoreq, ..., Score,, using
fiy-+., fn_1 is also authorization scoring function that is
also deterministic, simple ordering, authorization relevant,
bounded, and monotonic.

Arbitrary depth of composition




Scoring Functions: Take 3

 Preliminaries

Definition 10 (Canonical Proof of Authorization): A
canonical proof of authorization for a principal p and a role
A.R is a minimal set of credentials C' from the universe of
all possible credentials such that F'(p, A.R,C') = TRUE.
We denote by csets(p, A.R) the set of all canonical proofs
for the principal p and the role A.R.

psets(p, A.R,v) = {(C)p,C.) | C. € csets(p, A.R)
NC, =v.CNC. NC, # C.}

leaves(C) = {c € C | ¢ of the form A.R < p}
leaves(C, N C.)|

Cp,,C.) =

¥(Cp, Ce) leaves(C..)|




Scoring Functions: Take 3

Goal: Score role membership, as well as non-membership
e Membership: Obvious reasons
* Non-membership: Approximate pricing

1 ifx>1
P(z) = { 0 otherwise (20)
score(p, A.R,v) = ¢(|sets(v.C)|) (21)

1”£
+a Z wzi

(w;,C;)€o0sets, (v.C,A.R)

+5 Z fw%z

(w,Cp,C.);copsets(p,A.R,v)




Scoring Functions: Take 3

Theorem 4: The class of non-member scoring functions
score : P xR xV — R represented by Equations 17—
21 satisfies the deterministic, simple ordering, authorization
relevant, bounded, and monotonic pr%perties, provided that
the scaling function w : 2¢ x 22° — [0,1] used to
parameterize the 0sets function is deterministic.

Proof is similar to previous case

Interesting observation: Meets properties needed by
composition theorem




Conclusions

* Proofs have a lot more information than the
binary yes/no decision that we use them for

 We developed a formal framework for scoring
these proofs of authorization

e Cases explored
— Perfect information a priori
— No information a priori
— Arbitrary combinations
— Incomplete proofs







=, Discuss: What was wrong with that talk?

Issues with content:
® Why should we care about the problem?
® How will the results be useful in practice?
® Had no idea where talk was going!
® Missing context to understand problem setup

Issues with delivery:
® Lack of eye contact
® |ecturing to the board/laptop, not the audience
® Blurry fonts

® Too much text
o ..




Structure your talk based on your audience and
TR the time that you have

Your audience: Generally smart individuals
® Computer Scientists? Yes
® |n your area?
® Knowledgeable about your problem? Probably not

Time is usually limited

® Conference talk: 20 minutes or so
® Job talk: < 1 hour

This is not a lot of time...

Bottom line: Your talk should be an advertisement for your paper(s)




1at s not a lot of time, how should | structure my talk
i to relate to these people?

d )

This is a hard ... with interesting ... that builds on ... in a verifiable
problem... applications... prior work... way

Two sub-parts:

® You do something that has not
been done /\—/
® You use neat technological

advancements to do this

Hint: Try to give audience one good take-home point




Body language says a lot

® Make eye contact with your audience
> (Corollary: Face your audience

® Some movement is good
® Don’t speak too fast (or too slow!)

: g 4
Make useful slides o> =
= - ® Provide a topic outline to structure your talk
/h' ® One primary idea per slide
e ——— /'j ® Use slide titles to convey take-away message

® Do not read your slides!
® A picture is worth a thousand words...




Let’s try to put some of this into practice...




Towards Quantitative Analysis of Proofs of Authorization:
Applications, Framework, and Techniques

.
Adam J. Lee Ting Yu
adamlee®@cs.pitt.edu yu@csc.ncsu.edu
Department of Computer Science Department of Computer Science
University of Pittsburgh North Carolina State University

k) University of Pittsburgh




Like most access control systems, distributed proof construction
= systems are typically used to support binary decisions

Example: Access to a company database

Acme.Access <— Acme.Mgr v Acme.Access <— Acme.PMgr.Asst v
A A AR
i /’,, \\\\\
1 g \\s
Acme.Mgr— Alice Acme.PMgr— Acme.POrg.Mgr Bob.Asst<— Chuck
A %4 LN A
| 7 \\\ 1
|
Alice Acme.POrg«<— MegaCorp MegaCorp.Mgr<— Bob !
A A )
| 1 1
] ) )
Mega Bob
Corp
£ ] Sl S

Note that...
® Both proofs are valid
® The first proof is far simpler than the second
® Why focus only on the destination (validity)? What about the journey (context)?




