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Abstract. In this paper we examine whether the student-to-tutor con-
vergence of lexical and speech features is a useful predictor of learn-
ing in a corpus of spoken tutorial dialogs. This possibility is raised by
the Interactive Alignment Theory, which suggests a connection between
convergence of speech features and the amount of semantic alignment
between partners in a dialog. A number of studies have shown that users
converge their speech productions toward dialog systems. If, as we hy-
pothesize, semantic alignment between a student and a tutor (or tutor-
ing system) is associated with learning, then this convergence may be
correlated with learning gains. We present evidence that both lexical
convergence and convergence of an acoustic/prosodic feature are use-
ful features for predicting learning in our corpora. We also find that
our measure of lexical convergence provides a stronger correlation with
learning in a human/computer corpus than did a previous measure of
lexical cohesion.
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1. Introduction

Human tutors have been shown to produce significantly larger learning gains than
classroom instruction [1]. Because these human tutors teach using natural lan-
guage dialog, many Intelligent Tutoring System (ITS) researchers are investigat-
ing the addition of natural language interfaces to their tutoring systems [2,3]. To
help inform tutoring system design, many researchers search for aspects of natural
language tutoring dialogs which might be associated with learning. Various types
of dialog features have been investigated [4–6], many of which have demonstrated
correlations to learning. Often, however, these features are difficult to implement
in an ITS because they require hand coding of dialog transcripts. Shallow acous-
tic/prosodic [7], as well as other dialog features have been investigated which are
automatically computable, but which may be less strongly related to learning de-
pending on their linguistic sophistication [8]. As a result, there remains a need in
the tutoring community for automatically computable dialog features which are
also predictive of learning.

Work outside the tutoring community has suggested links between certain dia-
log characteristics and the amount of understanding that develops between dialog
partners. In particular, Pickering and Garrod’s Interactive Alignment Model [9]
suggests a link between convergence and semantic alignment. In this paper we use
the term “convergence” to mean when two dialog partners change some aspect of



their speech to be more similar to each other. We use the term “alignment” to
mean when the internal representations they create become more similar to each
other. “Priming,” as described below, is one mechanism thought responsible for
alignment and convergence.

The Interactive Alignment Model posits that each dialog partner processes
speech in several levels. The speech signal is unpacked into low level phonetic and
phonological representations, into lexical and syntactic representations, and so
upward until high level semantic and situation model representations are deter-
mined. In this way, a number of internal representations of the incoming speech
become active during processing. If speech is then produced while they are still
active, these representations are more likely to be used than others that are less
active. This priming process leads to alignment between the internal representa-
tions used at each level by the two dialog partners, and also to the convergence of
their observable speech features. Priming is also thought to link neighboring levels
of representation, so that alignment at one level increases the tendency to align
at neighboring levels. We hypothesize that lexical and acoustic/prosodic (a/p)
convergence between tutor and student is linked with alignment of their semantic
representations, which may in turn be linked to learning.

Researchers have found that users will converge toward a dialog system on
several lexical and a/p features. For example Coulston et al. [10], have found
evidence for the convergence of spoken amplitude (loudness) toward that of a
dialog agent. Bell et al. [11] have found that users will converge their speech
rate toward that of a dialog system, and Brennan [12] has found that users will
converge toward the lexical choices made by a system.

In section 2, we describe corpus measures of convergence which we developed
in previous work [13]. In that work we showed that convergence was present in our
corpus of tutoring dialogs with a human tutor. Here we show that our measures
are also useful predictors of learning. In particular, we will show that our measure
of lexical convergence predicts learning for the below mean pre-testers in both our
human/human (hh) and our human/computer (hc) corpora. Lexical convergence
is also a significant predictor of learning for all students in the hc corpus. One
of our measures of a/p convergence will also be shown to predict learning among
the high pre-testers in our hc corpora. Finally, we compare our measure of lexical
convergence to our previous measure of lexical cohesion [14], and find convergence
to have a stronger and more significant correlation with learning in our hc corpus.

