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Abstract
Spoken dialogue researchers often use supervised machine
learning to classify turn-level user affect from a set of turn-level
features. The utility of sub-turn features has been less explored,
due to the complications introduced by associating a variable
number of sub-turn units with a single turn-level classification.
We present and evaluate several voting methods for using word-
level pitch and energy features to classify turn-level userun-
certainty in spoken dialogue data. Our results show that when
linguistic knowledge regarding prosody and word position is in-
troduced into a word-level voting model, classification accuracy
is significantly improved compared to the use of both turn-level
and uninformed word-level models.
Index Terms: emotion recognition, speech dialogue systems

1. Introduction
Affective computing investigates systems that detect, adapt to
and/or express emotions.1 Here we focus onemotion detection
for spoken dialogue systems, where much prior research has ex-
amined the utility of different feature types (e.g. prosodic [2],
lexical [3], and contextual [4]) for classifying emotion using
supervised machine learning. Since the majority of this work
has annotated emotions in spoken dialogue data at the user
turn level2, most classification work has also computed fea-
tures at the turn level. However, recent work suggests that us-
ing acoustic-prosodic features at sub-turn levels can improve
classification accuracy, e.g. [6, 7]. The intuition behind using
sub-turn features is that they offer a better approximationof
the acoustic-prosodic profile, and that emotion is often notex-
pressed over entire turns. However, sub-turn features introduce
at least two complications for classifying turn-level emotions:
the choice of sub-turn granularity, and the many-to-one rela-
tionship between sub-turn units and the turn-level emotion.

Since our study is in the context of a spoken dialogue sys-
tem, we use words as our sub-turn granularity. Word segmenta-
tion is available for free as a byproduct of speech recognition,
and the terse nature of user turns in typical human-computerdi-
alogues makes coarser granularity less practical (e.g. turns end
up with only one sub-turn segment). The more central problem
to our study is the many-to-one relationship between multiple
sub-turn units and a single turn-level emotion. One popularap-
proach has been to first use supervised learning to predict an
emotion for each individual sub-turn unit, then combine these
predictions to derive the turn-level emotion [8, 6, 9]. In our

1We use the terms “emotion” and “affect” loosely, as speech re-
searchers have found that the narrow sense excludes states where emo-
tion is present but not full-blown, including arousal and attitude [1].

2The word-level annotation of [5] is a notable exception.

ITSPOKE25: What relations do the directions of acceleration
and net force have to each other?

Student25: they are equal (ASR: they are equal)[nonUncer-
tain]

ITSPOKE26: Very good. Again, in this relationship, what is
the duration that a force acts on a body and the duration
of the body’s acceleration?

Student26: as long as they’re in contact (ASR: as long as thank
contact)[Uncertain]

Figure 1:Dialogue excerpt - human transcript, speech recogni-
tion hypothesis (ASR) and human uncertainty annotation.

own prior work [6, 10], we used word-level pitch features to
predict word-level emotions, then used majority voting to derive
the turn-level emotion. Here we show how to further improve
a voting-based approach, by designing and evaluating voting
methods that are informed by linguistic knowledge regarding
word position and prosodic manifestations of uncertainty.

2. Corpus and annotation
Our corpus consists of 9588 user turns from 347 spoken dia-
logues between 80 users and ITSPOKE (Intelligent Tutoring
SPOKEn dialogue system) [11], a speech-enabled version of
the WHY2-ATLAS conceptual physics tutoring system [12].
ITSPOKE first analyzes a user essay response to a physics prob-
lem for mistakes and omissions, then engages in a spoken dia-
logue to remediate the identified problems. As shown in Fig-
ure 1, the dialogues follow a “tutor question - user answer -
tutor response” format, which is hand-authored beforehandin a
hierarchical structure. User turns in our dialogues are relatively
short, with 2.8 words per turn on average.

All 9588 user turns in our corpus have been annotated3 on
an Uncertain–nonUncertaindimension. Our research has fo-
cused on uncertainty due to its frequency in our data, and its
important role in tutoring dialogue, e.g. [13]. The majority of
turns are labeled asnonUncertain(78.70%).

3. Features
While previous work has used a variety of information sources
for emotion prediction, e.g. [8, 2, 3, 4], we focus only onpitch
andenergy. Both correlate with and are predictive of various
emotions, e.g. [2, 3, 8, 14, 15], and our intuition behind word-
level features (i.e. that they offer a better contour approxima-

3A second annotator annotated 4,895 turns, with 0.74 Kappa.



tion and that emotion is not necessarily expressed over an entire
turn) translates well to energy and pitch.