Proofs of authorization reveal a great deal of information about
=& the conditions under which some access was granted

Authorization robustness
® How many proofs can some user generate?
® Are these proofs concise, or do they use odd delegations?

® How dependent on system state are these proofs?
® Applications: Anomaly detection, policy audit

User-to-user comparison Examination of incomplete proofs
® Policies are requirements ® Policies aren’t always perfect...
® How well do various individuals ® How close is an unauthorized user
satisfy them? to accessing a resource?
® Applications: Top-k analysis, ® Applications: Risk assessment,

group formation policy revision




What are we not doing?

Point-based access control & trust management
® E.g., Yao et al. 2006
® Privacy-preserving compliance checking of point-based policies

Reputation-based trust management
® E.g., Kamvar et al. 2003, Xiong and Liu 2003, Josang et al. 2007
® Aggregation-based trust, different than credential-based proofs

Risk-based access control
® E.g., MITRE 2003, Aziz et al. 2006, Cheng et al. 2007
® More on this later...

Reasoning under uncertain information

® E.g., Dempster 1976, Shafer 1976, Cox 2004
® Focus is on uncertain information and/or inference rules




Talk Outline

B Model for quantitative proof analysis

B Proof scoring functions
® Desiderata
® An example scoring construction
® Functional composition

B Scoring incomplete proofs of authorization

B (Lots of) future directions




RT, is the simplest language in the RT family

Principals are represented by public keys

Policies are constructed using four basic types of assertion

1. Simple membership: Alice.Friend < Bob
> Bob is a member of Alice’s “Friend” role

2. Simple containment: Acme.Contractor <— WidgetTech.Employee
> WidgetTech employees are “Contractors” at Acme

3. Intersection containment: Tech.Disct < StateU.Student N IEEE.member
> Students at Univ who are IEEE members are eligible for a discount

4. Linking containment: Acme.PMgr<— Acme.POrg.Mgr

> Members of the “Mgr” role defined by any member of “Acme.POrg” are
members of Acme’s “PMgr” role




Modeling Authorization Scoring Functions

An RT, trust management system consists of:

® A set P of principals _/ \/efy /drge"'
® A set R of roles/resources

® A set C of credentials i
® An inference scheme F : P x R x 2¢ — {True, False}

Each principal has their own view of the system
® Aset R & R for which they have complete knowledge
® Aset C © Cof credentials
> ac(r)={ce€ C| head(c)=r}
>V reR:ac(r)cC
® A store of auxiliary information ‘A
> |gnored in this talk, see paper for details

r e v.R

Proofs are scored relative to some principal’s view
® score: PxRxV—->T




> Necessary properties ensure that proof scores “make sense”
® Deterministic
® Simple ordering:
>V veV:Fp,,r,v.C) A -F(p,, r, v.C) = score(p,, I, V) = score(p,, I, V)
® Authorization relevant:
> if F(p, r, C) = True, then C is a proof for p to access r
> if F(p, r, C’) = False for all C’ C C, C is a minimal proof
> Only credentials belonging to some minimal proof influence score

Desirable properties are beneficial, but not strictly necessary
® Bounded: 3 by, b,: ¥V p,r,v:b,<score(p, r,V)=<b,
® Monotonic: v & v’ — score(p, r, V) < score(p, r, V’)

What might some interesting classes of authorization scoring
functions look like?




Scoring proofs generated with incomplete views

N
N

Assumption: Principals start with empty views and discover
minimal proofs of authorization at runtime

® (Credential chain discovery in RT

® Distributed proof construction in, e.g., Grey or Cassandra

® Etc.

