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Abstract
We use language technology to develop corpus measures of lexical
and acoustic/prosodic convergence. We show that these measures
successfully discriminate randomized from naturally ordered data,
and demonstrate both lexical and acoustic/prosodic convergence in
our corpus of human/human tutoring dialogs.

1. Introduction
Human users of computer dialog systems have been shown to ex-
hibit a wide variety of speech convergence behaviors. In this work
we use “convergence” as a general term for the tendency of dia-
log partners to adjust various features of their speech to be more
similar to one another. This phenomenon is of general interest
to researchers in dialog systems for several reasons. For exam-
ple, it may be possible to enlist convergence to improve speech
recognition rates [1, 2], or increase user compliance with system
requests [3]. Convergence also may be of particular interest to re-
searchers in tutorial dialog systems because of the predictions of
the Interactive Alignment Model (IAM) [4]. This model suggests
that observable convergence is the result of interactive priming be-
tween dialog partners. The theory also suggests that convergence
at observable lexical and acoustic/prosodic levels may accompany
alignment at the higher semantic levels. We hypothesize that if
users converge toward the productions of a tutorial dialog system,
their convergence may be associated with learning.

There is experimental evidence that human users do indeed
converge toward (non tutorial) dialog systems lexically [5], as well
as in acoustic/prosodic features of speech such as amplitude [1].
These studies measure convergence by comparing groups of users
in different experimental conditions. To train dialog systems, how-
ever, we need corpus measures of convergence. In this paper we
describe two new corpus measures of amplitude and lexical con-
vergence which we adapt from previous work in the literature. We
show that students converge toward their human tutor in these as-
pects of speech. In separate work [6], we show that these measures
are useful predictors of learning. The measures of convergence we
use are adapted from work by Reitter, Keller and Moore [7].

Reitter et al. [7] demonstrate a method for measuring the ef-
fects of syntactic priming in dialog corpora. “Priming” refers to
the mechanism the IAM holds responsible for the convergence of
various speech properties. Hearing and decoding a speech unit,
such as a certain word or syntactic structure for example, “primes,”
(ie: increases the activation of) corresponding internal representa-
tions. If these representations are still active during the next speech

production, they are more likely to be used than alternatives which
are less active. The speech unit that caused the increase in activa-
tion is called a “prime.” In this work we refer to the increased us-
ages following the prime as the “response.” Reitter et al. measure
the response as an increased use of primed syntactic structures.
We first adapt their method to measure response as the increased
use of primed words. We then further adapt it to measure acous-
tic/prosodic changes following unusually extreme tutor utterances.

2. The Corpus
2.1. Ordered Data

Our data is taken from a corpus of human-human tutoring tran-
scripts collected by the ITSPOKE intelligent tutoring system
group for a previous study [8]. In these tutoring sessions, a hu-
man tutor presents a problem in qualitative physics to a student,
who answers it in essay form. The tutor examines this essay, iden-
tifies flaws in it, and engages the student in a tutorial dialog to
remediate those flaws. A single tutor helped fourteen students do
up to ten problems each. This resulted in a corpus of 128 dialogs,
which contain 6,721 student turns and 5,710 tutor turns. In this
work we look for student responses to primes in tutor utterances,
and we ignore essay turns.

2.2. Random Data

We also created a corpus of randomized tutoring dialogs for use as
a baseline. This corpus contains the same set of tutoring dialogs
as our ordered corpus. In each dialog, tutor utterances are left in
their original position, but the positions of all student utterances
are randomized within the dialog. Because the student utterances
are no longer in their original relationship to the tutor utterances,
we expect to find reduced priming effects in this corpus. A suc-
cessful measure of priming effects should give positive results on
the ordered data, but not on this randomized data.

