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Abstract. We examine a corpus of physics tutorial dialogues between
a computer tutor and students. Either graphs or illustrations were dis-
played during the dialogues. In this work, stepwise linear regression, aug-
mented to remove unwanted terms, is used to build models that identify
situations when each graphic may aid learning. Our experimental results
show that grouping students by pretest score, then by gender produces
a model that significantly outperforms the baseline.
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1 Introduction

One-on-one tutoring between a student and a human tutor is a very effective
method of instruction [10]. Intelligent tutoring systems (ITS) have been devel-
oped to provide one-on-one tutoring, but from a computer-based tutor rather
than a human tutor, and have been shown to improve student knowledge [17].

Visual representations, such as illustrations and graphs, are one method used
to convey information to students thought to help them learn concepts. Illustra-
tions use images to represent concepts [15,9], whereas graphs convey concepts
primarily through such graphs as bar graphs or line graphs [15]. While much
of the ITS research has made the assumption that one representation is best
for everyone, differences exist between representations. Illustrations are easier
for novices to interpret [12], but have surface features that may distract stu-
dents [8]. Graphs can help students connect descriptions of situations to the
base concepts [16], but students are more likely to make mistakes with them
[14]. Researchers have thus examined the benefits of using multiple representa-
tions. Helping students become fluent in multiple representations and to be able
to translate between them are beneficial [15]. Research into using multiple repre-
sentations during tutoring tends to treat all students as identical; the switching
of representations are on a fixed schedule [13,15]. However, research suggests
that there are differences among students, leading to some representations being
more beneficial than others. Student differences to consider include gender [14],
spatial reasoning ability [9], and skill with domain concepts [9]. Adapting to stu-
dents in other instances have had success, such as uncertainty and motivation
leading to increased persistence and better learning gains [1,6].
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This paper explores building models to predict when illustrations and graphs
benefit learning. We first describe an algorithm that constructs such models using
stepwise linear regression augmented to conform to certain syntactic constraints.
We then examine the models learned and find that models including both pretest
score and gender when describing tutoring situations perform best.

2 Corpus

The data comes from a study comparing the effectiveness of showing illustrations
versus graphs during conceptual physics tutoring with an ITS [11]. Subjects
solved a physics problem in Andes [17], with the Rimac physics coach walking
them through problem solving [7]. Andes presented the problem statement and
a visual representing the situation described. Rimac provided instruction on
solving the problem through a typed natural language dialogue. After solving
the problem, subjects engaged in a reflection dialogue designed for students to
reflect on concepts; it was a typed natural language discussion with a computer
tutor. It began with a question on a key concept from the problem and after
answering this question, the student has a discussion of the concept with the
tutor. During this discussion, visuals were shown to help explain concepts.

Subjects saw only illustrations or only graphs during tutoring; the visuals pre-
sented the same information. Problems, reflection questions, and their orders,
remained the same. Twenty-nine college students without college-level physics
were recruited and randomly assigned one of the visuals to see. They began by
filling out a background survey then completed a standard test for determin-
ing spatial reasoning ability [5]. They took a pretest to measure their incoming
physics knowledge. At the end of tutoring, they took an isomorphic, counterbal-
anced post-test. We have 2043 data points at the utterance level.

Prior work on this corpus found differences from the pooled data using AN-
COVAs [11]. This paper presents work on mining the data to learn models that
can identify situations when illustrations or graphs were beneficial for learning.

2.1 Features

Features similar to those below have been used in previous work on tutoring
systems [4,2,3] and have been found useful by cognitive science research on visual
representations [14,9]. From this literature, we selected the features we could
extract from the data collected during the study.

