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Abstract. This study shows that affect-adaptive computer tutoring can significantly
improve performance on learning efficiency and user satisfaction. We compare two
different student uncertainty adaptations which were designed, implemented and
evaluated in a controlled experiment using four versions ofa wizarded spoken di-
alogue tutoring system: two adaptive systems used in two experimental conditions
(basicandempirical), and two non-adaptive systems used in two control conditions
(normal and random). In prior work we compared learning gains across the four
systems; here we compare two other important performance metrics: learning effi-
ciency and user satisfaction. We show that thebasicadaptive system outperforms
the normal (non-adaptive) andempirical (adaptive) systems in terms of learning
efficiency. We also show that theempirical (adaptive) andrandom(non-adaptive)
systems outperform thebasicadaptive system in terms of user perception of tutor
response quality. However, only thebasicadaptive system shows a positive corre-
lation between learning and user perception of decreased uncertainty.
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1. Introduction

Student uncertainty is of increasing interest in the computer tutoring community, due
both to its theorized relationship to correctness and learning, and to the fact that it is
among the most frequently occurring student affective states during computer tutor-
ing (e.g. [1,2,3,4,5]).2 Promising results have been reported on correlating uncertainty
and learning [1,5] and on manually annotating (e.g. [5,8]) and automatically detecting
(e.g. [8,9,3]) uncertainty in computer tutoring dialogues. However, little research has
yet focused on developing, implementing, and evaluating contentful computer tutor re-
sponses to student uncertainty.

In this paper we show that responding to student uncertaintycan significantly im-
prove performance in a wizarded spoken dialogue tutoring system. We analyze the im-
pact on performance of two student uncertainty adaptationswhich were designed, im-
plemented and evaluated in a controlled experiment using four versions of our system:
two adaptive systems used in two experimental conditions (basicandempirical), and
two non-adaptive systems used in two control conditions (normal and random). Else-

1Corresponding Author: forbesk@cs.pitt.edu
2Although uncertainty is not among the “big 6” set of “basic” emotions (anger, disgust, fear, happiness,

sadness, surprise) [6], computer tutoring researchers have found this set needs to be supplemented or even
replaced to describe the range of emotions and attitudes actually displayed by users (e.g. [7]). We thus use the
term “affect” for emotions and attitudes displayed by students using our spoken dialogue tutoring system.



where we compare learning gains across the four systems [10]. Here we investigate the
differences between the four systems with respect to two other important tutoring system
performance metrics: learning efficiency (measured as learning gain divided by time on
task and total student turns) and user satisfaction (measured by user survey questions).
We find that thebasicadaptive system outperforms thenormalsystem significantly, and
the empirical adaptive system as a trend, in terms of learning efficiency. We also find
that theempirical adaptive system and therandomsystem both outperform thebasic
adaptive system in terms of user perception of tutor response quality. However, only the
basicadaptive system shows a positive correlation between learning and user perception
of decreased uncertainty.

2. ITSPOKE: Affect-Adaptive and Non-Adaptive Versions

ITSPOKE (IntelligentTutoringSPOKEn dialogue system) is built on top of the Why2-
Atlas text-based tutor [11]. ITSPOKE tutors 5 qualitative physics problems via spoken
dialogue. The dialogues have a Tutor Question - Student Answer - Tutor Response for-
mat, implemented with a finite state dialogue manager, and consist of a series of ques-
tions about the topics needed to solve the problem. In our original (non-adaptive) ver-
sion of ITSPOKE, tutor responses (states) depended only on the correctness of student
answers (transitions between states). In our two affect-adaptive versions of ITSPOKE,
tutor responses depend on both the correctness and the uncertainty of student answers.

2.1. Basic Affect-Adaptive ITSPOKE

In basicaffect-adaptive ITSPOKE, tutor responses are determined as follows: If the stu-
dent answerscorrectly and without uncertainty, ITSPOKE responds with Correctness
feedback (e.g. “Right”) then moves on to the next question. If the student answersincor-
rectly with or without uncertainty, ITSPOKE responds in one of two forms (both begin
with Incorrectness feedback, e.g. “Well...”): 1) For incorrect answers to easier questions,
ITSPOKE “Bottoms Out”, i.e., provides the correct answer with a brief statement of rea-
soning. 2) For incorrect answers to harder questions, ITSPOKE initiates a “Remedia-
tion Subdialogue”, i.e., one or more questions that walk through a more complex line
of reasoning.. Finally, if the student answers a questioncorrectly but with uncertainty,
ITSPOKE treats the answer as if it were incorrect, i.e. givesthe same response it would
give if the answer were incorrect (except the response begins with Correctness feedback).