3. Lexical Convergence
3.1. Lexical Measure

For our measure of lexical convergence, we count any word uttered
by the tutor as a potential prime. Following Reitter et al. [7], we
define the next N student turns as a window in which to look for
a student response. However, where Reitter counted repetition of
syntactic rules as the response measure, we count the student’s
use of the tutor’s prime word. If the tutor’s prime word occurs



Speaker Transcript Student Response to Prime
Words Data

Points
1 Tutor seat is in contact seat exerts a force so the result is that torso is ac-

celerating in forward direction now what will happen to the head?
2 Student oh, ok
3 Student the head will move back because it’s not attached to the seat the, head, will, to, seat [2,6]

Table 1: Portion of a transcript, student response to tutor primes, and data points generated

Data Window Size
5 10 15 20

Ord. -.026 (<.26) -.042 (<.0001) -.027(<.0001) -.022 (<.0001)

Rand. -.002 (.91) .001 (.88) .002 (.67) .002 (.63)

Table 2: Slopes and (p-values) for lexical measures, counting all
tokens. P-values and slopes below adjusted threshold in bold

once in the first utterance of the student’s response window, for
example, we count a response of one at distance one. This process
is illustrated in Table 1. Our lexical measure would first take the
tutor utterance shown in row 1 as the prime, set the next N student
turns to be the response window, and count the number of prime
repetitions in each turn of that window. For example, the second
student utterance after this prime contains six repetitions of prime
words. This is at a distance of two from the prime, and so generates
the data point [2,6].

The student response window following each tutor utterance
in the corpus is examined in this way, generating a set of data. We
then use linear regression to determine the relationship between
distance from the prime and lexical repetition count. Linear re-
gression produces the slope of a fitted line and a p-value that in-
dicates the probability of fitting that line if there were really no
relationship between distance and response.

In this work we make thirty-six comparisons, looking for ev-
idence of convergence. Therefore, we apply the Bonferroni cor-
rection to reduce the chance of a type one error. We will consider
p-values below .0014 (.05/36) to be significant. P-values below
this threshold are shown bold in all tables.

Results for our lexical measure are shown in Table 2. The top
row gives the slope of the fitted line for the ordered data. Each
slope is followed by its p-value in parentheses. Columns 2 - 5
give results for each of four response window sizes. The bottom
row of Table 2 gives results on the randomized corpus, in the same
format. We selected window sizes starting at 20, toward the top
of the range used by Reitter et. al. [7], and working downward
until the fitted slopes became non-significant. This produced four
windows for lexical results, however “what is an optimal window
size?” and “why?” are still open research questions. The slopes
are all negative for the ordered lexical data, indicating convergence
immediately after the prime, which then decays with distance.

Our randomized data show no significant results. Our metric
is sensitive to utterance sequence, which suggests that the conver-
gence we find in the ordered corpus is real.

3.2. Priming and Lexical Convergence

The IAM describes several levels at which dialog partners may
align, with alignment at one influencing alignment at neighboring

levels. Therefore, when we measure lexical convergence it is not
clear to what extent we are measuring the effects of lexical priming
or of alignment at semantic or other levels. Measures of conver-
gence may be more useful if we can determine the type of priming
involved. So, as a first step toward identifying the effects of lexical
priming, we attempt to remove the effect of words for which there
had been no other choice. Ideally, this task would involve doing
perfect word-sense disambiguation, but in this work we use the
following, simpler approach. Each word is marked with its part of
speech and all synsets for the word in that POS are retrieved from
WordNet [9]. To identify words for which there may have been
no alternative choices, we count the number of synonyms in each
synset. If no synset contains more than one choice, we consider it
probable that there was no suitable alternative word available to the
speaker, and remove that response from the data. This adjustment
reduced the number of data points collected by 47%, from 25,352
to 13,415. 33,387 tokens were skipped in the corpus, represent-
ing 240 different word types. The majority of tokens identified
this way were particles and other closed set words not included in
WordNet. The left two columns of Table 3 show the nine most
frequent words in this set. Together, they account for almost 75%
of the tokens skipped.

