A User Modeling-based Perfor mance Analysis of a Wizarded
Uncertainty-Adaptive Dialogue System Corpus

Kate Forbes-Riley, Diane Litman

Learning Research and Development Center (LRDC), Unityeo$iPittsburgh, USA

forbesk@s. pitt.edu, |

Abstract

Motivated by prior spoken dialogue system research in user
modeling, we analyze interactions between performance and
user class in a dataset previously collected with two wiedrd
spoken dialogue tutoring systems that adapt to user unugrta
We focus on user classes defined by expertise level and gender
and on both objective (learning) and subjective (user featis
tion) performance metrics. We find that lower expertise siser
learn best from one adaptive system but prefer the othetgewhi
higher expertise users learned more from one adaptiverayste
but didn't prefer either. Female users both learn best froch a
prefer the same adaptive system, while males preferred one
adaptive system but didn’t learn more from either. Our rssul
yield an empirical basis for future investigations into \iher
adaptive system performance can improve by adapting to user
uncertainty differently based on user class.

Index Terms: user modeling, affect/attitude adaptation, spoken
dialogue, tutoring system, subjective and objective rostri

1. Introduction

There is increasing interest in building dialogue systeondet-
tect and adapt to user affect, attitude and other metagognit
states. Promising results have been reported on autonwtic d
tection of such user states (e.g., [1]). A few experimentgeha
further shown that by detecting and adapting to such ustrssta
system performance (e.g., as measured by user satisf§2}ion
and student learning [3]) can be improved compared to non-
adaptive baseline systems.

However, while this line of research is promising, there is
still much room for improvement. We are exploring user mod-
eling techniques as one way of potentially improving the ef-
fectiveness of our adaptive tutoring system that adaptséo u
uncertainty. Prior user modeling research has shown thatlho
users interact with dialogue systems in the same way [4]. Re-
search has further shown that developing and implementfag d
ferent system behaviors for different user classes candwepr
performance [5, 6]. This user modeling approach can be edid
into two main areas. Dynamic approaches determine a user's
class based on features collected during system use (endi-, ¢
dence scores from the speech recognizer [5]). Static appesa
determine a user’s class based on user features obtainee bef
runtime (e.g., a user’s age [7]). Some user classes are-deter
mined by both dynamic and static approaches (e.g., domain ex
pertise [8]). In some domains (e.g., many call-center sysjét
can be difficult under either a static or dynamic approachsto o
tain enough information about the user to accurately determ
to which class a user belongs [9]. However, other domairg) su
as medical or tutoring, employ instruments such as survegs a
tests to permit the extraction of a wealth of static userscias
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formation, including age, gender, expertise, etc. Theseaiios

may also acquire repeat users, yielding additional claset
information derived from users’ past system interacticmest t
can be used in either a static or dynamic approach.

To our knowledge, little (if any) prior spoken dialogue sys-
tem research has applied user modeling techniques to the pro
lem of adaptation to user metacognitive states. Here weyzmal
interactions between performance and user class in a datase
previously collected with two wizarded spoken dialoguettut
ing systems that adapt to user uncertainty. We take a static a
proach, focusing on user classes defined by expertise ladel a
gender, which are easily obtained in our system. To evaluate
performance, we consider both objective and subjective met
rics: student learning and user satisfaction. Objectiwt surb-
jective metrics both represent crucial aspects of perfogean
most types of spoken dialogue systems [10]. For example, in
call center systems, task completion (objective) and ebsse
(subjective) are both important, as a user won't use a sygtem
it is too difficult, even if they can complete their task with i
Similarly, in tutoring systems, student learning and usdiss
faction are both important, as a student won't use a system if
s/he doesn't like it, even if they can learn from it.

Our user modeling analysis indicates for whom uncertainty
adaptations are effective and in what way. In particulareio
expertise users learn more from one adaptive system but pre-
fer the other, while higher expertise users learned morm fro
one adaptive system but didn’t prefer either. Female usars|
more from and prefer the same adaptive system, while males
preferred one adaptive system but didn’t learn more froimegit
These results motivate a future system redesign to inastif
spoken dialogue tutoring system performance can be imgrove
by adapting to uncertainty differently based on user class.