Impasse State: InonU IU CU CnonU
Severity Ranking: most less least none

Figure 1. Different Learning Impasse State Severities

Thisbasicuncertainty adaptation is derived from tutoring theory relating uncertainty
to incorrectness and learning. VanLehn et al. [4] view both uncertainty and incorrectness
as signals of “learning impasses”; i.e., opportunities forthe student to learn. We further
observed that to resolve an impasse, the student must first perceive that it exists. Incor-
rectness and uncertainty differ in this perception. Incorrectness simply signals the student
has reached an impasse, while uncertainty signals the student perceives s/he has reached
an impasse. Based on this, we associated each combination ofbinary uncertainty (U,
nonU) and correctness (I, C) with an “impasse severity”, as in Figure 1. A student is not
experiencing an impasse if s/he is correct and not uncertainabout it (CnonU). A student



is experiencing the most severe type of impasse if s/he is incorrect and not aware of it
(InonU). IU and CU answers indicate impasses of lesser severity: the student is incorrect
but aware s/he may be, and the student is correct but uncertain if s/he is, respectively. In
Forbes-Riley et al. [12] we show empirical support for distinguishing impasse severities.

The hypothesis underlying ourbasicuncertainty adaptation is that performance will
improve if ITSPOKE providesthe same additional contentto remediateall impasses
(CU, IU, InonU). The original non-adaptive ITSPOKE provides additional content to
resolve incorrectness impasses (IU and InonU), but it ignores one type of uncertainty
impasse (CU). Thebasicaffect-adaptive ITSPOKE provides the same response to CU,
IU, and InonU answers. Figure 2 illustrates thebasicuncertainty adaptation. As shown,
the CU answer inSTU1 receives a Remediation Subdialogue (only the first questionis
shown) inTUT2, along with feedback acknowledging correctness. This response would
also have been given ifSTU1 were incorrect regardless of uncertainty.

TUT1: Now let’s talk about the net force exerted on the truck. By thesame reasoning that we used for the
car, what’s the overall net force on the truck equal to?
STU1: The force of the car hitting it??[CU]
TUT2: Fine.[FEEDBACK] We can derive the net force on the truck by summing the individual forces on
it, just like we did for the car. First, what horizontal forceis exerted on the truck during the collision?
[REMEDIATION SUBDIALOGUE]

Figure 2. Example ofBasicUncertainty Adaptation (for CU Answers)

2.2. Empirical Affect-Adaptive ITSPOKE

Our empirical uncertainty adaptation revises ourbasic adaptation based on empirical
analyses of human tutor responses. The hypothesis underlying ourempiricaladaptation
is that performance will improve if ITSPOKE provides the same additional content for
all learning impasses (CU, IU, InonU), but variesthe dialogue actused to present this
content and variesthe (In)Correctness feedbackbased on the answer’s learning impasse
severity (Figure 1). Examples are shown in Figure 3.

Our feedback variations were based on prior results in the computer tutor literature
showing that human tutor-derived empathetic system responses can positively impact
performance (see Section 4). Our new feedback phrases responded to the specific type
of learning impasse signaled by the answer. In other words, the feedback acknowledged
both the propositional content ((in)correctness) and the affective content (uncertainty).3

Our dialogue act variations were based on our own empirical analysis of human
responses to uncertainty in a human tutoring corpus that corresponds to our ITSPOKE
corpora. This analysis is discussed in [10]. Briefly, our human tutor responded with a
question significantly less than expected after a CU answer.Since the original ITSPOKE
response to an incorrect answer will either be a RemediationSubdialogue (beginning
with a question) or a Bottom Out (declarative statement), weinterpreted our human tutor
result as follows: If the original response is a Bottom Out, use it after CU answers. Else
author and use a new Bottom Out version of the existing Remediation Subdialogue.

