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Abstract

We examine a corpus of reflective tutorial dialogues between
human tutor and student after the student completed introduc-
tory physics problems, to predict when the tutor abstracted
from the student’s preceding turn or when the tutor special-
ized from the student’s preceding turn. Tutor abstraction oc-
curs when the tutor repeats a segment of the student’s turn us-
ing more general terms. Tutor specialization occurs when the
tutor repeats a segment of the student’s turn using more con-
crete terms. We find that features extracted from the reflective
dialogue context produce the most predictive models. Also,
the tutor abstracts more often when the student shows signs
of working at a very detailed level for awhile, and prompts
for specification when the student’s responses are imprecise.

1 Introduction

Socio-cognitive theories of learning explain the effective-
ness of one-on-one human tutoring (Bloom 1984) in terms of
social interaction, or learning from dialogue (Chi et al. 2001;
Boyer et al. 2010). Although there is abundant empirical ev-
idence that interaction between a student and tutor (or stu-
dent and peer) supports learning, much less is known about
the specific features of effective instructional dialogue. This
level of specificity is needed to plan tutorial dialogues in In-
telligent Tutoring Systems (ITS).

Over the past decade, researchers in cognitive science
and ITS have made significant progress in identifying spe-
cific features of human tutorial dialogue that predict learn-
ing (Chi et al. 2001; Forbes-Riley and Litman 2007;
Chi, Roy, and Hausmann 2008; Ward et al. 2009). One
aspect of these dialogues is cohesive ties, which have been
shown to be beneficial for learning (Ward et al. 2009). Co-
hesion is considered to be the connectedness of a text (Halli-
day and Hasan 1976) and cohesive ties are the various forms
of connectedness, such as synonymy and paraphrase. In this
paper, we focus on two lexical cohesive ties that occur be-
tween student-tutor turns and have been shown to be corre-
lated with learning: tutor abstraction and tutor specializa-
tion (Ward et al. 2009). Tutor abstraction occurs when the
tutor repeats part of a student’s utterance, but at a higher
level of generality. Tutor specialization occurs when the tu-
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tor repeats part of a student’s utterance at a lower level of
generality. Figure 1 has an example of both.

Student: vf=vo+at, and plug in the values for vf, vo and t
Tutor: so you are telling me you can use akinematics eq
[class=abstract]?

Student: no so he would need a greater accel.
Tutor: exactly so! He’d have an ave. accel. [class=specialize] of
(16 m/s /62 s) instead of (15 m/s /62 s)

Figure 1: Two dialogue snippets with matching segments under-
lined. The top shows when the tutor abstracts; the bottom shows
when the tutor specializes.

The ultimate goal of our project, the Rimac Project!, is
to build a fully-automatic interactive post-problem reflective
dialogue system for physics which abstracts and specializes
from the student’s preceding turn when appropriate. The
system will be used to engage in interactive reflective di-
alogues with high school students after the students have
solved introductory physics problems. To achieve the in-
teractivity desired, we will identify when a computer tutor
should abstract or specialize based on when human tutors
did so during reflective dialogues. This paper presents our
initial step. For this step, we are interested in identifying
useful features and feature relationships that predict tutor
abstraction and tutor specialization. Our next step will be
to build models that can be used in our dialogue system to
direct when the tutor should abstract or specialize.

In this paper, we use an existing human-human reflective
dialogue corpus that has been tagged for when the tutor ab-
stracted and specialized relative to the student’s prior turn.
From it, we extract features that could be used in a fully-
automatic dialogue system. Others developing interactive
tutorial systems have found certain types of features bene-
ficial for identifying when to change the level of interactiv-
ity; we used these features as guidance when we selected
our features. Research into emotion detection in tutorial
dialogue systems found that dialogue context information,
such as the number of main questions answered or the num-

"Rimac is the name of a river whose source is in the Andes. Its
name is a Quechua word meaning “talking;” hence the nickname
for Rimac: “talking river.” We thus considered Rimac to be well-
suited to a dialogue system embedded in the Andes tutoring system.




ber of characters in the student’s turn, correlate with vari-
ous emotional states (D’Mello and Graesser 2006). Others
have found demographic information to be important for de-
termining hint interactivity (Arroyo et al. 2000). Finally,
student performance and student dialogue information have
been used in research determining when a tutor should elicit
information from the student versus telling them (Chi 2009).