2. System and Data

ITSPOKE (ntelligent Tutoring SPOK En dialogue system) is
built on top of the Why2-Atlas text-based tutor [11]. ITSPBEK
tutors 5 qualitative physics problems over 5 dialogues, in a
question - answer - response format. In the original (non-
adaptive) ITSPOKE, tutor responses depend only on the cor-
rectness of student answers. In our two adaptive ITSPOKEs
(basicandempirical), tutor responses depend on both the cor-
rectness and the uncertainty of student answers. These adap
tations, and the experiment in which we evaluated them, are
summarized below and discussed in detail elsewhere [3].

In basicadaptive ITSPOKE, tutor responses are determined
as follows: If the student answeirrectly without uncer-
tainty, ITSPOKE responds with Correctness feedback (e.g.,
“Right”). If the student answericorrectly with or without
uncertainty ITSPOKE responds with Incorrectness feedback
(e.g., “Well...”) and additional content that walks thedsnt



through the correct line of reasoning. Finally, if the stude
answerscorrectly with uncertainty ITSPOKE gives the same
response that it would give if the answer were incorrectégxc
with Correctness feedback, e.g., “Fine.”).

T1: Now let’s talk about the net force exerted on the truck. By
the same reasoning that we used for the car, what's the bveral
net force on the truck equal to?

S1: Theforce of the car on it?? [CU]

T2: Fine. We can derive the net force on the truck by summing
the individual forces on it, like we did for the car. First, ath
horizontal force is exerted on the truck during the coliigio

Figure 1: Example oBasicUncertainty Adaptation

Our basic adaptation is illustrated in Figure 1. It derives
from tutoring theory that views both uncertainty and ineatr
ness as signals of “learning impasses” (e.g., [12]). Wardist
guished three impasse types by combining binary unceytaint
(uncertain(U), nonuncertain (nont))and correctness (incor-
rect (1), correct (C)):InonU, 1U, CU. Our basic adaptation
provided the same additional content (the incorrect anserer
sponse) to remediatdl impasses (CU, U, InonU). In contrast,
the original ITSPOKE remediated only incorrectness imegss
(U, InonU) and so ignored one uncertainty impasse (CU)hBot
basicand original ITSPOKE gave feedback that varied based
only on the answer’s correctness (ignoring uncertainty).

Our empirical adaptation revised oubasic adaptation
based on empirical analyses of human tutor responses;-it pro
vided additional content to remediate all impasses (CUJib,
onU), but varied botlthe dialogue actised to present this con-
tent andthe feedbackbased on the impasse type. One example
is shown in Figure 2. The feedback variations acknowledge th
(in)correctness content and the uncertainty content, agi w
based on prior research showing that human tutor-derived em
pathetic system responses can positively impact perfacenan
(e.g., [13]). The dialogue act variations were based orodiz
acts we found a human tutor to use significantly more or less
than expected after each impasse type. After CUs we used a
“Bottom Out” version of the original incorrect answer resge.
This is illustrated in Figure 2 (compare with the originat re
sponse inT 2 in Figure 1). After IUs, we used a short Bottom
Out followed by one or more Short Answer Questions, while
after InonUs we used one or more Short Answer Questions.

S1: Thecar’sforce hitting the truck?? [CU]

T2: That's exactly right, but you seem unsure, so let's sum up.
The net force on the truck is equal to the impact force on it.
We can prove this just like we did for the car. First, we know
gravity and the normal force on the truck must cancel each
other, otherwise the truck would not be at rest vertically.
Second we know that the impact force is the only horizontal
force exerted on the truck.

