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Abstract. This study shows that affect-adaptive computer tutoringsignificantly
improve performance on learning efficiency and user satisfa. We compare two
different student uncertainty adaptations which weregtesd, implemented and
evaluated in a controlled experiment using four versiona wfizarded spoken di-
alogue tutoring system: two adaptive systems used in twergrpental conditions
(basicandempirical), and two non-adaptive systems used in two control conditio
(normal andrandon). In prior work we compared learning gains across the four
systems; here we compare two other important performandeasidearning effi-
ciency and user satisfaction. We show that lthsicadaptive system outperforms
the normal (non-adaptive) an@mpirical (adaptive) systems in terms of learning
efficiency. We also show that thempirical (adaptive) andandom(non-adaptive)
systems outperform thieasicadaptive system in terms of user perception of tutor
response quality. However, only thasicadaptive system shows a positive corre-
lation between learning and user perception of decreaseeriamty.
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1. Introduction

Student uncertainty is of increasing interest in the comaptittoring community, due
both to its theorized relationship to correctness and legrrand to the fact that it is
among the most frequently occurring student affectiveestaturing computer tutor-
ing (e.g. [1,2,3,4,5]f. Promising results have been reported on correlating uaiceyt
and learning [1,5] and on manually annotating (e.g. [5,8l) automatically detecting
(e.g. [8,9,3]) uncertainty in computer tutoring dialoguklowever, little research has
yet focused on developing, implementing, and evaluatingezaful computer tutor re-
sponses to student uncertainty.

In this paper we show that responding to student uncertaiatysignificantly im-
prove performance in a wizarded spoken dialogue tutorirsgesy. We analyze the im-
pact on performance of two student uncertainty adaptatidnish were designed, im-
plemented and evaluated in a controlled experiment usingversions of our system:
two adaptive systems used in two experimental condititwasi¢ and empirical)), and
two non-adaptive systems used in two control conditiorerhal andrandonj. Else-
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2Although uncertainty is not among the “big 6” set of “basighetions (anger, disgust, fear, happiness,
sadness, surprise) [6], computer tutoring researchers fand this set needs to be supplemented or even
replaced to describe the range of emotions and attitudeslctlisplayed by users (e.g. [7]). We thus use the
term “affect” for emotions and attitudes displayed by stntdeising our spoken dialogue tutoring system.



where we compare learning gains across the four systemsHEd¢ we investigate the
differences between the four systems with respect to twerathportant tutoring system
performance metrics: learning efficiency (measured asirgmain divided by time on
task and total student turns) and user satisfaction (medswy user survey questions).
We find that thebasicadaptive system outperforms thermalsystem significantly, and
the empirical adaptive system as a trend, in terms of learning efficien@y.al§o find
that theempirical adaptive system and thrandomsystem both outperform thigasic
adaptive system in terms of user perception of tutor respguslity. However, only the
basicadaptive system shows a positive correlation betweenilgguand user perception
of decreased uncertainty.

2. ITSPOKE: Affect-Adaptive and Non-Adaptive Versions

ITSPOKE (ntelligentTutoring SPOK En dialogue system) is built on top of the Why2-
Atlas text-based tutor [11]. ITSPOKE tutors 5 qualitativeypics problems via spoken
dialogue. The dialogues have a Tutor Question - Student AnswWutor Response for-
mat, implemented with a finite state dialogue manager, andisbof a series of ques-
tions about the topics needed to solve the problem. In ogir@i (non-adaptive) ver-
sion of ITSPOKE, tutor responses (states) depended onlg@ndrrectness of student
answers (transitions between states). In our two affeaptiee versions of ITSPOKE,
tutor responses depend on both the correctness and thdainteof student answers.

2.1. Basic Affect-Adaptive ITSPOKE

In basicaffect-adaptive ITSPOKE, tutor responses are determiaéadllaws: If the stu-
dent answergorrectly and without uncertaintyy TSPOKE responds with Correctness
feedback (e.g. “Right”) then moves on to the next questibihd student answerscor-
rectly with or without uncertaintyl TSPOKE responds in one of two forms (both begin
with Incorrectness feedback, e.g. “Well...”): 1) For inm@mt answers to easier questions,
ITSPOKE “Bottoms Out”, i.e., provides the correct answethvei brief statement of rea-
soning. 2) For incorrect answers to harder questions, ISP itiates a “Remedia-
tion Subdialogue”, i.e., one or more questions that wallklgh a more complex line
of reasoning.. Finally, if the student answers a questiomectly but with uncertainty
ITSPOKE treats the answer as if it were incorrect, i.e. gthhessame response it would
give if the answer were incorrect (except the response Begith Correctness feedback).