Our human tutor also responded with a Bottom Out significantly more than expected
after an IU answer and significantly less after an InonU answer. We interpreted this re-
sult as follows: 1) If the original response is a Bottom Out, use it after IU answers. Else

3We did not explicitly acknowledge the lack of an impasse in CnonU answers because a pilot study showed
this feedback quickly became annoying (e.g. “That’s correct and you don’t sound uncertain so let’s move on.”)



author a new Bottom Out version of the existing Remediation Subdialogue, and useboth
responses. The new Bottom Out shows the final solution, then the existing Remedia-
tion Subdialogue walks the student through the steps to thissolution. 2) If the original
response is a Remediation Subdialogue, use it after InonU answers. Else author a new
question-based version of the existing Bottom Out, and useboth responses. The new
(typically easy) question helps perceive the impasse, thenthe Bottom Out reinforces and
explains the correct answer.

STU1: The car’s force hitting the truck?? [CU]
TUT2: That’s exactly right, but you seem unsure, so let’s sum up.[FEEDBACK] The net force on the truck
is equal to the impact force on it. We can prove this just like we did for the car. First, we know gravity and the
normal force on the truck must cancel each other, otherwise the truck would not be at rest vertically. Second
we know that the impact force is the only horizontal force exerted on the truck.[NEW BOTTOM OUT]
STU1: I don’t know for sure. [IU]
TUT2: That’s not correct, but don’t worry. You seem to be aware of your mistake. Let’s resolve it.
[FEEDBACK] The net force on the truck is equal to the impact force on it. Let’s walk through this answer
step by step.[NEW BOTTOM OUT]We can derive the net force on the truck by summing the individual
forces on it, just like we did for the car. First, what horizontal force is exerted on the truck during the
collision?[REMEDIATION SUBDIALOGUE]
STU1: Zero. [InonU]
TUT2: I’m sorry, but I see an error in your answer. Let’s fix it.[FEEDBACK] We can derive the net force
on the truck by summing the individual forces on it, just likewe did for the car. First, what horizontal force
is exerted on the truck during the collision?[REMEDIATION SUBDIALOGUE]

Figure 3. Empirical Uncertainty Adaptation forCU, IU, and InonU Answers toTUT1 in Figure 2

2.3. Controlled Experiment

We conducted a controlled experiment investigating the effectiveness of our uncertainty
adaptations in ITSPOKE using a Wizard of Oz scenario (WOZ), in which a few IT-
SPOKE components were replaced by a human “Wizard”: The Wizard performed speech
recognition, language understanding, and uncertainty annotation, for each student an-
swer. In this way, we tested the upper bound performance of our adaptations without any
potentially negative impact of automated versions of thesetasks.

The experiment had two control and two experimental conditions, each with 20-21
subjects. Thenormalandrandomcontrol conditions both used the original non-adaptive
ITSPOKE; however therandomcondition treated a percentage of randomly selected cor-
rect answers as incorrect, to control for the additional tutoring in the experimental con-
ditions. Thebasicandempiricalexperimental conditions used thebasicandempirical
adaptive ITSPOKEs, respectively. Subjects were native English speakers who had never
taken college physics, and were randomly assigned to the 4 conditions, except conditions
were gender- and pretest-balanced. Each subject: i. read a background physics text; ii.
took a pretest; iii. worked 5 problems with an ITSPOKE version (each problem yields 1
dialogue); iv. took a survey (Figure 4); v. took a posttest.

3. Evaluating Affect-Adaptive and Non-Adaptive ITSPOKE

In Forbes-Riley and Litman [10] we show that while students learned significantly over
all conditions, the amount learned depends on condition. Here we evaluate how the
affect-adaptive and non-adaptive conditions differed with respect to two additional types
of evaluation metric:learning efficiencyanduser satisfaction. Learning efficiency refers
to the amount of learning achieved in a given amount of tutoring (e.g., as in [13]). Be-



cause students take different amounts of time per turn, we measured learning efficiency
for each student in two ways: 1) NLG/total tutoring time (NLG= normalized learning
gain = (posttest-pretest)/(1-pretest)); 2) NLG/total student turns over all 5 dialogues.