2. Measuring Convergence

In [13] we built on previous work by Reitter et al. [15] to develop measures of
lexical and a/p convergence which we applied to a corpus of tutorial dialogs.
Both measures, lexical and a/p, proceed in the same general way. They both first
locate a prime in tutor utterances, then define the next N student turns following
this prime as a response window. For each distance d from the prime within
the response window, they record the value of a response variable. After these
data points have been collected for every prime in the corpus, linear regression
is used to model the interaction between distance from the prime and the value



of the response variable. Following Reitter, a negatively sloped regression line
is interpreted to mean an increased value of the response variable immediately
following the prime, which then declines back toward it’s global mean.

For the measure of lexical priming, the prime was defined to be the occurrence
of some word w in a tutor utterance. Each word in the tutor utterance is treated
as a potential prime, except, as described in [13], words which we classified as
having had no alternative synonym. This adjustment was designed to make our
measure better reflect priming’s effect on lexical choice. In lexical priming, the
response variable is the re-occurrence of the prime word in any of the following N

student turns. For example, if the prime word was used again in the third student
utterance following a prime, the data point [3,1] would be collected. In [13] we
collected data sets for window sizes of 5, 10, 15 and 20 student turns, and fit lines
to each of them using linear regression. The lexical slopes at the largest three
window sizes were negative and significantly different than zero, which we argued
was evidence for lexical priming effects.

We also looked for priming effects in six acoustic/prosodic (a/p) features:
max, mean and min RMS (loudness) and max, mean and min f0 (pitch). For these
a/p measures the prime was located wherever the tutor’s value for the a/p feature
in question was more than one standard deviation above the tutor’s global mean.
As with lexical priming, a response window was defined to be the next N student
turns following the tutor’s prime. The value of the a/p feature was recorded for
each utterance in this window. For example, if the a/p feature in question was
maxRMS (ie, maximum “loudness” in the turn), and the maxRMS value for the
first student turn following the prime happened to be “1280,” then the data point
[1, 1280] would be collected. Linear regression produced slopes that were negative
and significantly different from zero for max RMS at window sizes of 25 and 30,
and for mean RMS at a window size of 30 student turns. Slopes were positive and
significantly different from zero for min f0 at window sizes of 15, 20, 25 and 30
student turns. Significance thresholds were adjusted for multiple comparisons.

Both the lexical and a/p priming measures were validated by comparing their
performance on naturally ordered vs. randomized data. The measures produced
significant slopes on the naturally ordered data, but not on the randomized data.
We argued that the lack of false positives on randomized data was evidence for
the reliability of our measures. In [13], we fit regression lines to an entire corpus
to show that priming effects could be detected in tutorial dialog. In the current
work, we use the same method, but fit lines individually to each student in the
corpus. We then show that the slope of the student’s fitted regression line is a
useful feature for predicting learning gains.

3. The Corpora

Our training set is the same corpus of tutoring sessions used in [13] to develop our
measures of priming. In these tutoring sessions, a student first takes a pre-test to
gauge knowledge of relevant physics concepts, then reads instructional material
about physics. Following this, the human tutor presents a problem which the
student answers in essay form. The tutor then examines this essay, identifies flaws



in it, and engages the student in a tutorial dialog to remediate those flaws. The
student then reworks the essay, and the cycle repeats until the tutor is satisfied
that all important points are covered. Each student finished up to ten problems.
After the final problem, each student took a post-test, and learning gains were
calculated. The resulting corpus contains sessions with fourteen students, totaling
128 dialogs, 6,721 student turns and 5,710 tutor turns. A mean pre-test split
produces eight low and six high pre-testers.

Our testing corpus is a similar collection of tutoring dialogs, but collected
using the ITSPOKE [16] spoken dialog tutoring system. ITSPOKE is a speech-
enabled version of the WHY2-Atlas intelligent tutoring system [17]. The IT-
SPOKE system also teaches qualitative physics, and engages the student in the
same cycle of dialog and essay revision as did the human tutor. In this corpus
twenty students engaged in up to five tutorial dialogs each, resulting in a corpus
of 95 dialogs, 2,335 student turns and 2,950 tutor turns. A pre-test split produces
thirteen low and seven high pre-testers.

Our two corpora were similar in many respects, such as having similar subject
matter and a similarly structured tutoring cycle. However, they were also different
in two ways that may be relevant to the current study. First, the average number
of student words per turn was higher with the human tutor. Students in the
hh corpus averaged 5.21 words per turn, students in the human/computer (hc)
corpus averaged 2.42 words per turn. Second, student utterances in the human
tutor corpus seem to contain a broader range of words and have more complex
syntactic structure. Student utterances in the computer tutor corpus, on the other
hand, seem to be much more terse, containing more “keyword only” answers.