Impasse State: InonU U CuU CnonU
Severity Ranking: most less least none

Figure 1. Different Learning Impasse State Severities

Thisbasicuncertainty adaptation is derived from tutoring theorytiglg uncertainty
to incorrectness and learning. VanLehn et al. [4] view batbartainty and incorrectness
as signals of “learning impasses”; i.e., opportunitiestfar student to learn. We further
observed that to resolve an impasse, the student must factipe that it exists. Incor-
rectness and uncertainty differ in this perception. Inecimess simply signals the student
has reached an impasse, while uncertainty signals therdtpdeceives s/he has reached
an impasse. Based on this, we associated each combinatliinasf/ uncertainty J,
nonU) and correctness (C) with an “impasse severity”, as in Figure 1. A student is not
experiencing an impasse if s/he is correct and not unceatzonit it (CnonU). A student



is experiencing the most severe type of impasse if s/he @riiact and not aware of it
(InonU). IU and CU answers indicate impasses of lesser #gvitie student is incorrect
but aware s/he may be, and the student is correct but uncérihe is, respectively. In
Forbes-Riley et al. [12] we show empirical support for digtiishing impasse severities.

The hypothesis underlying obasicuncertainty adaptation is that performance will
improve if ITSPOKE provideshe same additional contemd remediateall impasses
(CU, IU, InonU). The original non-adaptive ITSPOKE proviédadditional content to
resolve incorrectness impasses (IU and InonU), but it igaame type of uncertainty
impasse (CU). Théasicaffect-adaptive ITSPOKE provides the same response to CU,
IU, and InonU answers. Figure 2 illustrates thesicuncertainty adaptation. As shown,
the CU answer irSTU1 receives a Remediation Subdialogue (only the first quesdion
shown) inTUT 2, along with feedback acknowledging correctness. Thisaesp would
also have been given8TU1 were incorrect regardless of uncertainty.

TUT1: Now let’s talk about the net force exerted on the truck. Byshme reasoning that we used for the
car, what's the overall net force on the truck equal to?

STU1L: The force of the car hitting it?[CU]

TUT2: Fine.[FEEDBACK]We can derive the net force on the truck by summing the ind&idorces on

it, just like we did for the car. First, what horizontal forizeexerted on the truck during the collision?
[REMEDIATION SUBDIALOGUE]

Figure 2. Example ofBasicUncertainty Adaptation (for CU Answers)

2.2. Empirical Affect-Adaptive ITSPOKE

Our empirical uncertainty adaptation revises obasic adaptation based on empirical
analyses of human tutor responses. The hypothesis unagdyirempiricaladaptation

is that performance will improve if ITSPOKE provides the saadditional content for
all learning impasses (CU, IU, InonU), but varige dialogue actised to present this
content and variethe (In)Correctness feedbablased on the answer’s learning impasse
severity (Figure 1). Examples are shown in Figure 3.

Our feedback variations were based on prior results in timepeder tutor literature
showing that human tutor-derived empathetic system resggnan positively impact
performance (see Section 4). Our new feedback phrasesn@sgdo the specific type
of learning impasse signaled by the answer. In other wohdsfe¢edback acknowledged
both the propositional content ((in)correctness) and ffeztive content (uncertainty).

Our dialogue act variations were based on our own empiricalysis of human
responses to uncertainty in a human tutoring corpus thaesponds to our ITSPOKE
corpora. This analysis is discussed in [10]. Briefly, our lamntutor responded with a
question significantly less than expected after a CU ansSSiueee the original ITSPOKE
response to an incorrect answer will either be a Remedi&igdndialogue (beginning
with a question) or a Bottom Out (declarative statement)interpreted our human tutor
result as follows: If the original response is a Bottom Owsk it after CU answers. Else
author and use a new Bottom Out version of the existing Reattiedi Subdialogue.