Figure 2: Example oEmpirical Uncertainty Adaptation

Our experiment used a Wizard of Oz scenario: a human
“wizard” performed speech recognition, language undedsta
ing, and uncertainty annotation. One control conditioor(nal)
used our original ITSPOKE. A second control conditioan-
dom) also used this ITSPOKE but treated a percentage of ran-
dom correct answers as incorrect, to control for the add#io
content in the experimental conditions. The first experitaken
condition pasig usedbasicl TSPOKE. The second experimen-
tal condition émpirical) usedempirical ITSPOKE. Subjects:
read a short physics text; took a pretest; worked 5 problems
with ITSPOKE; took a survey (Figure 3); took a posttest.

1A ‘nonuncertain’ answer may be certain or neutral for certtai

3. User Classes Performance Analysis
3.1. Method

We previously examined the main effect of condition on learn
ing and user satisfaction metrics over all users (see [3JjhW
respect to the metrics in this paper (see below), we find a main
effect of learning gain and pairwise tests show users lehrne
more from basic than norm or empirical but average user
posttest score withasicwas only 81% (% correct). Moreover,
although there are no main effects for our three user satisfa
metrics, pairwise tests show users prefereatbirical to basic
with respect to the quality of the spoken dialogue intecacti
These results suggest that neither adaptive system is ralixim
effective. A maximally effective system would yield stroper-
formance on both objective (e.g., learning gain) and stivec
(e.g., user satisfaction) evaluation metrics.

We hypothesized that the inconsistency in our main effects
results might be due to different classes of users in our cor-
pus. That is, some users might learn more and/or piedsig
others might learn more and/or prefempirical, while others
might not benefit from either adaptation, but would benefitrfr
a different uncertainty adaptation. If we could identifyesie
users, we could potentially redesign a more effective syste
that adapted differently to uncertainty for each user class

As discussed in Section 1, user modeling techniques pro-
vide a method of exploring this hypothesis. Here we analyze
different user classes in the corpus collected in our pripee-
iment (Section 2). Our user classes are based on information
that users supplied before interacting with our tutoringten,
and are applicable to all types of spoken dialogue systems.

First, we hypothesized that users with different levels of
“domain expertise” might benefit differently from our two
uncertainty-adaptive systems. User expertise has beeh use
in prior static user modeling approaches (e.g., [8]) and has
been shown to be relevant to learning in computer tutoring
(e.g., [14]). In our study, users with pretest scores belogy t
mean (over all users) were put in the clémser, all others were
put in higher. A t-test showed the higher and lower classes
represent different populations ¢ 0.001), and there was no
significant difference in pretest score across conditiovith{n
classes or overall). Note that tlégher class was not expert
in the physics domain; only physics novices were solicitad f
the experiment, and average pretest scores were 64% and 40%
across conditions for the higher and lower classes, reispéct
These averages indicate both expertise classes could tenefi
substantially from the tutoring in terms of learning.

Second, we hypothesized that different genders might bene-
fit differently from our two uncertainty-adaptive systenfsior
studies have investigated whether genders behave differen
with dialogue systems (e.g., [15]) and human tutors (e16]){
for example, [16] find that tutorial dialogue structure iflin
enced by student expertise, gender, and self-efficacydevel

For each binary category (expertise and gender), we investi
gated whether the two user classes patterned differenthotin
objective and subjective evaluation metricsAs discussed in
Section 1, both types of metrics are important in spoken dia-
logue systems in general, and in tutoring systems in particu
lar. We used normalized learning gain as our objective met-
ric ((posttest-pretest)/(1-pretest)). We used threeesiivge user
satisfaction metrics, each representing a specific typeesép
ence formed by totaling the user ratings for a specific grdup o

2Data sparsity prevented statistical analysis of combinedses
(e.g. lower expertise males).



questions in our user satisfaction survey in Figure 3. Qoest

1-7 are taken from [17] and 8-9 were created for our system;
these questions concern the tutoring domain. Questiori210-
were created for our system and concern the uncertainty-adap
tations. Questions 13-16 are taken from [18] and concern the
spoken dialogue interaction.

: It was easy to learn from the tutor.

: The tutor didn’t interfere with my understanding of the temt.

: The tutor believed | was knowledgeable.

: The tutor was useful.

: The tutor was effective on conveying ideas.

: The tutor was precise in providing advice.

: The tutor helped me to concentrate.