Let sets(C, r) represent the minimal proofs for r contained in C

One simple scoring construction is the following:

|sets(v.C,1)| 1i
score(p, r,v) = Z 5
i=1

This function:
® Defines robustness as the number of proofs that a principal can generate
® Exponentially decays the contribution of proofs as they are discovered




This simple notion of robustness is not very exciting,
i but can easily be tuned

P 4 . . C . o« o
T Consider a function w : 2 x 22 — [0,1] that weights a minimal
proof (possibly) by comparing it with other minimal proofs
Prefer [lipnted c/e/egaz‘/on

Examples:

max length
® Wlen<087 ) =7 pepaths(cS)( gth(p)) Prefer simple Structure

® weard(Cs, ) = 71! (ICs N Cy))
o wind(Cs,C) —1— maXCZ'EC’\’% ‘ S i

® Linear combinations of the above \
Prefer multiple, /argely

1hdependent proo/’ S

Our scoring construction can then be rewritten as:

1i
score(p,r,v) = Z w; - g
(C;,w;)€osets,, (v.C,r)




Example, Redux

Acme.Access — Acme.PMgr.Asst v

v A
Acme.Access <— Acme.Mgr g TS
A /,, \\\s
i Acme.PMgr— Acme.POrg.Mgr Bob.Asst— Chuck
7 R
Acme.Mgr< Alice gl . '?
A -~ \\\\ i
E Acme.POrg<— MegaCorp MegaCorp.Mgr<— Bob !
g A A '
Alice : ' :
| 1 |
| | |
Mega Bob
Corp
‘ 5.¢ 7 SOV
Using w.,: Using w_,4:
® score(Alice, Acme.Access, v,) = 0.365 ® score(Alice, Acme.Access, v,) = 0.365
® score(Chuck, Acme.Access, v,) = 0.328 ® score(Chuck, Acme.Access, v,) = 0.215

Note that w4 is irrelevant in this case...




<= N1S proof scoring function satisfies our desiderata

\
\
N
\

Theorem: Provided that the function w used to parameterize
osets is deterministic, the authorization scoring function

1i
score(p,r,v) = Z Wi+ g
(C;,w;)Eosets,, (v.C,r)

satisfies the deterministic, simple ordering, authorization
relevant, bounded, and monotonic properties.

The above scoring function
® is certainly not the only such authorization scoring function
® may not be the best scoring function for all situations
® may only be sensible to use on certain parts of a proof

However, it is an interesting building block...




In many situations, defining the proof scoring function
to use could be a difficult task

Example: Security administrators within an organization

—

Perfect information within domain
M Exact knowledge of resource/role semantics ~—_
M Very precise weighting and analysis
M Hand-tuned scoring is possible

\

. . . . (
On-demand information outside of domain / \
: : AN
u / \
Known seme?ntlcs for horizon I’eSOl:II’CGS | —_— S 0N
M Full semantic knowledge of proof is unlikely ) \, /\ 3 N (
W Structure is discovered at runtime ,’ ) 3 \ <) ‘7
— \
’ \ \) / \ ?

Under what circumstances can good “building block” functions
be composed to construct proof scoring functions while still
preserving the properties of each building block?




Fortunately, reasonable proof scoring functions maintain their
properties under sequential composition

Definition: Assume that we have horizon(v) / \\
® Principals p and p’
® Resources r and r’
® Views v and v’

(
® Functions score and score’ /\'} S N
/ ~
We say that score is sequentially composed with O N
. . . /
score’ if r’ € horizon(v) and score’(p’, r’, v’) is DN S

calculated when calculating score(p, r, v).

Theorem*: Letscore,: Px Sx V— Tandscore,: Px Sx V— Tbe
two authorization scoring functions that satisfy the deterministic, simple
ordering, authorization relevant, bounded, and monotonic properties.
The sequential composition of these functions also satisfies the
deterministic, simple ordering, authorization relevant, bounded, and
monotonic properties.