To extract the pitch (f0) and energy (RMS) information, we
used the Entropic Research Laboratory’s pitch tracker,get f0,
with no post-correction (www.speech.kth.se/software/#esps).
From each of the two contours (pitch and energy) we extract
10 features. The minimum, maximum, mean, and standard de-
viation of the contour values are commonly used for emotion
detection [3]. Inspired by [8], we also use the following fea-
tures that offer a better approximation of the pitch contour: the
first value, the last value, and linear regression coefficient and
error. Finally, we use the second order and the zero order co-
efficients of the quadratic interpolation, which relate to the Tilt
model [16].

To compute turn-level features we use the pitch/energy con-
tour over the entire turn, and thus have 20 turn-level features (10
from pitch and 10 from energy). To compute word-level fea-
tures, for each word we use only the contour data points that lie
within the word boundaries. We also include two positional fea-
tures (distance in words from the turn beginning and turn end) to
treat the words in a turn as a sequence not as a “bag-of-words”.
Even though the word-level feature set is larger than the turn-
level one due to positional features, without the two positional
features the word-level approach will be deprived of the order
information implicit in the turn-level approach.

The computation of word-level features requires a segmen-
tation of turns into words, which we automatically obtained
from human turn transcriptions using the Sphinx2 recognizer in
forced alignment mode; alignment using noisier speech recog-
nition output is left as future work.

4. Predicting uncertainty
For our experiments we use Weka’s (www.cs.waikato.ac.nz/ml)
“AdaBoost” classifier to boost a “J48” decision tree learner,
which has produced robust results in our prior work [6]. To eval-
uate performance we run 10 trials of 10-fold cross-validation,
and compare models using paired two-tailed t-tests.

4.1. Baselines: turn-level and word-level majority voting

Predicting uncertainty using aturn-level modelis straightfor-
ward and uses a standard machine learning approach. During
training, the learner is given 20 turn-level features and the cor-
responding turn-level class. During testing, the resulting classi-
fier is presented with turn-level features extracted from a testing
turn and predicts the class for that turn.

At the word-level, the many-to-one relationship between
the multiple words in the turn and the single turn-level uncer-
tainty label prevents us from using this same approach. As a
baselineword-level model, we use the followingmajority vote
model from our previous work [6, 10]. In the training phase,
each word from a training turn is labeled with the turn class to
produce a training instance: its word-level feature and thela-
bel. The machine learning classifier is trained on this data to
produce aword-level classifier(i.e. we predict word labels).
For each testing turn, we then predict the class of each word in
the turn using the word-level classifier trained in the first phase.
To produce the turn class, we combine the word classes using
majority voting (ties broken randomly).

Table 1 shows accuracy, precision, recall and f-measure for
these two baseline models, and for several new word-level mod-
els introduced below. As shown by the third column, the major-
ity vote word-level model outperforms the accuracy of the turn-

level model. Both of these models also significantly (p < .01)
outperform the 78.70% accuracy of always predicting the most
frequent classnonUncertain. However, unlike our prior work
which only used pitch features [10], now that we have added
energy features the difference between the turn and majority
word-level models is no longer significant (p < .6).

Note that our majority word-level model makes two impor-
tant assumptions. First, since annotation is only available at the
turn-level, all words are given the classification of their parent
turns during training. ForUncertainturns this assumption con-
tends with our intuitions, e.g. in statements uttered as questions
only the last word(s) typically bear prosodic marks of uncer-
tainty. A second assumption which also contends with this in-
tuition is that a simple majority vote can be used to derive the
turn class from the predicted word classes. While we have yetto
tackle the first assumption, below we show the utility of tackling
the second by incorporating a linguistically motivated notion of
word quality based on position in turn into the voting method.