Our human tutor also responded with a Bottom Out signifigantbre than expected
after an IU answer and significantly less after an InonU amswe interpreted this re-
sult as follows: 1) If the original response is a Bottom O it after IlU answers. Else

SWe did not explicitly acknowledge the lack of an impasse im@ld answers because a pilot study showed
this feedback quickly became annoying (e.g. “That's cdra&l you don’t sound uncertain so let's move on.”)



author a new Bottom Out version of the existing Remediatioldtalogue, and uswoth
responses. The new Bottom Out shows the final solution, therexisting Remedia-
tion Subdialogue walks the student through the steps tostiligion. 2) If the original
response is a Remediation Subdialogue, use it after Inos\Wens. Else author a new
question-based version of the existing Bottom Out, andhagh responses. The new
(typically easy) question helps perceive the impasse, ttheeBottom Out reinforces and
explains the correct answer.

STU1L: Thecar’sforce hitting the truck?? [CU]

TUT2: That's exactly right, but you seem unsure, so let's sun{EBREDBACK] The net force on the truck
is equal to the impact force on it. We can prove this just likedid for the car. First, we know gravity and the
normal force on the truck must cancel each other, othenkisértick would not be at rest vertically. Second
we know that the impact force is the only horizontal forcertea on the trucklNEW BOTTOM OUT]

STU1L: | don’t know for sure. [IU]

TUT2: That's not correct, but don’t worry. You seem to be aware afrymistake. Let’s resolve it.
[FEEDBACK] The net force on the truck is equal to the impact force on it'slealk through this answer
step by step[NEW BOTTOM OUT)We can derive the net force on the truck by summing the indafid
forces on it, just like we did for the car. First, what horitalnforce is exerted on the truck during the
collision?[REMEDIATION SUBDIALOGUE]

STU1L: Zero. [InonU]

TUT2: I'm sorry, but | see an error in your answer. Let's fixfEEEDBACK] We can derive the net force

on the truck by summing the individual forces on it, just like did for the car. First, what horizontal force
is exerted on the truck during the collisiofREMEDIATION SUBDIALOGUE]

Figure 3. Empirical Uncertainty Adaptation fo€U, 1U, and InonU Answers toTUT1 in Figure 2

2.3. Controlled Experiment

We conducted a controlled experiment investigating theadffeness of our uncertainty
adaptations in ITSPOKE using a Wizard of Oz scenario (WOZ)which a few IT-
SPOKE components were replaced by a human “Wizard”: The M/izerformed speech
recognition, language understanding, and uncertaintytation, for each student an-
swer. In this way, we tested the upper bound performancemddaptations without any
potentially negative impact of automated versions of thasks.

The experiment had two control and two experimental coodgj each with 20-21
subjects. Th@ormalandrandomcontrol conditions both used the original non-adaptive
ITSPOKE; however theandomcondition treated a percentage of randomly selected cor-
rect answers as incorrect, to control for the additionadiag in the experimental con-
ditions. Thebasicandempirical experimental conditions used thasicandempirical
adaptive ITSPOKEsS, respectively. Subjects were nativdigingpeakers who had never
taken college physics, and were randomly assigned to thaditimns, except conditions
were gender- and pretest-balanced. Each subject: i. reaglagimund physics text; ii.
took a pretest; iii. worked 5 problems with an ITSPOKE vendjeach problem yields 1
dialogue); iv. took a survey (Figure 4); v. took a posttest.

3. Evaluating Affect-Adaptive and Non-Adaptive | TSPOK E

In Forbes-Riley and Litman [10] we show that while studertsrhed significantly over
all conditions, the amount learned depends on conditiome kiee evaluate how the
affect-adaptive and non-adaptive conditions differedhwétspect to two additional types
of evaluation metrictearning efficiencyanduser satisfactionLearning efficiency refers
to the amount of learning achieved in a given amount of tatp(e.g., as in [13]). Be-



cause students take different amounts of time per turn, wasored learning efficiency
for each student in two ways: 1) NLG/total tutoring time (NI=Ghormalized learning
gain = (posttest-pretest)/(1-pretest)); 2) NLG/totabstat turns over all 5 dialogues.

SQ1: It was easy to learn from the tutor.

SQ2: The tutor didn't interfere with my understanding of the tamt.

SQ3: The tutor believed | was knowledgeable.

SQ4: The tutor was useful.

SQ5: The tutor was effective on conveying ideas.

SQ6: The tutor was precise in providing advice.

SQ7: The tutor helped me to concentrate.

SQ8: The tutor responded effectively after | was incorrect atiba answer to a question.