: The tutor responded effectively after | was incorrect althe an-
swer to a question.

Q9: The tutor responded effectively after | was correct abbatanswer
to a question.

Q10: The tutor responded effectively after | was uncertain atiba
answer to a question.

Q11: The tutor responded effectively after | was certain abbetdn-
swer to a question.

Q12: The tutor’s responses decreased my uncertainty about hgrun
standing of the content.

Q13: It was easy to understand the tutor speech.

Q14: | knew what | could say or do at each point in the conversation
with the tutor.

Q15: The tutor worked the way | expected it to.

Q16: Based on my experience using the tutor to learn physicsuldvo
like to use such a tutor regularly.

ALMOST ALWAYS (5), OFTEN (4), SOMETIMES (3), RARELY
(2), ALMOST NEVER (1)

Figure 3: ITSPOKE Survey

For each metric, we ran a 2x4 factorial ANOVA with pair-
wise simple effects tests on the binary user class factottzand
quaternary condition factor, to analyze the interactideafof
condition and user class and determine if the two adaptige sy
tems perform differently based on class. If so, this suggest
that performance can be improved by redesigning our system t
adapt differently to uncertainty for the two classes.

3.2. Results
Table 1: Performance Results for Lower Expertise Users

Metric Cond(N) Mean Diff p
norm(10) | 0.375 -

Learning || rand(12) | 0.538 -

Gain basic(11) | 0.619 | > norm | 0.018
empir(10) | 0.448 -

Spoken norm 14.10 -

Dialogue || rand 15.25 -

Q13-Q16 || basic 13.91 | < empir | 0.023
empir 16.30 | > norm | 0.041

Table 2: Performance Results for Higher Expertise Users

Metric Cond (N) | Mean Diff p
norm(11) | 0.389 -

Learning || rand (8) 0.563 -

Gain basic(9) 0.593 | > empir | 0.039
empir(10) | 0.369 -

For our user expertise classes, no metric showed a signifi-
cant overall interaction effect in the initial ANOVA, but rtid
ple metrics showed significant interactions in the paintesss.
These tests compared each pairwise combination of conditio

and class, to determine if they were significantly differtort
the metric. We consider these pairwise test results mostiluse
from a system redesign perspective: for each class, thieygel
specifically what's working or not with each adaptive system
with respect to each other and the non-adaptive systems.

Tables 1-2 show metrics yielding significant<{p0.050) re-
sults on the pairwise tests for the expertise classes. Theos
show the metric, the condition (and number of users), itsrmea
the condition with which a difference is found, and the direc
tion (> or <) and significance of this difference. As we ex-
pected, the expertise classes pattern differently. Talsleolvs
that lower expertise users learn significantly more frbasic
thannormal but preferempirical over bothbasicand normal
with respect to spoken dialogue interaction quality. Wedikip
esize that lower expertise users perceived the spokemytialo
empiricalas easier to follow because, unlike the other systems,
the feedback irmpiricalalways responded explicitly to the un-
certainty of their answers, as well as the correctness. efbis,
we hypothesize that lower expertise users would show greate
user satisfaction with thbasicadaptation if we modified it to
include this type of feedback. This hypothesis is suppaoted
other tutoring system research (e.g. [13]) showing thagcaff
related feedback increases user satisfaction.

However, our investigation suggests that the benefit of such
feedback may only hold for lower expertise users; Table 2
shows that higher expertise users express no prefereneayor
system. Moreover, although the higher expertise users Egf
nificantly more frombasicthanempirical, neither adaptive sys-
tem outperforms the baseline non-adaptive systems failegr
Therefore, we hypothesize that thasicadaptation is a better
choice thanempirical for higher expertise users, but it needs
modification to be more effective. We discuss this in Secfion

Table 3: Performance Results for Female Users
Metric Cond(N) Mean Diff p
norm(14) | 0.375 -
Learning rand(11) | 0.516 -
Gain basic(12) | 0.597 | > norm | 0.017
empir(12) | 0.401 | < basic | 0.041
Uncertainty || norm 11.07 -
Adaptation || rand 12.27 -
Q10-Q12 basic 12.75| >norm | 0.020
empir 11.33 -