Gender — Female or Male

SpatialReason — score on the spatial reasoning test (high, low)1

Condition — experimental condition (graph, illustration)

PreScore — score on pretest (high, low)

WalkThruPctCorrect — percent of correct answers in the current problem’s walk
through dialogue with the physics coach (high, low)

! Median splits were performed for ease of interpreting results.
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RQPctCorrect — percent of correct answers in the current problem’s prior reflection
dialogue (high, low)

ProblemPctCorrect — percent of correct answers in current problem (both walk
through dialogue and prior reflection dialogue(s)) (high, low)

SessionPctCorrect — percent of correct answers in session (high, low)

PctThruProblem - for each problem, how far through the dialogues (walk through
and reflection) the subject has gone (early, late)

PctThruSession — how far through tutoring (# completed dialogues) (early, late)

KCusage — whether Knowledge Components (KCs) must be stated or applied

ItemDifficulty — whether the question is easy or hard, as determined by percent
correct on a small pilot study using these dialogues

3 Modeling

To build an adaptive policy, we use stepwise linear regression to learn a model
that explains the variance in post-test score using interactions between the fea-
tures above. Standard stepwise regression produces rules that may be contra-
dictory or non-adaptive, which are not helpful in creating an adaptive policy.
We augment stepwise regression to address these additional constraints. We also
constrain the syntax of the models to better describe the tutoring situation.
Thus, we are trying to optimize 72, subject to certain constraints.

The algorithm below shows how to learn an adaptive policy. Once learned,
the policy can be applied at every decision point by starting at the top of the
list and applying the first that applies.

1. Convert each feature into binary factors, one factor for each feature value. Each
factor has a value of either 1 or 0, depending on whether the feature has that
particular value for that data point.
2. Run stepwise linear regression on the data subject to syntactic constraints
Model — Models have the form postscore = Y terms + prescore. Both postscore
and prescore are continuous variables. Prescore is included because pretest
scores are often correlated with posttest scores; in this corpus it is a trend.

Terms — Create terms by multiplying two or more factors together. Each term
contains one Condition factor so that the final model learned can indicate
situations when a visual helped or hindered learning. Additional factors in the
term describe the situation.

3. Identify problematic term pairs. Problematic terms can be identified by:
Contradictory pair — Two terms with opposite conditions and the other fac-

tors are identical. For example, 0.123*ConditionIsGraph* GenderIsFemale and
0.789*ConditionIsIllus*GenderIsFemale contradict each other because the first
says to show graphs to females, while the second says to show illustrations.
Non-adaptive pair — Two terms with the same factors, except one is opposite
between the two terms. For example, 0.456*ConditionIsGraph* PctThruSes-
sionIsLate and 0.123*ConditionIsGraph*PctThruSessionIsEarly are not adap-
tive since they say to show graphs regardless of the percent through tutoring.

4. For each problematic term pair, remove the one with the lower absolute value of

the coefficient (avc)?.

2 We also explored removing both terms, but found that the final models did not
perform as well.
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Table 1. Models are compared across 10-fold cross validation according to adjusted 2
values and their 95% confidence intervals. Italicized rows indicate results significantly
better than baseline (p < 0.05). Underlined indicates the best result.

Model |Adj. 7'2| 95% CI|
Baseline (Illustration) 0.1127| (0.0896, 0.1358)
1 Factor 0.0955| (0.0737, 0.1172)
Gender 0.1788|(0.1428, 0.218)
SpatialReason 0.1488| (0.1149, 0.1826)
2 Factors PreScore 0.8499)(0.3266, 0.3732)

PctThruProblem| 0.1007| (0.0635, 0.1378)
PctThruSession | 0.1180] (0.0851, 0.1509)
Gender 0.4571((0.4220, 0.4922)
) Spatial Reason 0.2817)(0.2567, 0.3267)

PctThruProblem | 0.83418((0.8183, 0.8653)
PctThruSession | 0.3087((0.2782, 0.8392)

3 Factors (PreScore and ...

5. With the remaining terms, run multiple linear regression to learn the final model
since the coefficient signs may change from the original model.

6. Convert the terms into rules and rank them using avc. The Condition factor indi-
cates the visual to show and the other factors indicate the situation. For negative
coefficients, use the visual opposite the one indicated by the Condition factor. Neg-
ative coefficients suggest that the visual is detrimental to learning in that situation.