Removing these words makes intuitive sense: in the student
utterance in Table 1, the student’s productions of “the” may have
been made necessary by the use of “seat” and “head,” rather than
as the result of independent priming. This measure does, however,
fail to identify other probable instances of “no-choice” words be-
cause it lacks word sense disambiguation. That is, a word may
have no alternatives in the intended sense, but this measure may
find alternatives in another sense, and so fail to remove the word.
This adjustment should therefore be considered a first approxima-
tion, which probably has high precision but lower recall.

Results for our lexical measure, skipping these “no-choice”
words, are shown in the top half of Table 4. Because we have
removed one source of our measured convergence, the significant
slopes become slightly more shallow. Slopes for randomized data
still give non-significant p-values, though these p-values are much
smaller than before the correction.

Some instances of lexical repetition in our dialogs may also be
a topic effect. That is, regardless of any lexical priming effects, the
students may have tended to repeat certain words simply because
they were talking about the same subject as the tutor. Therefore,
we next attempt to further isolate the effects of lexical priming by
also removing the effect of topic. To do this, we combine two
lists of “physics specific” words collected for previous projects.
The first list includes physics topic titles culled from a publicly
available physics web site [10]1. The second list was collected for
previous work [11]. Combined, these lists contain 1,085 physics-
related terms. For our “topic” correction, we do not count student

1We thank Amruta Purandare for her generosity in compiling this list.



Words Skipped Words
No-choice Topic Counted

word # word # word #
the 9664 force 1133 on 2622

it 3222 velocity 831 some 1332
is 2440 acceleration 754 job 973

uh 2236 horizontal 384 saying 896
that 1930 time 383 word 839
you 1699 motion 379 about 828

to 1304 direction 330 become 652
of 1226 equal 271 rise 520

and 1040 law 254 he 463
Table 3: Lexical priming corrections: Top 75% of words skipped
for lack of choice, top 27% of words skipped for topic correction,
top 68% of words counted after these adjustments

repetitions of tutor words if they appear on this list.
Results for our lexical measure, skipping both “no-choice” and

“topic” words, are shown in the bottom half of Table 4. Removing
this source of convergence makes the fitted slopes more shallow,
although still significant on the ordered data. P-values on random-
ized data remain above our corrected significance threshold.

The center two columns of Table 3 show the top 27% of ad-
ditional words skipped under the “topic” correction. Again, this
correction makes intuitive sense, many of these words seem to be
terms made necessary by the physics topic under discussion.

Even after making these two corrections, however, substan-
tial lexical choice remains in the corpus. For example, after the
first correction, lexical variability is visible among non-physics
terms. In the following utterance a student uses both “greater”
and “larger” to indicate an increased extent.

“so, that’ll cause the acceleration to be greater and
the, um, wait let me think for a second, um, the ac-
celeration will be larger in the, in the small, in the
lightweight, has a less mass”

And after the second correction, students show a variety of
other words for physics terms such as “accelerate:”

“it will pick up won’t it pick up speed?”

The convergence we measure after these two corrections
seems to represent the temporary reduction in this lexical vari-
ety, which may result in part from lexical priming. Finally, we
present the repeated student words which remain after these two
corrections. The right two columns of Table 3 show the nine most
frequent words remaining after this adjustment, which account for
68% of the tokens counted.

4. Acoustic/Prosodic Convergence
To generate data from which to measure acoustic/prosodic (AP)
convergence, we calculated RMS amplitude (loudness) and f0
(pitch) values for each tutor and student turn in our corpus. For
both RMS and f0 we calculated the max, min, and mean value
over each turn. Neither measure was normalized, partly because
normalization of these features had not been helpful in previous
work [12]. Mean RMS was also used in the convergence study
of Coulston et al. [1]. F0 is interesting in part because it is also

Data Window Size
5 10 15 20

No-choice Correction
Ord. -.030 (.03) -.025 (<.0001) -.018 (<.0001) -.012 (<.0001)

Rand. -.014 (.32) .000 (.96) -.004 (.12) -.005 (.012)

No-choice & Topic Correction
Ord. -.013 (.23) -.015 (<.0001) -.010 (<.0001) -.007 (<.0001)

Rand. -.011 (.40) -.002 (.69) -.005 (.05) -.004 (.022)