4. Finding Which Features Predict Learning

We want to find which, if any, of the measures of priming described in section 2
are associated with learning. To do this, we allow an automatic feature selection
algorithm to select predictors on the hh corpus, then we test the validity of the
selection by fitting a new linear model, which contains the selected features, to
the hc corpus. If the features are significant predictors also in the second corpus,
we take that to be evidence that the algorithm has selected useful features.

The automatic feature selection algorithm we use is “stepwise regression.” It
starts with an empty linear model, then adds and removes one variable at a time
while attempting to minimize the Akaike Information Criteria (AIC) [18].

We first select features using all students, then separately for students with
above-mean and below-mean pre-test scores. We do this because in previous
work [14] our high and low pretesters responded differently to lexical features
of the dialog. In addition, we will select features starting from several different
initial feature sets. First we will allow the feature selection algorithm to choose
among all ten features described in section 2. Then, we run feature selection again
within each category. That is, we start with all features, then with only lexical
features, then a/p features. We do this for two reasons. First, it will help avoid
bias in feature selection, given that stepwise regression can produce different sets
of predictors given slightly different starting points. Second, we are interested in



how the a/p features perform in isolation, because the lexical features depend on
reliable speech transcriptions, which are often not available at runtime.

This approach resulted in nine runs of stepwise regression (3 student group-
ings x 3 initial feature sets). These nine runs produced three significant linear
models. The remaining runs produced either empty models or models containing
only “pretest” as a predictor. We test the usefulness of the selected predictors by
using them to fit new models on our hc (human-computer) corpus.

Pretest Only Full Model

Student Selected Features Model Adj Model Adj

N Group Inter preTest lex.w20 pVal R2 pVal R2

1h 14 All hh 0.484*** 0.652* 3.422 0.012 0.368 0.017 0.434

2h 8 hh low pre 0.331 1.267* 7.901* 0.29 0.047 0.044 0.597

1c 20 All hc 0.315** 0.583** -11.099** 0.044 0.162 0.003 0.431

2c 13 hc low pre 0.866** -1.075 -17.361** 0.796 -0.08 0.004 0.589

Table 1. Lexical features selected on hh data (models 1h & 2h), tested on hc data (1c & 2c)
Significance codes: p < .05: *; p < .01: **; p < .001: ***

Pretest Only Full Model

Student Selected Features Model Adj Model Adj

N Group Inter preTest meanRMS.w20 pVal R2 pVal R2

3h 6 hh hi pre 0.255 0.998* -0.015 0.024 0.694 0.024 0.860

3c 7 hc hi pre 0.315* 0.816 0.026** 0.089 0.363 0.034 0.725

Table 2. a/p features selected on hh data (model 3h),tested on hc data (3c)

The first of these three significant models was selected when starting with all
features and all students. This is shown as model 1h in Table 1 (model numbers are
shown in column one). In table 1 individual coefficients with p-values below .05 are
shown in bold, with the level of significance indicated by asterisks (see caption).
The model’s selected features and their values can be read under the “Selected
Features” columns. Model 1h can be read as: posttestscore = .48 + .65 ∗ pre-
test + 3.42 ∗ lex.w20. Lex.w20 is the slope of the lexical response line, fitted to
each student using a window size of twenty. This model predicts that post-test
score will increase .65 points for each point increase in pre-test score. Also, post-
test score is predicted to increase by 3.42 points for each point increase in the
lexical slope. Pre-test score is a reasonable selection, because it is correlated with
post-test score in our human-human corpus (R = .64, pVal = .012). Lex.w20 is
not itself significant in this model, but was selected because it improved the fit
of the model by more than the AIC penalty for additional factors. The model
p-value and adjusted R2 given in the “Pretest Only” columns are for a model
containing only an intercept and pre-test. The same numbers given in the “Full
Model” columns are for a model which also includes the third predictor, in this
case “lex.w20.” The additional value of the lex.w20 predictor can be seen by
comparing these two sets of numbers. In every case, the model’s adjusted R2 is
larger for the full model. In almost every case, the model’s p-value is better, as
well.