SQ9: The tutor responded effectively after | was correct abbatanswer to a question.

SQ10: The tutor responded effectively after | was uncertain allo& answer to a question.

SQ11: The tutor responded effectively after | was certain abbatanswer to a question.

SQ12: The tutor's responses decreased my uncertainty about agrstanding of the content.

SQ13: It was easy to understand the tutor speech.

SQ14: | knew what | could say or do at each point in the conversatiwiih the tutor.

SQ15: The tutor worked the way | expected it to.

SQ16: Based on my experience using the tutor to learn physicsuldvike to use such a tutor regularly.
ALMOST ALWAYS (5), OFTEN (4), SOMETIMES (3), RARELY (2), ALNDST NEVER (1)

Figure4. ITSPOKE Survey

User satisfaction refers to students’ subjective peroegtodf likability, ease of use,
effectiveness, etc, which we measured with the survey inreig. Students rated their
degree of agreement with each statement on a scale of 1 toestiQus 1-7 and 13-16
were used in our prior ITSPOKE studies (see [10]); quest&a® were added for this
study to address effectiveness relating to correctnessiacelrtainty. For user satisfac-
tion metrics, we used total survey score as well as the réingach question.

For each evaluation metric, we ran a one-way ANOVA with ctindi as the
between-subject factor, along with a planned comparispadoh pair of conditions, hy-
pothesizing the following performance rankirgmnpirical > basic> random> normal

The ANOVASs revealed significant differences between coonétin both measures
of learning efficiency: NLG/time (F(3,77) = 3.56, p=0.02)daNLG/turns: (F(3,77)
= 3.09, p=0.03) and for one user satisfaction survey quess®13 (F(3,77) = 2.69,
p=0.05). Table 1 shows the significant results(p.05) of the planned comparisons for
these three metrics. The first column shows the metric, aaddmaining columns list
the condition, its mean and standard deviation, the camditiith which a difference is
found, and the directior{ or <) and significance of this difference.

As shown,basichas significantly higher learning efficiency than baotbrmal and
empirical These results suggest that given the same amount of tgttinre, basic
affect-adaptive ITSPOKE will effect more student learnihgn either our original non-
adaptive ITSPOKE oempirical affect-adaptive ITSPOKE.

As shown, botlempiricalandrandomsignificantly outperforntasicfor SQ13. This
suggests that students perceive the tutor speedfasic affect-adaptive ITSPOKE as
hard to understand. This may reflect students’ confusiomduhe dialogues as to why
basicaffect-adaptive ITSPOKE was treating their correct+utaiaranswers as incor-
rect. Because they were always already uncertain at thig,gbis treatment may have

40ur learning efficiency results also hold when computedq&hG (RLG = raw learning gain = posttest-
pretest); i.e., the same results hold for RLG/time and RUW®A.



confused them. In contrastmpirical affect-adaptive ITSPOKE explained that it would
provide further discussion due to their uncertainty.
Table 1. Planned Comparison Results Showing Differences in MeA®ss Condition

Metric Condition | Mean | SD Diff p
normal 0.0100 | 0.0064 | < basic | 0.004

Learning Efficiency: random 0.0135| 0.0076 | -

NLG/total time (min) basic 0.0161 | 0.0057 | -

empirical | 0.0107 | 0.0069 | < basic | 0.013

normal 0.0050 | 0.0028 | < basic | 0.010
Learning Efficiency: random 0.0067 | 0.0039 | -
NLG/total student turns|| basic 0.0075 | 0.0023| -
empirical | 0.0053 | 0.0030| < basic | 0.023

normal 3.90 0.77 -
SQ13 random 4.15 0.75 > basic | 0.016
basic 3.50 1.00 -
empirical | 4.15 0.81 > basic | 0.016

Although our results suggest that our students don’t exspaesrong preference for
our affective systems, we hypothesized there might be daakhip between preference
and learning; for example, subjects who prefer an affectiygem might learn more
from it than those who do not. To investigate this relatiopstve ran a Pearson'’s cor-
relation between each user satisfaction metric and pogtestrolled for pretest) over
all students and within each condition. This relationshég hlso been investigated in
prior computer tutor research, with mixed results. For eglanMoreno et al. [14] find
significant differences in student preferences for varianisnated computer tutors, but
find no relationship between these preferences and leaowirall students. Rotaru [15]
finds correlations between user satisfaction and learnitigrwspecific conditions, i.e.
for some versions of a computer tutor but not others, andlodes that some student
types “fit” with some computer tutor types with respect to in@xing learning.