We explore how useful each feature is in predicting ab-
straction and specialization by training two decision trees
(one for each) per feature. In addition to looking at the pre-
diction results, we examine the trees to gain intuitions about
why the tutor may have abstracted or specialized what the
student had said. To further investigate feature relationships,
we group related features and train decision trees on these
feature sets. From these trees, we are able to identify possi-
ble rules for why the tutor abstracted or specialized and the
emerging rules suggest plausible explanations for tutor ab-
straction and specialization. Our results suggest that these
features may be useful for predicting abstraction and spe-
cialization.

2 Corpus

Our corpus is from a previous study (Katz, Allbritton, and
Connelly 2003) on the effectiveness of reflection questions
after a physics problem-solving session with the Andes
physics tutoring system (VanLehn et al. 2005). Students tak-
ing introductory physics courses at the University of Pitts-
burgh were recruited. They took a physics pretest, with
nine quantitative and 27 qualitative physics problems. All
36 problems were tagged by physics experts for knowledge
components (KCs) that students must have in order to cor-
rectly answer the problem. For example, one KC necessary
for solving the problem shown in Figure 2 is “Tension in a
cord or rope produces a force pulling in toward the center of
the cord or rope.” Following the pretest, students reviewed
a workbook chapter developed for the experiment and re-
ceived training on using Andes.

Although there were three conditions in the experiment,
his paper only focuses on the Human Feedback (HF) con-
dition since we are interested in building more interactive
dialogues, which only this condition provides; see (Katz,
Allbritton, and Connelly 2003) for complete details. Stu-
dents in each condition began by solving a problem in An-
des. After completing the problem, students in the HF con-
dition were presented with a deep-reasoning reflection ques-
tion which they needed to answer. After typing their answer,
they would begin a teletyped dialogue with a human tutor on
the student’s answer. This dialogue continued until the tutor
was satisfied that the student understood the correct answer.
Three to eight reflection questions were asked per problem
solved in Andes. There were 12 problems in all. An exam-
ple problem and a reflection question associated with it can
be found in Figure 2.

After the last problem’s reflection dialogues, students
took a posttest that was isomorphic to the pretest and coun-
terbalanced. The study found that students who answered
reflection questions learned more than students who did not
answer reflection questions. However, there was no signifi-
cant difference between the HF condition and the condition

Andes Problem:

A rock climber of mass 55 kg slips while scaling a vertical face.
Fortunately, her caribiner holds and she is left hanging at the
bottom of her safety line. Find the tension in the safety line.
Reflection Question:

What minimum acceleration must the climber have in order for the
rope not to break while she is rappelling down the cliff? (You

do not have to come up with a numerical answer. Just solve

for “a” without any substitution of numbers.)

Figure 2: Sample problem and the 3rd of 4 reflection questions.

with canned feedback to students’ answers to the reflection
questions.

There were 16 students in the HF condition (4 male, 12 fe-
male). Fifteen students participated in all 60 reflection ques-
tion dialogues, one only participated in 53, giving a total of
953 dialogues. There are a total of 2,218 student turns and
2,135 tutor turns in these dialogues. Each dialogue has an
average of 2.32 student turns and 2.24 tutor turns.

This HF condition data was used in a later study exam-
ining which cohesive ties during reflective dialogues corre-
late with learning (Ward et al. 2009). The reflection dia-
logue corpus was tagged by human annotators for cohesive
ties. For each turn, the annotators identified segments con-
taining a cohesive tie to a segment in the previous speaker’s
turn, then tagged that segment with the cohesive tie identi-
fied. The kappa for this annotation was 0.57%. The study
found that two of these ties, tutor specialization and tutor
abstraction, positively correlated with student learning. An
example of each cohesive tie can be found in Figure 1. We
use this tagged corpus to build two models predicting the
tutor’s next turn based on features described in Section 3:
one model to predict whether the tutor abstracted and one to
predict whether the tutor specialized.

