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Abstract

This paper focuses on the analysis and prediction of stu-

dent disengagement and uncertainty, using a corpus of

dialogues collected with a spoken tutorial dialogue sys-

tem in the STEM domain of qualitative physics. We first

compare and contrast the prosodic characteristics of di-

alogue turns exhibiting disengagement or not, and those

exhibiting uncertainty or not. We then compare the utility

of using multiple prosodic features to predict both disen-

gagement and uncertainty.

Index Terms: spoken dialogue systems, educational ap-

plications, emotion detection, prosody

1. Introduction

Tutorial dialogue systems are being developed for a va-

riety of STEM1 domains (e.g., biology, computer sci-

ence, electricity and electronics, physics, and thermo-

dynamics), as one method for closing the performance

gap between human and computer tutors. Dialogue is

the natural interaction modality for human tutors; how-

ever, to date its communicative power has not yet been

fully flexed in computer tutors. While most tutorial dia-

logue systems respond based only on the correctness of

a student answer, it has been hypothesized that perfor-

mance could be improved by also responding to student

affective states [1, 2, 3, 4]. There has been considerable

research on affect detection in naturally occurring spo-

ken dialogue, but most of this work has focused on states

typically seen during customer care and information-

seeking applications (e.g. annoyance and frustration [5]).

Less work has addressed the detection of affective states

more commonly seen during tutoring interactions (e.g.

boredom, confusion, delight, flow, frustration, and sur-

prise [2]). In contrast, while research in intelligent tutor-

ing systems has attempted to detect such pedagogically

relevant states, only a few computer tutors are spoken tu-

torial dialogue systems [1, 2, 3, 4]. Thus, the prosodic

detection of learner affect has not been well studied to

understand whether such cues generalize across domains.

Our research focuses on the speech-based detection

of student uncertainty and disengagement during physics

1Science, Technology, Engineering and Mathematics

tutorial dialogue. Since both states negatively correlate

with student learning and user satisfaction in our prior

studies [6], we hypothesize that detecting and responding

to these states will improve system performance. These

states are also of interest to the broader speech commu-

nity. Uncertainty detection has recently been studied in

the context of voice search [7], while disengagement is

related to the recent “Level of Interest” Interspeech Chal-

lenge [8]. In this paper, we in particular focus on compar-

ing and contrasting the role of prosody in both character-

izing and predicting disengaged versus engaged dialogue

turns, and uncertain versus certain turns. Our primary in-

terest is comparing model content, rather than optimizing

detection performance.

2. System and corpus

Our corpus consists of dialogues between users and IT-

SPOKE (Intelligent Tutoring SPOKEn dialogue sys-

tem) [1], a speech-enhanced and otherwise modified ver-

sion of the Why2-Atlas text-based qualitative physics tu-

tor. Fig. 1 illustrates one of the problems tutored by IT-

SPOKE (one per dialogue), along with an associated dia-

logue excerpt (annotations explained in Section 3).

Problem 1: Suppose a man is in a freefalling elevator that has

nothing touching it (you should ignore air resistance). The man

is holding his keys motionless right in front of his face. He then

lets go. He doesn’t toss them up or throw them down; he just

releases his grip on them. What will be the position of the keys

relative to the man’s face as time passes?

ITSPOKE1: Let’s begin by looking at the motion of the man

and his keys while he’s holding them. How does his velocity

compare to that of his keys?

Student1: same same same (DISE, CER)

. . .

ITSPOKE12: What are the forces exerted on the man after he

releases his keys?

Student12: gravity??? (ENG, UNC)

Figure 1: Dialogue excerpt with binary disengagement

(DISE/ENG) and uncertainty (UNC/CER) annotations.

Our corpus was collected in an experiment evaluating

the utility of detecting and adapting to student uncertainty



Table 1: Turn-level annotations (N=7216).