We found no significant correlations for any user satistattinetric over all stu-
dents; this is likely because the four conditions pattemnpgite differently on these cor-
relations.Empirical had no significant correlationslormal had one trend for a nega-
tive correlation: SQ15 (R=-0.382, p=0.096), suggestirag #tudents who perceived they
had a harder time using the system actually learned niaadonmhad one trend for a
positive correlation: SQ1 (R=0.401, p = 0.089), suggedtiad students who perceived
they had an easier time learning from the system actuallyedich more. FinallyBasic
had one significant and one trend for a positive correlat8®7 (R= 0.482, p = 0.037),
suggesting that students who perceived they were able teerlveincentrate with the sys-
tem actually learned more, and SQ12 (R=0.432, p=0.065yestiong that students who
perceived that the system decreased their uncertaintglactearned more. This last re-
sult suggests thditasicaffect-adaptive ITSPOKE is “working”: even if it is not theost
preferred system overall, it is decreasing uncertaintyevinicreasing learning.

4. Related Work

Other computer dialogue tutor research has evaluated maisddeveloping adaptations
to student affect. Much of this work bases system responsdsiman tutor dialogue



act responses. Examples include researchers focuseddivafderesponses to affect. In
[16] positive feedback responses were developed based myaehcy analysis of hu-
man tutor responses, including praising acknowledgmeftes @U answers, and were
implemented in a spoken Memory Game computer tutor. Stedertd the system that
used the positive feedback more highly than a non-adapéxs&an. Similarly, in [17],
a human Wizard provided positive feedback in a spoken ReaHiror, after detecting
student affect including uncertainty. The scaffoldingufe=d in increased student per-
sistence as compared to a non-adaptive version. Howevesthes evaluation to our
knowledge has shown a positive impact on student learnifeponing efficiency.

Other examples include researchers focused on more céultegponses to affect.
For example, [3] used a frequency analysis to extract twodmtator responses to CU
and IU answers from a human tutoring corpus, then implenteatel evaluated them in
the SCoT-DC tutor. These adaptations increased learnimgwhked after all correct and
incorrect answers, but not when used only after uncertawars. [2] present a machine
learning analysis aimed at learning system responses frattiphe human tutors’ re-
sponses to student affect including uncertainty. Howekeir analysis suggests that be-
cause human tutors have different styles and skill levalslysng multiple human tutors
does not necessarily yield consistent generalizatiofjsalfo study how expert human
tutors vary their dialogue acts after student affect insigdincertainty.

5. Conclusionsand Current Directions

This study shows that adapting to student uncertainty dwizarded computer tutoring
can improve learning efficiency and user satisfaction. Bdmscadaptive system showed
significant improvement on learning efficiency and a positigrrelation between learn-
ing and user perception of decreased uncertainty, whileeoysirical adaptive system
showed a trend for improvement on user perception of tutspease quality. We hy-
pothesize that our adaptive systems did not outperforntahdomcontrol system for
two reasons: first, theandomsystem adapted to some CU answers, thus diminishing the
difference with the adaptive systems; second, it adapt€@htmU answers, which may
also benefit performance by increasing certainty.

Our results provide evidence that our theory-balsasicadaptation is more effec-
tive than our human-basesinpirical adaptation. It may be that different behaviors are
optimally effective in computer and human tutors. Howewer,do not want to conclude
that empirical human tutor-based adaptations are lesstieffen general, for two rea-
sons. First, ouempiricaladaptation included both feedback variation and dialogtie a
variation; it may be that these two components have diftegffactiveness. Second, our
empirical adaptation was derived from statistical generalizatidssua human tutor re-
sponses to uncertainty, but not necessagflgctiveresponses. In future work we will
investigate other approaches that enable us to select huteamesponses that optimize
learning, such as reinforcement learning or dialogue @&tring correlations.

We are currently conducting a fully automated version o$ tixperiment, where
ITSPOKE performs speech recognition, language understgnand uncertainty detec-
tion. This experiment uses only thasicadaptive system (in the experimental condition)
and uses the same two control conditions, except thatth@omcontrol system adapts
randomly only to ChonU answers.
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