4.2. Voting scheme: Oracle

To derive an upper bound for voting scheme improvements, we
use anoracle: among the candidate votes always pick the cor-
rect one. For example, during testing, if the turn is labeledas
Uncertainand at least one of the words is predicted asUncer-
tain, theoracle voting scheme will label the turnUncertainre-
gardless of how many other words in the turn are predicted as
Uncertainor nonUncertain. If none of the words is predicted to
beUncertain, the turn is labeled asnonUncertain. The fourth
column of Table 1 shows that such a “perfect” voting scheme
greatly boosts accuracy: a significant 9.09 and 9.16 absolute
percentage improvement over the majority voting and turn-level
models. Precision and recall figures are also high. Theseora-
cle results suggest that if we can develop a voting approach that
knows which word vote(s) to count, our turn-level classification
performance should improve. We thus explore several methods
for automatically picking such words, by exploiting linguistic
knowledge regarding prosodic cues to uncertainty in English.

4.3. Voting scheme: 1Uncert

Sometimes a turn can sound uncertain if only one word has an
uncertain intonation. In fact, our oracle needs to pick onlyone
correctly classified uncertain word, to classify the entireturn as
uncertain. We thus hypothesize it may be beneficial to allow a
turn to be classified asUncertainif at least one word is predicted
to beUncertain. We call this voting scheme1Uncert. The fifth
column in Table 1 shows that this approach is far too lenient:
the accuracy drops to 74.51%, which is below all baselines.

4.4. Voting scheme: lastWord

Based on the failure of1Uncert, we hypothesize that to improve
our voting mechanism we need to better understand the poten-
tial positive contribution of each word to the turn-level classifi-
cation. One way to examine this is to look at how many times
the prediction of different types of words in a turn match the
classification of the turn. For example, because uncertain turns
are often statements uttered as questions (which are known to
be prosodically marked by rising intonation [17, 18]), perhaps
voting should use only the last word(s) in a turn. Figure 2 shows
the contribution of each word as function of distance from the
last word in the turn over all experiments. The graph shows that
for 78% of the turns the prediction for the last word matches the
turn label; the prediction for the word before the last matches



Table 1:Performance for turn and word-level models. Significant accuracy improvements (p < .01) over baselines marked with a∗.

Model turn majority oracle 1Uncert lastWord linWgt logWgt
Accuracy 83.04 83.11 92.20 74.51 84.26 85.43 83.47
Improvement over turn-level - +0.07 +9.16∗ -8.53∗ +1.22∗ +2.39∗ +0.43∗

Improvement over majority -0.07 - +9.09∗ -8.60∗ +1.15∗ +2.32∗ +0.36∗

Precision 0.629 0.701 0.893 0.440 0.657 0.739 0.686
Recall 0.498 0.361 0.720 0.720 0.547 0.490 0.415
F-Measure 0.556 0.477 0.797 0.546 0.597 0.588 0.516

Figure 2:Word prediction as function of distance.

the turn label in 72% of the cases. The further we move away
from the last word the lower the match percentage, i.e. the
model seems to classify words more reliably at the turn’s end.

We thus add a constraint to our prior voting scheme, namely
that while only one uncertain word is still needed to classify an
entire turn as uncertain, the uncertain word must occur at the
turn’s end. This is ourlastWord voting scheme. Despite its
simplicity, this method works better than majority voting.As
Table 1 shows, the last word method yields 84.26% accuracy
– a significant 1.15 improvement over majority voting. With a
slight decrease in precision (from 0.701 down to 0.657), we also
see a large increase in recall (from 0.361 to 0.547).

4.5. Weighted voting schemes: linWgt and logWgt

While thelastWord voting scheme shows the importance of the
last word in the turn, Figure 2 shows that other final words might
also have a positive contribution. This suggests that laterwords
in the turn should have more influence in the voting scheme,
but perhaps it would still be of benefit to give the earlier word
predictions some attention. Controlled experiments [15] have
also suggested that prosodic manifestations of uncertainty oc-
cur both locally to particular words or phrases, as well as in
the surrounding context. We thus created a weighted majority
voting scheme that would give “more votes” to the word-level
predictions that appear later in turns. Since it is not clearwhat
weight dynamics fits the descending trend from Figure 2, we
experimented with 2 weighted schemes: linear weighting (lin-
Wgt) and log weighting (logWgt).