Table 4: Performance Results for Male Users
Metric Cond(N) | Mean Diff p
Tutoring || norm(7) | 39.00 | > basic | 0.038
Q1-Q9 rand(9) | 37.00 -

basic(8) | 34.25 -

empir(8) | 39.00 | > basic | 0.032
Spoken norm 16.00 | > basic | 0.009
Dialogue || rand 15.33 | > basic | 0.027
Q13-Q16 || basic 12.88 -

empir 16.63 | > basic | 0.001

For our gender classes, we found that two user satisfaction
metrics showed a significant overall interaction effect e t
initial ANOVA (Q10-12: F(3,73) = 3.711, p=0.015; Q13-16:
F(3,73) = 3.429, p=0.021). Tables 3-4 show metrics yielding
significant (p< 0.050) pairwise test results for the two gen-
der classes. As we expected, the two genders pattern differ-
ently. Table 3 shows that female users learn significantlyemo
from basicthan eithemormal or empirical Moreover, females
preferbasicto normal with respect to the quality of the uncer-



tainty adaptation. These results suggest thatbiegic uncer-
tainty adaptation is reasonably effective for females, tad
system redesign effort is best focused on other user clagses
show less performance improvement from an adaptive system.

In particular, Table 4 shows that males achieve no signifi-
cant learning difference with any system. Males prefi@piri-
cal to basicwith respect to quality of both the tutoring and the
spoken dialogue interaction; however, neither adaptistesy
outperforms the baseline non-adaptive systems for these me
rics. Therefore, we hypothesize that gmpiricaladaptation is
a better choice thabasicfor male users, but it needs modifica-
tion to be more effective. We discuss this in Section 4.

Overall, our results shed new light on our initial analydis o
the main effects of learning and user satisfaction over sdtsi
(see Section 3.1), which showed that users learned more from
basichut preferredempiricals spoken dialogue interaction. In
fact, these main effects are primarily explained by loweyesx
tise users; the other user classes differ on at least onécmetr

4. Conclusionsand Current Directions

We showed that a user modeling analysis of two uncertainty-
adaptive spoken dialogue tutoring systems can indicate for
whom the adaptations are working and in what way. Our re-
sults suggest that a more effective spoken dialogue tgsss-
tem should adapt differently to user uncertainty based @n us
class. Our results also suggested specific hypotheses latwut

to adapt to uncertainty based on user class. In particdiar, t
fact that lower expertise users learned more flmmsicbut pre-
ferred empirical for spoken dialogue interaction quality sug-
gested that lower expertise users would préfasicwith feed-
back that responded to both uncertainty and correctnese. Th
fact that females both learned more from and prefetrasic
suggested that thieasic adaptation is reasonably effective for
females. The fact that higher expertise users learned mome f
basicbut didn't prefer any system indicates thasicis a better
choice tharempiricalbut futher research is needed to determine
a more effective adaptation for higher expertise users. fabie
that males preferredmpirical but didn’t learn more from any
system indicates thampiricalis a better choice thamasicbut
futher research is needed to determine a more effective-adap
tation for male users. In future work we will explore methods
such as reinforcement learning and correlations of humah an
system tutor responses with evaluation metrics, to idgmntif

tor responses to user uncertainty that both improve legraind
yield increased user satisfaction for higher expertisesuaad
males. We have also recently completed a fully automated ver
sion of our uncertainty adaptation experiment (where tiséesy
performs all tasks) and will analyze that corpus for similaer
modeling results under these more realistic conditions.

Finally, note that other computer tutoring research has
shown similar discrepancies between the system that yile&ls
most learning and the system that is best-liked (e.g., [198)
hypothesize that a user modeling approach to system redesig
offers the best chance for developing a maximally effective
system that improves both learning and user satisfaction. O
course, it may not be possible to find a strategy for every user
class that optimizes both metrics. In such cases a desigoecho
can be made to compromise one goal for a specific user class.
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