SQ1: It was easy to learn from the tutor.
SQ2: The tutor didn’t interfere with my understanding of the content.
SQ3: The tutor believed I was knowledgeable.
SQ4: The tutor was useful.
SQ5: The tutor was effective on conveying ideas.
SQ6: The tutor was precise in providing advice.
SQ7: The tutor helped me to concentrate.
SQ8: The tutor responded effectively after I was incorrect about the answer to a question.
SQ9: The tutor responded effectively after I was correct about the answer to a question.
SQ10: The tutor responded effectively after I was uncertain about the answer to a question.
SQ11: The tutor responded effectively after I was certain about the answer to a question.
SQ12: The tutor’s responses decreased my uncertainty about my understanding of the content.
SQ13: It was easy to understand the tutor speech.
SQ14: I knew what I could say or do at each point in the conversations with the tutor.
SQ15: The tutor worked the way I expected it to.
SQ16: Based on my experience using the tutor to learn physics, I would like to use such a tutor regularly.

ALMOST ALWAYS (5), OFTEN (4), SOMETIMES (3), RARELY (2), ALMOST NEVER (1)

Figure 4. ITSPOKE Survey

User satisfaction refers to students’ subjective perceptions of likability, ease of use,
effectiveness, etc, which we measured with the survey in Figure 4. Students rated their
degree of agreement with each statement on a scale of 1 to 5. Questions 1-7 and 13-16
were used in our prior ITSPOKE studies (see [10]); questions8-12 were added for this
study to address effectiveness relating to correctness anduncertainty. For user satisfac-
tion metrics, we used total survey score as well as the ratingfor each question.

For each evaluation metric, we ran a one-way ANOVA with condition as the
between-subject factor, along with a planned comparison for each pair of conditions, hy-
pothesizing the following performance ranking:empirical> basic> random> normal.

The ANOVAs revealed significant differences between conditions in both measures
of learning efficiency: NLG/time (F(3,77) = 3.56, p=0.02) and NLG/turns: (F(3,77)
= 3.09, p=0.03) and for one user satisfaction survey question: SQ13 (F(3,77) = 2.69,
p=0.05). Table 1 shows the significant results (p≤ 0.05) of the planned comparisons for
these three metrics. The first column shows the metric, and the remaining columns list
the condition, its mean and standard deviation, the condition with which a difference is
found, and the direction (> or <) and significance of this difference.

As shown,basichas significantly higher learning efficiency than bothnormal and
empirical. These results suggest that given the same amount of tutoring time, basic
affect-adaptive ITSPOKE will effect more student learningthan either our original non-
adaptive ITSPOKE orempiricalaffect-adaptive ITSPOKE.4

As shown, bothempiricalandrandomsignificantly outperformbasicfor SQ13. This
suggests that students perceive the tutor speech inbasic affect-adaptive ITSPOKE as
hard to understand. This may reflect students’ confusion during the dialogues as to why
basicaffect-adaptive ITSPOKE was treating their correct+uncertain answers as incor-
rect. Because they were always already uncertain at this point, this treatment may have

4Our learning efficiency results also hold when computed using RLG (RLG = raw learning gain = posttest-
pretest); i.e., the same results hold for RLG/time and RLG/turns.



confused them. In contrast,empiricalaffect-adaptive ITSPOKE explained that it would
provide further discussion due to their uncertainty.

Table 1. Planned Comparison Results Showing Differences in MetricsAcross Condition

Metric Condition Mean SD Diff p

normal 0.0100 0.0064 < basic 0.004

Learning Efficiency: random 0.0135 0.0076 -

NLG/total time (min) basic 0.0161 0.0057 -

empirical 0.0107 0.0069 < basic 0.013

normal 0.0050 0.0028 < basic 0.010

Learning Efficiency: random 0.0067 0.0039 -

NLG/total student turns basic 0.0075 0.0023 -

empirical 0.0053 0.0030 < basic 0.023

normal 3.90 0.77 -

SQ13 random 4.15 0.75 > basic 0.016

basic 3.50 1.00 -

empirical 4.15 0.81 > basic 0.016

Although our results suggest that our students don’t express a strong preference for
our affective systems, we hypothesized there might be a relationship between preference
and learning; for example, subjects who prefer an affectivesystem might learn more
from it than those who do not. To investigate this relationship, we ran a Pearson’s cor-
relation between each user satisfaction metric and posttest (controlled for pretest) over
all students and within each condition. This relationship has also been investigated in
prior computer tutor research, with mixed results. For example, Moreno et al. [14] find
significant differences in student preferences for variousanimated computer tutors, but
find no relationship between these preferences and learningover all students. Rotaru [15]
finds correlations between user satisfaction and learning within specific conditions, i.e.
for some versions of a computer tutor but not others, and concludes that some student
types “fit” with some computer tutor types with respect to maximizing learning.