So far, we have focused on scoring complete
proofs of authorization

If a policy is out of date or incomplete, users who should be able
to do something might not be able to

Risk-based access control is one approach to limiting inflexibility
® Place a (typically monetary) cap on the amount of risk/damage permissible
® Tokenize this risk/damage and distributed it to users
® Compute “risk prices” for every resource in the system
® If users can pay the access price, they are permitted access

While this would be significantly more flexible than policy-based
approaches, pricing access to individual resources is non-trivial

Alternate approach: Rather than pricing resources per user for
every user, price deviations from expected policies




To price deviations from an expected policy, we first need to be
able to quantify the degree of these deviations

A natural generalization of our framework provides one approach
for doing exactly this

Step 1: Find the canonical proofs of authorization for the resource

® All minimal sets of credentials C such that F(p, r, C) = True
> Note: These credentials may not all be materialized in the system

® C(Call the result csets(p, r)
® Note: The RT credential chain discovery process does this for us

Step 2: Find partial matches between v.C and csets(p, r)
® psets(p, r, v) ={(C,, C)) | C.€csets(p, ) AC,=v.CNC. AC,=C]}

Step 3: Evaluate the quality of each partial match
® leaves(C)={ceC | coftheformr <« p}
® y(C, C) = Ileaves(C,N C)| / [leaves(C,)]
® opsets(p, r, v) ={ (w, C,, C) | (C,, C.) € psets(p, r, v) Aw=y(C,, C) }




Tying it all together

1 ifr>1 Ensures non—merber
_ — Scores always beloww |
0 otherwise
score(p,r,v) = ¢(|sets(v.C)|)
Score complete proofs: T + Z w; - %Z

(wi,Ci)EosetSw (v.C,r)

1i
al proofs /)+6 Z T2

...andpaj\i; (w,Cp’CC)iEOpsetS(p,T','U)

Note: This function satisfies the deterministic, simple ordering,
authorization relevant, bounded, and monotonic properties

Due to our composition theorem, this function can act as a
template function that can be sequentially composed with other
reasonable authorization scoring functions




Question 1: These types of scoring functions seem sensible, but
do they make sense in the context of real policies?

Medicin Academic Departments Defense

Question 2: RT, is a very simple language. What would scoring
constructions for more feature-rich languages look like?

® Credentials with internal structure (e.g., RT,)
® Flexible rule structure (e.g., SecPAL, Grey)

® Reasoning over aggregates like reputation (e.g., CTM, WBSNs)
o ..




Efficiency and functional extensions...

Question 3: How can we efficiently construct cost-minimizing
approximate proofs of authorization?

® (Can we prune the state-space as we search?
® Applications to risk-based access control

Question 4: How can we efficiently execute top-k queries over
(distributed) authorization datasets?

7

P

Group formation Evaluating Policy Utilization




Conclusions

“ Interesting applications of reasoning about proofs of authorization
® User-to-user ranking of proofs

User-to-ideal assessment of proof quality/robustness/etc.

Understanding the changing needs of an organization

O
O
® Risk-aware authorization reasoning
O

Our goals for this initial work
® Develop a formal model for proof scoring
® |dentify necessary and desirable criteria for scoring functions

® Demonstrate that these criteria are attainable in practice
® Understand the situations in which scoring functions can be composed

There is still much to be done...




Thank you!

Towards Quantitative Analysis of Proofs of Authorization:
Applications, Framework, and Techniques

Adam J. Lee Ting Yu
adamlee®@cs.pitt.edu yu@csc.ncsu.edu
Department of Computer Science Department of Computer Science
University of Pittsburgh North Carolina State University

Questions?




DISCUSS Why was this talk (hopefully) better than the
SR first run through?




General tips and tricks...

Practice makes better
® Alone: Work on your “script,” smooth out transitions
® Research group: Get used to other people being around
® Broader population: Assess comprehensibility to outsiders

& eq., other grad studert #riends,

department servnars, etc
Do you really want that laser pointer?

“Flash” is good, but too much flash is distracting
® Good: Animations to progressively build large diagrams or equations
® Bad: Animating every slide transition and every line of text...

Get out of your head and into your talk ©