3 Features

We partition our feature set into three groups based on the
source of the information to allow us to explore not only
which features are useful, but which sources are useful: stu-
dent, problem, and context. Similar features have been used
in previous work on emotion detection in tutorial dialogue
systems (D’Mello and Graesser 2006), determining hint in-
teractivity (Arroyo et al. 2000), and research on determining
when a tutor should elicit information from the student or
give them information (Chi 2009). From this literature, we
selected the features we could extract from the data collected
during the study. Since we are interested in developing a
fully-automatic system that will be tested in high schools,
features that could not be easily detected automatically (such
as whether the student was paraphrasing the tutor) or are not
available from high school students (such as college major)
were not considered in this study.

2Although 0.57 is considered a moderate agreement by one
standard (Landis and Koch 1977), interpreting such kappas is con-
troversial (Eugenio and Glass 2004). However, even poor kappas
can still be suitable for machine learning tasks (Reidsma and Car-
letta 2008).




student : features about the student and their background knowl-
edge
PreQualScore —score on qualitative part of pretest (high, low)?
PreQuantScore — score on quantitative part of pretest (high,
low)
Sex — Male or Female

problem : features from the problem-solving session in Andes;
the median splits in this feature set are problem-specific

NextStepHelp — how often student requested help from Andes
on what step to do next (high, low)

WhatsWrongHelp — how often student asked Andes what was
wrong with their work (high, low)

UnsolicitedHelp —how often Andes offered an unsolicited hint
(high, low)

NumErr - number of incorrect student entries during problem-
solving process (high, low)

NumCorr - number of correct student entries during problem-
solving process (high, low)

NumEntries — total number of student entries in the interface
(sum of NumErr and NumCorr) (high, low)

CorrAns - total number of correct answers entered (not inter-
mediate entries) by student (high, low)

Time2SolveNorm - time (in seconds) student took to solve
problem, divided by the average time to solve this problem by
the students in the other conditions of the study (slow, fast)

AvgKCScore - for KCs required by student to solve the partic-
ular Andes problem (as determined by physics experts), what
was student’s average score on pretest problems also requir-
ing those KCs (high, low)

context : features from the reflection dialogue

RQPosition — reflection question for problem (1, 2, ...)

PrevRQLength — number of turns in the previous reflection
question’s dialogue

Time2AnsNorm —how long (in seconds) it took for the student
to respond to the tutor’s previous message, normalized by the
number of characters in the student’s response (high, low)

TurnPosition — position in the reflection question dialogue

StuWordCount — count of words are in the student’s preceding
turn (high, low)

DomainWord% - of all words in student’s preceding turn,
what percentage are physics domain words* (high, low)

4 Machine Learning

As mentioned above, we are interested in using this cor-
pus to predict when a computer-based tutor should abstract
in a post-problem reflective dialogue and when such a tu-
tor should specialize. Thus, we will be building from this
corpus two models, one to predict when the human tutors
abstracted and the other to predict when the human tutors
specialized. The tags from (Ward et al. 2009) were done
on segments of a turn. In this work, we predict at the turn
level, so if any segment of a turn was labeled as abstraction
or specialization, then the turn was labeled as abstraction or

3Median splits were performed on most numerical features for
ease of tree interpretation. Table 1 shows some value ranges and is
described in Section 4.1.

*From: http://scienceworld.wolfram.com/physics/letters/

Feature Low | Median | High
NumErr 0 14 72
NumEntries 2 22 86
Time2SolveNorm | 0.08 | 0.95 3.06
RQPosition 1 3 8
PrevRQLength 1 3 34
TurnPosition 1 3 34
StuWordCount 0 6 81
DomainWord% 0 2.83 13

Table 1: Low, median, and high values for all features appearing
in any trees presented in this paper.

specialization. Since predictions are at the turn level, the
segment-level tags were propagated to the turn level. Both
of these prediction tasks are binary classifications, with yes
meaning that the tutor provided an abstraction or specializa-
tion from the student’s turn preceding the turn we are at-
tempting to predict and no meaning that the tutor did not.