Student Turn Label Total Percent

Disengaged (DISE) 1170 16.21%

Uncertain (UNC) 1483 20.55%

Uncertain+Disengaged 373 5.17%

in ITSPOKE [1]. Subjects were college students with no

college-level physics, who were native speakers of En-

glish. The corpus contains 432 dialogues (6 per student)

and 7216 turns from 72 students, 47 female and 25 male.

Average pretest and posttest scores on multiple-choice

physics tests that students took before and after their

set of ITSPOKE dialogues were 51.0% and 73.1%, re-

spectively, indicating that students improved their physics

knowledge after ITSPOKE’s tutoring.

In the version of ITSPOKE used to collect our cor-

pus, student speech is digitized from head-mounted mi-

crophone input and sent to the Sphinx recognizer. The

recognizer’s transcript as well as prosodic features (see

Section 4) extracted from the speech are then sent to a

finite state dialogue platform. The recognition output is

classified as incorrect or not via semantic analysis, while

student (un)certainty is classified by inputting prosodic,

lexical, and contextual features into a logistic regression

model. Finally, the tutor response is determined based on

the answer’s (in)correctness and (un)certainty and then

sent to the Cepstral text-to-speech system, as well as dis-

played on a web-based interface.

3. Annotation of UNC/CER and DISE/ENG

Each student turn in the corpus was manually annotated

by one trained annotator. This annotator displayed inter-

annotator agreement of 0.62 Kappa for annotating uncer-

tainty in prior ITSPOKE corpora [1], and 0.55 Kappa for

annotating disengagement in the current corpus [6]. Our

Kappas indicate that uncertainty and disengagement can

be annotated with moderate reliability, on par with prior

emotion annotation work (c.f., Kappas of .45 for uncer-

tainty [9] and .66 for level of interest [10]). These anno-

tations serve as the dependent variables in Sections 5-6.

Example (dis)engagement and (un)certainty annota-

tions are shown in Fig. 1. Student turns expressing un-

certainty or confusion about the physics topic are anno-

tated as uncertain (UNC), while turns expressing moderate

or strong disengagement towards the interaction (i.e. re-

sponses given without much effort) are annotated as dis-

engaged (DISE). All other turns are annotated as certain

(CER) and engaged (ENG), respectively.

Table 1 shows the class distributions of the annotated

turns in our corpus. Students are either disengaged

and/or uncertain in 32% of their turns ( 1170+1483−373

7216
),

although they are only in both states 5% of the time.

Figure 2: Annotation distribution over tutoring.

Fig. 2, which plots the total number of DISE and UNC

annotations over the course of all student tutoring, shows

that the temporal patterns of the two states differ both

within and across the six physics dialogues (separated by

the vertical lines). UNC is highest at the beginning of

each dialogue then tapers off around the middle, suggest-

ing that students are most uncertain when asked questions

about new material. In contrast, DISE is more consistent

within each problem but increases as the number of dia-

logues increases (the mean time to tutor all six problems

is 40.6 minutes), suggesting that students disengage as

they are forced to stay in the experimental setting longer.

In sum, while Table 1 shows that student uncertainty

and disengagement are common in ITSPOKE dialogues,

Fig. 2 suggests that different features and models will be

needed to best characterize the two states.

4. Extraction of acoustic-prosodic features

The following features were automatically extracted from

the speech file for each student turn:

• Temporal: turn duration, prior pause duration

• Pitch (f0): max, min, mean, std. deviation

• Energy (RMS): max, min, mean, std. deviation

Turn duration and prior pause duration (in seconds) were

computed via the automatically labeled start and end turn

boundaries provided by the speech recognizer during the

experiment. F0 and RMS values, representing measures

of pitch and loudness, respectively, were computed using

openSMILE [11] after the experiment2.

These automatically computed features serve as the

independent variables in Sections 5-6, and are motivated

by previous studies of emotion prediction in spontaneous

dialogues by ourselves and others (as reviewed in [1]).