The second significant model was selected when starting with all features
and the low pre-test students, and is shown as model 2h of Table 1. This model
contains the same features as were selected for model 1h, however in this model
lex.w20 becomes individually significant.

Next, we test the features selected on the hh corpus by fitting them to our hc
corpus. Model 1c of Table 1 shows the result of fitting the features of model 1h
to the set of all hc students. The lex.w20 feature becomes highly significant here.
Model 2c of Table 1 shows how the features of model 2h fare when fitted to the
low pre-test students in the hc corpus. Lex.w20 is individually significant in this
model, as it was in the hh corpus.

As described above, we also started feature selection from each category of
features separately. Only one significant model was found in these runs, which
is shown as Model 3h in Table 2. When starting with a/p (acoustic/prosodic)
features and the hh high pre-testers, stepwise regression selects pre-test score
and meanRMS.w20. MeanRMS.w20 is not individually significant when initially
selected on the hh data. Model 3c in Table 2 shows the results of fitting the
features from Model 3h to the hc data. The model as a whole remains significant
on the hc data, while meanRMS.w20 becomes individually significant.

We have seen that features selected using only the human-human corpus
perform well when fitted to a very different corpus of human-computer dialogs.
This suggests that they may be genuinely useful indicators of learning in tutoring
dialog. It is interesting to note, however, that the values fitted to these features
differ widely between the corpora. When it is significant, the lexical priming
feature “lex.w20,” is fitted with positive coefficients in the human-human data,
but with negative coefficients in the human-computer data. The meanRMS.w20
feature also is fitted with different signs in the two corpora, although in the hh
corpus it is not individually significant1.

Note that these features represent the slope of a line fitted to the student’s
response after a prime. A negative coefficient fitted to these features means that
the student learns more as convergence increases and the slope becomes more
negative. The negative lexical coefficients fitted to the hc corpus thus fit the
predictions of the Interactive Alignment Model.

4.1. Lexical Cohesion vs. Convergence

As mentioned above, the usefulness of splitting our data by pre-test scores was
suggested by previous work with a measure of lexical cohesion [14]. We now use
that measure of lexical cohesion as a benchmark for comparing our current results.
In [14] we measured cohesion by counting the number of cohesive ties between stu-
dent and tutor, where a cohesive tie was defined as lexical overlap between consec-
utive speakers. Table 3 reproduces some of the results from that study. Rows two
and three in Table 3 divide the students into above-mean and below-mean pre-test
categories, exactly as in the present study. The center column shows the partial

1To test whether multicollinearity between window sizes might be preventing the selection
of predictors which didn’t switch sign between corpora, we also ran individual models for each
predictor at each window size. All predictors kept their sign across different window sizes. We
thank an anonymous reviewer for this suggestion.



correlation of cohesion and post-test, controlling for pre-test, for each group of
students. The right column shows the significance of the correlation. Table 4 has
the same layout, showing results for the partial correlation of the lex.w20 measure
and post-test score, controlling for pre-test score. Both metrics are run on the
same data set. Note that the significant lexical convergence correlations in Table
4 have consistently larger absolute magnitudes than the cohesion correlations in
Table 3. Also, the convergence measure produces a significant correlation for the
group of all students. This suggests that lexical convergence is a better predictor
of learning than our previous measure of lexical cohesion.

HC Data R P-Value

All Students 0.431 0.058

Low Pretest 0.676 0.011

High Pretest 0.606 0.149

Table 3. Lexical Cohesion

HC Data R P-Value

All Students -0.599 0.005

Low Pretest -0.809 0.001

High Pretest -0.437 0.327

Table 4. Lexical Convergence

5. Discussion and Future Work

The differences in coefficient polarity shown in Tables 1 and 2 are intriguing, and
not yet explained. In section 3 we described several differences between the cor-
pora which might be relevant. First the difference in student turn length between
the hh and hc corpora may mean that our windows, while having the same size
in turns, may be different in the number of words or amount of time they con-
tain. Reitter et al. [15], on whose work we modeled our measures of convergence,
experimented with defining response windows as spans of time. Possibly defining
our windows similarly would remove the polarity differences between the corpora.