The original data has a large bias towards not abstracting
(93% of all tutor turns) and towards not specializing (94%),
so we balanced the dataset for these tasks as others have
done (Ang et al. 2002). To balance the dataset, we down-
sampled using WEKA’s Resample filter’. The balanced
dataset for abstraction contained 156 turns where the tutor
did not abstract (56%) and 123 where the tutor did (44%).
The balanced dataset for specialization contained 141 turns
where the tutor did not specialize (60%) and 94 where the
tutor did (40%). On each of these balanced datasets, we per-
formed 10x10-fold cross-validation using J48 decision trees
(so we could examine the relationships between the features)
from WEKA. Although at this stage we are not attempting
to optimize the prediction models, we do want to determine
whether these features show any promise. Therefore, we use
a majority class baseline, which is no for both tasks.

4.1 One-Feature Trees

First, we examined each feature individually. We trained
one decision tree for each of the features listed in Section 3.
Table 2 presents the performance of the decision trees. Trees
that never performed differently from baseline are not shown
in the table. Rows from NumErr to DomainWord% present
the results for the one-feature trees. These rows are divided
into two of the groups presented in Section 3. The top row,
Baseline, shows the majority class results.

From these results, we see that the student features do
no better than baseline. This is perhaps because between
these features and the turn we are attempting to predict, there
has been some learning, either during the Andes problem-
solving session or the reflective dialogues. Therefore, the
pretest scores may not be representative of the students’
knowledge throughout most of the study.

Most of the problem features also do no better than base-
line for predicting abstraction and none of the features do
better than baseline for predicting specialization. This is
perhaps also because student and problem features describe
a past student state that is no longer relevant. However, three

Shttp://www.cs.waikato.ac.nz/ml/weka/



Abstraction Specialization
Accuracy | Precision | Recall F1 | Accuracy | Precision | Recall F1
Baseline 55.91 0.31 0.56 | 0.40 60.02 0.36 0.60 | 0.45
problem

- NumErr 59.35 0.59 0.59 | 0.59 60.02 0.36 0.60 | 0.45
g NumEntries 58.80 0.59 0.59 | 0.58 60.02 0.36 0.60 | 0.45
Ei Time2SolveNorm 60.57 0.62 0.61 | 0.60 60.02 0.36 0.60 | 0.45
K~ context
%o RQPosition 55.76 0.51 0.56 | 0.51 60.02 0.36 0.60 | 0.45
&,5) StuWordCount 54.52 0.48 0.55 | 0.50 68.53 0.72 0.69 | 0.69

DomainWord% 60.59 0.64 0.61 | 0.60 60.02 0.36 0.60 | 0.45
Feature Groups

problem 61.27 0.61 0.61 | 0.61 55.85 0.44 0.56 | 0.47

context 64.62 0.65 0.65 | 0.64 67.90 0.69 0.68 | 0.68
Aggregated Feature Groups

StudentProblem 56.91 0.57 0.57 | 0.57 57.10 0.46 0.57 | 0.47

StudentContext 61.53 0.62 0.62 | 0.61 68.41 0.69 0.68 | 0.68

ProblemContext 61.51 0.62 0.62 | 0.61 64.19 0.64 0.64 | 0.63

all 61.94 0.62 0.62 | 0.61 67.93 0.68 0.68 | 0.67

Table 2: Comparing feature sets across the weighted average metrics® for both Abstract and Specialize classification tasks. Bold values
indicate results significantly better than baseline (o < 0.05). All other values are not significantly different from the baseline’. The

underlined values are the greatest in that column.

features do better than baseline for predicting abstraction on
both precision and F1 (see Table 1 for the range and median
for all features in the trees). The tutor tended to abstract
when responding to the student if NumErr was high, Nu-
mEntries was high, or if Time2SolveNorm was slow. One
possible interpretation is that the student had been focusing
on the details long enough and needed to be encouraged to
think more abstractly. Alternatively, abstraction may indi-
cate that the tutor is focusing on basic concepts and princi-
ples — such as the formal statement of Newton’s Second Law
— when the student does not understand.