We found no significant correlations for any user satisfaction metric over all stu-
dents; this is likely because the four conditions patternedquite differently on these cor-
relations.Empirical had no significant correlations.Normal had one trend for a nega-
tive correlation: SQ15 (R=-0.382, p=0.096), suggesting that students who perceived they
had a harder time using the system actually learned more.Randomhad one trend for a
positive correlation: SQ1 (R= 0.401, p = 0.089), suggestingthat students who perceived
they had an easier time learning from the system actually didlearn more. Finally,Basic
had one significant and one trend for a positive correlation:SQ7 (R= 0.482, p = 0.037),
suggesting that students who perceived they were able to better concentrate with the sys-
tem actually learned more, and SQ12 (R=0.432, p=0.065), suggesting that students who
perceived that the system decreased their uncertainty actually learned more. This last re-
sult suggests thatbasicaffect-adaptive ITSPOKE is “working”: even if it is not the most
preferred system overall, it is decreasing uncertainty while increasing learning.

4. Related Work

Other computer dialogue tutor research has evaluated and/or is developing adaptations
to student affect. Much of this work bases system responses on human tutor dialogue



act responses. Examples include researchers focused on feedback responses to affect. In
[16] positive feedback responses were developed based on a frequency analysis of hu-
man tutor responses, including praising acknowledgments after CU answers, and were
implemented in a spoken Memory Game computer tutor. Students rated the system that
used the positive feedback more highly than a non-adaptive version. Similarly, in [17],
a human Wizard provided positive feedback in a spoken Reading Tutor, after detecting
student affect including uncertainty. The scaffolding resulted in increased student per-
sistence as compared to a non-adaptive version. However, noother evaluation to our
knowledge has shown a positive impact on student learning orlearning efficiency.

Other examples include researchers focused on more contentful responses to affect.
For example, [3] used a frequency analysis to extract two human tutor responses to CU
and IU answers from a human tutoring corpus, then implemented and evaluated them in
the SCoT-DC tutor. These adaptations increased learning when used after all correct and
incorrect answers, but not when used only after uncertain answers. [2] present a machine
learning analysis aimed at learning system responses from multiple human tutors’ re-
sponses to student affect including uncertainty. However,their analysis suggests that be-
cause human tutors have different styles and skill levels, studying multiple human tutors
does not necessarily yield consistent generalizations. [7] also study how expert human
tutors vary their dialogue acts after student affect including uncertainty.

5. Conclusions and Current Directions

This study shows that adapting to student uncertainty during wizarded computer tutoring
can improve learning efficiency and user satisfaction. Thebasicadaptive system showed
significant improvement on learning efficiency and a positive correlation between learn-
ing and user perception of decreased uncertainty, while ourempirical adaptive system
showed a trend for improvement on user perception of tutor response quality. We hy-
pothesize that our adaptive systems did not outperform therandomcontrol system for
two reasons: first, therandomsystem adapted to some CU answers, thus diminishing the
difference with the adaptive systems; second, it adapted toCnonU answers, which may
also benefit performance by increasing certainty.

Our results provide evidence that our theory-basedbasicadaptation is more effec-
tive than our human-basedempirical adaptation. It may be that different behaviors are
optimally effective in computer and human tutors. However,we do not want to conclude
that empirical human tutor-based adaptations are less effective in general, for two rea-
sons. First, ourempiricaladaptation included both feedback variation and dialogue act
variation; it may be that these two components have different effectiveness. Second, our
empiricaladaptation was derived from statistical generalizations about human tutor re-
sponses to uncertainty, but not necessarilyeffectiveresponses. In future work we will
investigate other approaches that enable us to select humantutor responses that optimize
learning, such as reinforcement learning or dialogue act-learning correlations.

We are currently conducting a fully automated version of this experiment, where
ITSPOKE performs speech recognition, language understanding, and uncertainty detec-
tion. This experiment uses only thebasicadaptive system (in the experimental condition)
and uses the same two control conditions, except that therandomcontrol system adapts
randomly only to CnonU answers.
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