The other difference mentioned in section 3 was that there seems to be a
difference in content, with the hh corpus containing more non-domain specific
words. The difference in lexical polarity may then be partly explainable by differ-
ences in the words being used. Perhaps convergence is only positively correlated
with learning when measured with domain-relevant tokens.

We have shown that measures of lexical and a/p convergence are useful fea-
tures for predicting learning in two corpora of tutoring dialogs. When both are
applied to the same corpus, our measure of lexical convergence also provides bet-
ter p-values and larger correlations than our previous measure of lexical cohesion.
Our other measure of convergence, which uses the “mean RMS” feature, was use-
ful in predicting learning among our high pre-testers, and possesses the additional
benefit of not requiring (machine or manual) transcription.

The corpora used in this study are our only two for which a/p features are
currently available. Work is underway to generate a/p features for several addi-
tional corpora. Further experiments may help resolve the discrepancy in polar-
ity of results reported here, by determining if fitted coefficients remain negative
on future hc corpora. If experiments on these additional corpora are successful,
we hope to include real-time measures of convergence in the ITSPOKE student
model. A low or declining level of convergence may help indicate when the student
is not aligning semantically with the tutor, and perhaps not learning.
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[5] C. Rosé, D. Bhembe, S. Siler, R. Srivastava, and K. VanLehn. The role of why questions
in effective human tutoring. In Proceedings of AI in Education, 2003.

[6] Mark Core, Johanna Moore, and Claus Zinn. The role of initiative in tutorial dialogue.
In 10th Conference of the European Chapter of the Association for Computational Lin-
guistics, Budapest, Hungary, April 2003.

[7] K. Forbes-Riley and D. Litman. Correlating student acoustic-prosodic profiles with student
learning in spoken tutoring dialogues. In Proceedings Interspeech-2005/Eurospeech, 2005.

[8] Kate Forbes-Riley, Diane Litman, Mihai Rotaru Amruta Purandare, and Joel Tetreault.
Comparing linguistic features for modeling learning in computer tutoring. In Proceedings
13th International Conference on Artificial Intelligence Education (AIED), Los Angeles,
Ca., 2007.

[9] Martin J Pickering and Simon Garrod. Toward a mechanistic psychology of dialogue. In
Behavioral and Brain Sciences, volume 27, 2004.

[10] R. Coulston, S. Oviatt, and C. Darves. Amplitude convergence in children’s conversational
speech with animated personas. In Proceedings of the 7th International Conference on
Spoken Language Processing, 2002.

[11] Linda Bell, Joakim Gustafson, and Mattias Heldner. Prosodic adaptation in human-

computer interaction. In Proceedings of the 15th International Congress of Phonetic
Sciences (ICPhS 03), Barcelona, Spain, 2003.

[12] Susan E. Brennan. Lexical entrainment in spontaneous dialog. In International Sympo-
sium on Spoken Dialog, pages 41–44, 1996.

[13] Arthur Ward and Diane Litman. Measuring convergence and priming in tutorial dialog.
In Technical report TR-07-148, University of Pittsburgh, 2007.

[14] A. Ward and D. Litman. Cohesion and learning in a tutorial spoken dialog system. In
Proceedings of the 19th International FLAIRS Conference, pages 533–538, 2006.

[15] David Reitter, Johanna Moore, and Frank Keller. Priming of syntactic rules in task-
oriented dialogue and spontaneous conversation. In Proceedings of the 28th annual Con-
ference of the Cognitive Science Society, Vancouver, 2006.

[16] D. Litman and S. Silliman. ITSPOKE: An intelligent tutoring spoken dialogue system.
In Companion Proc. of the Human Language Technology Conf: 4th Meeting of the North
American Chap. of the Assoc. for Computational Linguistics, 2004.

[17] K. VanLehn, P. Jordan, C. Rose, D. Bhembe, M. Boettner, A. Gaydos, M. Makatchev,
U. Pappuswamy, M. Ringenberg, A. Roque, S. Siler, and Srivastava R. The architecture
of why2-atlas: A coach for qualitative physics essay writing. In Proc. 6th Int. Conf. on
Intelligent Tutoring Systems, pages 158–167, 2002.

[18] Hirotugu Akaike. A new look at the statistical model selection. IEEE Transactions on
Automatic Control, AC-19(6):716–723, 1974.