Of the six context features, three outperform the baseline
for predicting abstraction and one outperforms the baseline
for predicting specialization. The decision tree using RQ-
Position for predicting abstraction can be seen in Figure 3.
From this tree, we see that for reflection questions 4, 5, and
8, the tutor abstracted. Although there were at most eight
questions, a majority of the problems had four or five re-
flection questions. Later reflection questions build off of the
earlier questions, often asking the student to work with equa-
tions and variables instead of giving values (see Figure 2).
Examination of the dialogues suggests that students tended
to instantiate variables too soon, so tutors would need to en-
courage the use of equations and variables, which was often
done through abstracting the values into equations and vari-
ables. The decision tree using DomainWord% shows that
the tutor abstracted when the DomainWord% was high. This

Prox|no|+Pyes*|yes|

SWeighted precision is calculated as i ;
yes+no|

weighted recall and F1 are calculated similarly.

"Note that since the baseline model does not predict any turns
as yes: (1) the baseline accuracy can only improve for yes; (2) the
baseline recall is O for yes and 1 for no so there is only room for
improvement for yes; (3) the baseline precision for yes and no both
have room for improvement (0 and .559 respectively), which will
lead to an increase in the F1 metric.

may be because the student’s turn was at a more specific
level than the tutor preferred, so the tutor generalized the
turn to show that the concept applies to more than just the
specific instance the student was talking about.

Finally, StuWordCount is an important feature for both
tasks. When the word count of the student’s preceding turn
is high, the tutor may either abstract or specialize. With high
word counts, there may be more for the tutor to abstract or
specialize over. Since the tutor rarely both abstracts and spe-
cializes in the same turn in this corpus, further analysis is
needed to determine what influences the tutor to abstract or
specialize when StuWordCount is high (see below).

<=3
<=7 >7

RQPosition abstract=yes
<=5 >5

abstract=no

abstract=no

abstract=yes

Figure 3: Decision tree to predict Abstract using only the RQPo-
sition feature. Accuracy = 55.76%

4.2 Feature Group Trees

We next looked at how each feature group predicts tutor ab-
straction and specialization. The numeric results are in Ta-
ble 2, in the rows for problem and context. The student fea-
ture group does no better than baseline. As with the one-
feature trees, this is probably because these features are far-
removed from the tutor’s turn we are trying to predict.

The problem feature group does better than baseline on
precision for both prediction tasks, but does not do signif-




icantly better than Time2SolveNorm. For specialization,
it does significantly better in precision, with no significant
drop in the other three metrics.

The context feature group does significantly better than
baseline on all four metrics for both prediction tasks. Fig-
ure 5 shows the decision trees for predicting abstraction
(top) and specialization (bottom). Comparing the two trees,
we see that if PrevRQLength was high, then the tutor ab-
stracted more. Longer reflection dialogues may suggest the
student did not, at first, understand the concepts, so the tutor
may not want to overwhelm the student with details in the
new dialogue. Alternatively, tutor abstraction may reflect
the tutor’s attempt to focus on basic concepts and principles
whereas the student prefers to focus on the details (such as
through variable instantiations). As the dialogue progresses
(TurnPosition > 1), the tutor will specialize more than ab-
stract, perhaps because the student’s answers are less precise
than the tutor would like (e.g. units missing, working with
a vector rather than components). So, the tutor must guide
the student to be more precise. The tutor does this through
specializing the student’s turns. Figure 4 shows an example,
with the tutor guiding the student in specializing, which the
student does in Studenty;.

Student;: 500 N (rope tension) / 55 (cliber mass) = acceleration
Tutor,: hmm not quite. you have the right basic idea (use F = ma
[class=abstract]) but the F in that equation is the net force. The
force up would be 500 N, but would that be the net force?

Studenty: 39 N/55kg=a

Tutorio: excellent. (and you should specify the direction, then
we’ll go on)

Student: accelerating downwards [class=specialize]

DomainWord%
PrevRQLength
2 \>2

accuracy = 64.62%

TurnPosition
3 \>3

I
<=

abstract=no abstract=yes

abstract=yes abstract=no

accuracy = 67.90%

=1 >1
1 1
7 >7

<=

‘ specialize=yes ‘ ‘ specialize=no |

Figure 4: Student answering the reflection question in Figure 2.
Tutor starts off abstracting, then later encourages student to spe-
cialize.