While we have experimented with adding other features

used in recent Interspeech Challenges [8] that can be

2During the experiment, Entropic Research Laboratory’s pitch

tracker was used to detect uncertainty. ITSPOKE’s prosodic analysis

component (recall Section 2) has now been updated to use openSMILE.



computed in real-time using openSMILE [11], to date

this has only decreased the cross-validated performance

of the predictive models discussed in Section 6 (perhaps

due to the relatively small size of our corpus).

5. Descriptive analysis and results

We first looked for distinguishing prosodic characteristics

of DISE versus ENG student turns, and UNC versus CER

turns. We hypothesized that prosodic differences would

exist for both annotation types, but that the differences

between UNC/CER turns could be different than those be-

tween DISE/ENG turns. To examine the prosodic differ-

ences between uncertain versus certain turns in a speaker

independent manner, for each student and for each fea-

ture, we calculated the mean value of that student’s UNC

turns, and the mean value of his/her CER turns. Then,

for each feature, we created vectors of these 72 student

means for UNC and CER turns and performed paired t-

tests on the vectors. A similar analysis was performed to

compare DISE and ENG turns.

Table 2: Comparisons of ENG vs. DISE and of CER vs.

UNC turns, by acoustic-prosodic features.

Feature Mean Diff Mean Diff

ENG - DISE CER - UNC

turn duration .076 -.032

prior pause -1.661* -3.077*

max f0 10.910* 9.971*

min f0 1.152 1.254

mean f0 4.755* 4.907*

stddev f0 2.889* 5.183*

max RMS .005 .011*

min RMS <.001* <.001*

mean RMS .001 .002*

stddev RMS .001* .003*

* denotes significant difference (p < .05) in mean values

Table 2 shows the mean difference between labels by

annotation type. We first focus on the statistically signifi-

cant prosodic commonalities in distinguishing UNC/CER

turns and in distinguishing DISE/ENG turns. With re-

spect to temporal features, the second row of the table

shows that when students are disengaged (DISE), they

take significantly longer to respond to the tutor (“prior

pause”) than when they are engaged (ENG). This row

also shows that students take longer to respond when they

are uncertain (UNC) about the physics content of their re-

sponse, compared to their CER responses. With respect to

pitch, three features have lower values when student turns

are annotated as either DISE or UNC (thus yielding pos-

itive differences in the table). Disengaged turns and un-

certain turns are uttered with lower maximum (“max f0”)

and mean (“mean f0”) pitch values than engaged turns or

certain turns, and pitch is more constant (i.e., “stdev f0”

is lower) throughout. Energy is also lower (“min RMS”)

and more constant (“stdev RMS”) in both disengaged and

uncertain turns, as compared to their counterparts3.

In contrast, the two remaining energy features only

significantly differ between uncertain versus certain

turns. While uncertain turns are spoken more softly than

CER turns (“max RMS” and “mean RMS”), disengaged

turns are neither softer nor louder than engaged turns.

6. Predictive results

Given the significant differences just identified, we next

examine whether our features also have predictive utility,

particularly when used in combination with each other.

Decision tree models for predicting both (un)certainty

and (dis)engagement were trained using the WEKA ma-

chine learning toolkit4. A decision tree representation

was chosen due to our ability to compute feature usage

as described below, and the fact that our previous exper-

iments predicting uncertainty showed little variance be-

tween learning algorithms [1]. Because of the skewed

annotation distributions shown in Table 1 (16.21% DISE,

20.55% UNC), a cost matrix was used during learning to

penalize classifying a true DISE or true UNC instance as

false. To mitigate issues of speaker-dependence, we nor-

malized values of all features by first turn value5.

Table 3 summarizes how the acoustic-prosodic fea-

tures are used to predict uncertainty and disengagement,

based on the structure of the learned decision trees. Fol-

lowing [5], feature usage is reported as the percentage of

decisions for which the feature type is queried; features

higher in the tree thus have higher usage than features

lower in the tree6. As can be seen, the feature usage of

both learned models show a similar pattern with respect

to the three broad types of acoustic-prosodic knowledge.