Suppose we are dealing with a turn with 5 words. Under
the old majority voting scheme, each word has 1/5 of the 5 total
votes. Under the linear scheme, the first word gets 1 vote, the
second word gets 2 votes, and so on. This way, the fifth word
will receive 1/3 of the total votes, while the first word only has
1/15. The log weighting scheme works the same way using

log(x) votes for the word at positionx.
Employing these weighting schemes improves accuracy

significantly. WhilelogWgt only shows a 0.36 absolute per-
centage improvement over majority voting, the linear version
bests it by 2.32. Due to the slower growth of thelog function
and the fact that our turns have only 2.8 words on average, the
logWgt assigns weights closer to the uniform weighting used in
majority voting. Thus, it is not surprising that we do not seea
big change in performance forlogWgt. In contrast, the linear
weighting boosts performance even more. Its precision is bet-
ter than majority voting (from 0.701 to 0.739) and its recallis
better as well (0.490 compared to 0.361).

4.6. Discussion

Although our majority model improves over the turn-level
model as in our prior work, with this paper’s addition of energy
features the difference is no longer significant. However, we de-
veloped several other word-level models that significantlyout-
perform both the turn-level and the majority word-level models.
Using the last word as the reference point in our successful vot-
ing schemes was not random, but was informed by the dynamics
of how uncertainty is prosodically expressed in English. Many
examples of uncertainty in our corpus are statements uttered as
questions, i.e. with rising intonation, which suggested that later
words might have the most significant prosodic change. Our
analysis from Figure 2 and the improvements offered bylin-
Wgt validate this intuition. Consequently, unlike the turn-level
model, new versions of our word-level model offer the ability to
include prior knowledge regarding the dynamics of uncertainty
expression via the voting scheme. While for uncertainty linear
voting based on word position was successful, other emotions
might require voting based on other linguistic properties.

5. Related work on sub-turn features
Others have also used sub-turn features for emotion prediction.
As discussed in Section 1, our choice of words was motivated
by our focus on spoken dialogue. [8] similarly examines word-
level features in human-computer dialogue data, but does not
explicitly compare their informativeness to turn-level features.
[19, 9] use voiced-segments, which are similar to words. In con-
trast, [20] uses a small 50 msec window, while [7] uses bigger
breath group units (speech between two pauses).

To handle the many-to-one relationship between sub-turn
units and a single turn-level class, [9] uses a weighted voting
approach similar to ours; however, weighting is based on sub-
turn length rather than position. In contrast, [7] still directly
classifies turns rather than sub-turns, but handles the many-to-
one problem by only considering sub-turn features from a fixed
predefined subset of sub-turns (in particular, the first, last and
longest breath groups in a turn, reinforcing the utility of length
and position in weighted voting methods). Moving from classi-



fication to sequence and other modeling approaches, [20] com-
bines sub-turn features by fitting parametric distributions then
uses the parameters as turn-level features, while [19] treats sub-
turn features as observations in a Hidden Markov Model.

In terms of performance comparison between sub-turn and
turn-level features, the results are mixed. When parametric
models are used, sub-turn features perform worse than turn-
level features [20, 19]. In classification-based approaches such
as ours and that of [7], sub-turn level features usually outper-
form turn-level features; [9] is an exception, although their
turn and sub-turn features are not equivalent. However, many
factors besides sub-turn granularity and combination method
also vary. Our work and that of [7] predict uncertainty, while
[20, 19, 9] predict 6-8 emotion classes. We predict emotions
in human-computer spoken dialogues, while other studies use
human-human [7, 19, 9] or artificially elicited data. Corpussize
ranges from smaller [20, 9] to considerably larger (this study
and [7, 19]). Finally, while most studies look at pitch and en-
ergy, other features have also been considered [20, 9].

6. Conclusions and future work
We show that word-level pitch and energy features can outper-
form turn-level features when classifying uncertainty in spoken
dialogues. Building on prior work, we use voting to solve the
many-to-one relationship between a variable number of word-
level segments and a single turn-level classification. We intro-
duce and evaluate several alternatives to majority voting,moti-
vated by the potential for improvement indicated by an “oracle”
method. Our new voting schemes are inspired by the literature
on uncertainty as well as empirical analysis of our data. We hy-
pothesize that our use of a linear voting method based on word
position works best in our experiments as it reflects the use of
rising intonation to express uncertainty in English.

Since our results suggest that emotion expression dynam-
ics play an important role, we would like to evaluate other po-
tentially relevant aspects of words besides turn position (e.g.
word length, duration, part-of-speech, frequency) to develop
additional linguistically informed voting methods, and torepro-
duce these experiments for other emotions (e.g. frustration).
We would also like to try to learn the voting scheme and/or
use different ensemble methods than voting. Removing the as-
sumption that all words are labeled using the turn’s label during
training is another potential avenue for improvement.
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