Returning to the question of when the tutor abstracts or
specializes, if the student’s word count is high (Section 4.1),
these two trees provide some insights. The tutor will spe-
cialize starting after the student’s second turn or on the first
turn if the previous reflective dialogue was short. A short
reflective dialogue can indicate that the student understands
the concepts and is ready for a detailed dialogue. Begin-
ning to specialize after the student’s second turn overlaps
with the tutor abstracting after the student’s third turn (for
few domain words only). Clearly, further investigation into
when the tutor abstracts or specializes is needed. Finally, we
see that when the StuWordCount is low, the tutor will nei-
ther abstract nor specialize, perhaps because there is little to
abstract or specialize from.

4.3 Aggregating Feature Groups

We then looked at the interaction of features from different
feature groups and their influence on the prediction tasks.
Table 2’s bottom four rows show the numeric results. The
first three represent the results from the pairwise merging
of the feature groups. The fourth row presents the results
from merging all three feature groups together. We see that

Figure 5: Decision trees using context features to predict abstrac-
tion (top) and specialization (bottom).

there are many aggregated feature groups that outperform
the baseline, but none are significantly better than context.
With a growing number of features (from 9 for StudentCon-
text to 18 for all) and with datasets of size 279 (Abstraction)
and 235 (Specialization), we believe we are starting to over-
fit the data.

5 Discussion & Future Work

This work builds off of previous work which showed that tu-
tor abstraction and specialization positively predicted learn-
ing in post-problem reflective dialogues (Ward et al. 2009).
The goal of the current analysis was to determine whether
features and feature groups that can be automatically ex-
tracted from Andes tutoring logs and dialogue logs may be
useful for predicting when a tutor will abstract or special-
ize. Context features appear to be the most useful. We were
also interested in discovering relationships between these
features and abstraction and specialization. We found ev-
idence in the decision trees that tutors will abstract more
often when students have been working at a very detailed
level for awhile. Tutors appear to specialize more often
when the student is more likely to understand the concepts
(e.g. shorter dialogues). However, there is an ambiguity in
the trees learned; for example, a tutor may either abstract
or specialize when the student is verbose. We are currently
investigating the contexts in which abstraction and special-
ization occur in order to resolve ambiguities such as this and




develop more robust decision rules.

Although we are able to outperform the baseline, there is
still room for improvement. First, we are currently work-
ing on retagging the corpus for non-lexical forms of abstrac-
tion and specialization. Once this retagging is complete, we
will have more instances of tutor abstraction and specializa-
tion, giving us larger balanced datasets on which to train our
models. However, others have pointed out (Chi et al. 2001)
that human tutors are not always consistent in their tutoring
strategies and may miss opportunities to apply a particular
strategy. Therefore, it may be difficult to build good models
based on human-tutoring corpora alone.

We also plan on exploring other machine learning ap-
proaches. In addition to trying other machine learning al-
gorithms (which may provide better results), we would also
like to try creating a two-stage model. The first stage is in-
tended to balance the dataset by identifying whether there is
an opportunity for tutor abstraction or specialization. Turns
classified as not having an opportunity will be labeled as no
for both prediction tasks. To perform this first stage, since
we have not tagged the corpus for opportunities, we plan
to hand-code rules, drawing from some results of this paper
(e.g., high student word count indicated both tutor abstrac-
tion and specialization) as well as relevant literature and in-
tuition. Those turns classified as having an opportunity will
be passed to the second stage, which will identify whether
the tutor should abstract or specialize. The work presented
in this paper focused on the second stage.

In this work, we only focused on automatic features. Cer-
tain features, such as student abstraction, that are predictive
of student learning in this corpus (Ward et al. 2009), were
not included in this study because they are not features that
could be easily automated. Preliminary results suggest that
cohesion-based context features may improve the prediction
results by around five percentage points. If the addition of
these features significantly improves the results, we could
attempt to predict them using fully-automatic features. We
will also attempt to identify additional automated features.
We are currently tagging the student turns for correctness.
We predict that the correctness of the student’s turn also in-
fluences whether the tutor abstracted or specialized.