Temporal features are most highly queried, followed by

pitch, followed by energy.

At the level of specific features, however, there are

differences. First, only the disengagement model in-

cludes both types of temporal features. Prior pause du-

ration is included in both models, and is in fact the root

of both trees; the importance of prior pause is consistent

with the descriptive results in Table 2. In contrast, turn

duration (which was not discriminative in isolation for

either state) is now used by the disengagement model in

conjunction with other features.

With respect to pitch and energy, the uncertainty

model uses both types of features more heavily than the

disengagement model. In addition, their relative utility

differs across the models. As with the temporal features,

3Additional t-tests determined that of the differences asterisked in

both columns of Table 2, the “prior pause,” “stdev f0” and “stdev RMS”

differences were significantly different across the two columns.
4http://www.cs.waikato.ac.nz/ml/weka/
5We included both the raw and normalized values of “prior pause”

because both were found to be useful in prior studies.
6The percentages sum to 99 rather than 100 due to rounding.



Table 3: Feature usage in learned models.

Features Uncertainty Disengagement

Temporal 50% 72%

turn duration 0% 23%

prior pause 50% 49%

Pitch 34% 16%

max f0 9% 4%

min f0 19% 4%

mean f0 0% 8%

stdev f0 6% 0%

Energy 15% 11%

max RMS 0% 0%

min RMS 6% 1%

mean RMS 9% 4%

stdev RMS 0% 6%

the prosodic differences identified in Table 2 sometimes

differ from the predictive features identified in Table 3,

where multiple features are used in combination. For ex-

ample, “stdev f0” is a significant difference in Table 2

for both states, but is only used by the uncertainty model.

Conversely, “min f0” is not a significant difference in Ta-

ble 2, but is included in both predictive models.

Finally, we quantitatively evaluated our two learned

models using 10-fold cross validation. The unweighted

average precision and recall are 63% and 61% for un-

certainty, and 61% and 56% for disengagement, respec-

tively7. While these results already significantly im-

prove over majority class baselines (unweighted preci-

sion/recall of 40%/50% for predicting all turns as certain,

and 42%/50% for predicting all turns as engaged), recall

that the focus of this paper is only on acoustic-prosodic

feature comparisons. The absolute performance results

of our predictive models can in fact be increased when

lexical, semantic, discourse, and other types of features

are included (e.g., 69% unweighted precision and recall

for the disengagement model [6], and Kappas of .5 and .4

for disengagement and uncertainty, respectively).

7. Conclusions

Our results indicate that turns annotated as disengaged or

uncertain do prosodically differ from turns annotated as

engaged or certain, respectively; however, the features on

which turns differ do vary slightly according to student

state ((dis)engagement, (un)certainty). Disengaged turns

have longer response times, lower pitch values, and less

pitch and energy variation than engaged turns. Uncertain

turns differ from certain turns in these same ways, and in

addition are not as loud as certain turns. Our results also

indicate the utility of acoustic-prosodic features in pre-

dictive models. Again, however, the best combination of

7Unweighted metrics are the standards for evaluating affect recog-

nition, particularly for unbalanced class distributions [8].

features differ across our two binary prediction tasks (dis-

engaged vs. engaged, and uncertain vs. certain). While

temporal features are the most important type of knowl-

edge in both predictive models, the temporal features play

a more central role when predicting DISE/ENG as com-

pared to when predicting UNC/CER. Conversely, pitch

features are more prominent when predicting UNC/CER.

We plan to replicate the prosodic analyses presented

here on two publicly available corpora with related anno-

tations (“Level of Interest” [8], uncertainty [9]), to ex-

plore whether our findings from tutoring generalize to

other types of dialogue systems. We are also now im-

plementing our best predictive models in ITSPOKE (us-

ing prosody supplemented with other feature types), to

evaluate the utility of detecting and adapting to both un-

certainty and disengagement in a controlled experiment.
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