4 Results

The models are compared to a baseline, which always predicts showing the same
kind of graphic. We choose illustrations since they showed better learning gains.
Models are each evaluated using ten-fold cross validation and are compared
according to the adjusted 72 value. The performance of the baseline can be seen
in the first row of Table 1.

The “1 Factor” model contains only one factor describing the situation, plus
the interaction feature Condition. As seen in Table 1, it is not significantly differ-
ent than the baseline. Since all terms in this model consist of one non-Condition
factor, the model can only identify situations by one feature (e.g. GenderIsFe-
male or PctThruSessionIsLate). This may not be enough to adequately describe
situations when illustrations or graphs are more beneficial than the other; the
descriptions may be too coarse-grained.

Finer-grained situation descriptions are created by adding more factors to each
term. Five features were selected based on prior work suggesting a change in these
features can cause large changes in models [11,9]: Gender, SpatialReason, PreScore,
PctThruProblem, and PctThruSession. Five “2 Factor” models were created, one
for each feature; two perform significantly better than baseline: Gender and
PreScore, with PreScore significantly better than other models seen so far. Thus,
keeping PreScore as the second feature, we add a third factor to this model, draw-
ing from the same set of features. As seen in Table 1, all four “3 Factor” models
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Table 2. Rules for the best 3 Factor model: PreScore*Gender

Female High Pretesters (n = 8)

Female Low Pretesters (n = 9)

1. If WalkThruPctCorrect=Low,

show Graph
. If RQPctCorrect=Low, show Graph
. If SessionPctCorrect=High, show Illus
. If ProblemPctCorrect=High, show Illus
. If PctThruProblem=Early, show Graph
. If PctThruSession=Early, show Graph

S U W N

1. If SessionPctCorrect=High,
show Graph
. If PctThruSession=Early, show Illus
. If ProblemPctCorrect=High, show Illus
. If PctThruProblem=Early, show Illus

2
3
4
5. If RQPctCorrect=Low, show Illus

Male High Pretesters (n = 3)

Male Low Pretesters (n = 9)

1. If RQPctCorrect=Low, show Illus
2. If SessionPctCorrect=High, show Illus
3. If WalkThruPctCorrect=Low,

show Illus

. If RQPctCorrect=Low, show Illus

. If WalkThruPctCorrect=Low, show Illus
. If SessionPctCorrect=High, show Illus
If PctThruSession=Early, show Graph

. If PctThruProblem=Early, show Graph
. If ProblemPctCorrect=High, show Illus

1
2
3
4.
5
6

perform significantly better than baseline, with PreScore*Gender performing sig-
nificantly better than the rest; Table 2 has its policy.

In the model, we see differences between the partitions. Low pretesting females
with a High PctSessionCorrect should be shown graphs, where as males and high
pretesting females should be shown illustrations. When early in the tutoring
session, low pretesting females should see illustrations whereas high pretesting
females and low pretesting males should see graphs. When WalkThruPctCorrect
is low, high pretesting females should see graphs whereas males should see illus-
trations. When RQPctCorrect is low, high pretesting females should see graphs
but males and low pretesting females should see illustrations. That these differ-
ences exist in the model suggest that looking at interactions with both features
improves situation description.

5 Discussion and Future Work

Prior work on this data found differences from the pooled data [11] by identifying
when one group of students may benefit from one visual representation over
another. This work identifies situations when one graphic might be better than
the other for the same student and creates an adaptive model. In ongoing work,
we have incorporated one model into a tutoring system and are evaluating its
effectiveness at selecting visuals that aid learning compared to both alternating
visual representations and using only one throughout tutoring.

This paper also presents a technique for mining data to create an adaptive
policy when a gold standard is not available. It starts with a standard method
(stepwise linear regression) and augments it to remove terms unwanted for de-
veloping adaptive systems. The method seeks to identify situations when one
graphic is better than the other. Increasing situation descriptions, by adding
more factors to each term, improve model performance. Many models, particu-
larly those involving PreScore, significantly outperform the baseline. In ongoing



Modeling Student Benefit from Illustrations and Graphs 441

work, we are exploring improvements to model development, such as automati-
cally identifying factors to add to a term to improve situational descriptions.
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