While the context features were the most useful features
in this dataset, it is not clear whether that would still be
true in other tutoring situations. We are interested in see-
ing whether these results transfer to other tutoring systems
and domains, as well as similar prediction tasks. As a first
step, we will be exploring whether we obtain similar results
when predicting student abstraction and specialization. As
mentioned in Section 4.2, the tutor will guide the student to
be more specific or more abstract. In addition to exploring
generalizability, we are interested in exploring what tutor
moves predict student abstraction or specialization.

Acknowledgements

The authors thank the Rimac group, Joanna Drummond, and
Wenting Xiong for their input. The research reported here
was supported by the Institute of Education Sciences, U.S.
Department of Education, through Grant R305A100163 to
the University of Pittsburgh. The opinions expressed are

those of the authors and do not represent views of the In-
stitute or the U.S. Department of Education.

References

Ang, J.; Dhillon, R.; Krupski, A.; Shriberg, E.; and Stolcke,
A. 2002. Prosody-based automatic detection of annoyance
and frustration in human-computer dialog. In 7 Int’l Conf.
on Spoken Language Processing.

Arroyo, L.; Beck, J.; Woolf, B.; Beal, C.; and Schultz, K.
2000. Macroadapting animalwatch to gender and cognitive
differences with respect to hint interactivity and symbolism.
In Gauthier, G.; Frasson, C.; and VanLehn, K., eds., Intelli-
gent Tutoring Systems, volume 1839 of LNCS. 574-583.

Bloom, B. 1984. The 2 sigma problem: The search for meth-
ods of group instruction as effective as one-to-one tutoring.
Educational Researcher 13(6):4—16.

Boyer, K.; Phillips, R.; Ingram, A.; Ha, E.; Wallis, M.;
Vouk, M.; and Lester, J. 2010. Characterizing the effec-
tiveness of tutorial dialogue with hidden Markov models. In
ITS, 55-64.

Chi, M.; Siler, S.; Jeong, H.; Yamauchi, T.; and Hausmann,
R. 2001. Learning from human tutoring. CogSci.

Chi, M.; Roy, M.; and Hausmann, R. 2008. Observing tuto-
rial dialogues collaboratively: Insights about human tutoring
effectiveness from vicarious learning. CogSci.

Chi, M. 2009. Do Micro-Level Tutorial Decisions Mat-
ter: Applying Reinforcement Learning to Induce Pedagog-
ical Tutorial Tactics. PhD dissertation, University of Pitts-
burgh, Intelligent Systems Program.

D’Mello, S., and Graesser, A. 2006. Affect detection from
human-computer dialogue with an intelligent tutoring sys-
tem. In Intelligent Virtual Agents, 54—67. Springer.
Eugenio, B. D., and Glass, M. 2004. The kappa statistic: A
second look. Comput. Linguist. 30(1):95-101.
Forbes-Riley, K., and Litman, D. 2007. Investigating human
tutor responses to student uncertainty for adaptive system
development. Affective Computing and Intelligent Interac-
tion 678—689.

Halliday, M., and Hasan, R. 1976. Cohesion in English.
Longman London.

Katz, S.; Allbritton, D.; and Connelly, J. 2003. Going
beyond the problem given: How human tutors use post-
solution discussions to support transfer. IJJAIED 79-116.
Landis, J. R., and Koch, G. G. 1977. The measurement of
observer agreement for categorical data. Biometrics.
Reidsma, D., and Carletta, J. 2008. Reliability measurement
without limits. Comput. Linguist. 34:319-326.

VanLehn, K.; Lynch, C.; Schulze, K.; Shapiro, J.; Shelby,
R.; Taylor, L.; Treacy, D.; Weinstein, A.; and Wintersgill, M.
2005. The Andes physics tutoring system: Lessons learned.
IJAIED 147-204.

Ward, A.; Connelly, J.; Katz, S.; Litman, D.; and Wilson,
C. 2009. Cohesion, Semantics and Learning in Reflective
Dialog. In Proc. AIED Workshop.