Table 4: Slopes and (p-values) for lexical measures: Top:“no
choice” words removed. Bottom: “no-choice” and “topic” words
removed. P-values and slopes below adjusted threshold in bold

Window Size
Max RMS 15 20 25 30
Ord. slope: -7.2884 -16.1007 -19.6304 -16.1840
Ord. pVal: 0.4284 0.0091 <.0001 <.0001

Rand. pVal: 0.3080 0.3755 0.7052 0.1495
Mean RMS 15 20 25 30
Ord. slope: -3.3547 -4.1780 -4.8891 -4.0174
Ord. pVal: 0.2764 0.0449 0.0016 0.0010

Rand. pVal: 0.7081 0.6242 0.7307 0.5178
Min RMS 15 20 25 30

Ord. slope: 0.4830 0.4077 0.2153 0.1963
Ord. pVal: 0.2460 0.1518 0.3161 0.2553

Rand. pVal: 0.6557 0.4753 0.4827 0.7224
Table 5: Results for RMS amplitude measures. P-values and
slopes below adjusted threshold in bold.

automatically computable, and might be available in a future af-
fect recognizing tutor [13]. For acoustic/prosodic convergence, we
used the same window size selection procedure as for the lexical
measure, but also added two larger windows because the starting
window size of 20 student turns was already too short to find sig-
nificant slopes in the RMS data.

As described in section 3.1, our lexical measure used word
repetition as the response variable by counting up the number of
repeating words in each utterance in the student response window.
We now use the same approach for measuring responses in acous-
tic/prosodic data. Instead of recording the number of repeated
words at each distance d from the prime, however, we record the
value of the acoustic/prosodic variable at each distance.

We cannot use the same definition of a prime as we did in lex-
ical data, however. Now, instead of having a discrete trigger like
word occurrence, we have continuous acoustic/prosodic values. To
identify a “prime” in this data, we turn to Fisher’s Z score, a stan-
dardized measure of distance from the mean often used to detect
outliers. Z is calculated as x−µ

σ
where x is the acoustic/prosodic

value for the current turn, µ is the population mean, and σ is the
population standard deviation. We locate a prime wherever the tu-
tor’s AP value had a Z score greater than one, meaning it was more
than one standard deviation above its mean. This threshold set-
ting counted 486 tutor utterances as “primes” using the maxRMS
feature. Using a threshold reflects the intuition that we want to
measure the student’s response to unusually loud tutor utterances.
Finding the exact threshold setting that produces the most useful
measure, however, is a topic for future research.



Window Size
Min f0 15 20 25 30

Ord. slope: 0.4594 0.2800 0.2544 0.2650
Ord. pVal: 0.0002 0.0012 <.0005 <.0005

Rand. pVal: 0.3047 0.1758 0.1983 0.9242
Table 6: Results for f0 (pitch) measures. P-values and slopes be-
low adjusted threshold in bold.

Results for the loudness (RMS) features, with the prime set at
Z>1, are shown in Table 5. Table 5 is divided horizontally to give
results for our three RMS features, maximum RMS, mean RMS
and minimum RMS. Within each of those three divisions are three
rows. The top row shows the slope of the fitted line on ordered
data. The second row shows the p-value of that slope. The third
line shows the p-values of lines fitted to our randomized data.

Results for max RMS are similar to those obtained on lexical
data. We see that window sizes larger than 20 give significant,
negative slopes on ordered data. Mean RMS becomes significant
at a window size of 30, also with a negative slope. Neither of these
measures produce significant results on the randomized data. For
the min RMS feature we have no significant results.

Table 6 shows results for minimum f0, locating primes where
Z > 1. Here the pattern of results is different. Neither the max nor
mean f0 features gave significant results, and are not shown. The
min f0 feature, on the other hand, produced significant results in
ordered data for all window sizes, but with a positive slope. It gave
no significant results on randomized data.

5. Discussion and Future Work
We have proposed two new measures of convergence based on one
developed by Reitter et al. [7] to detect syntactic priming. We first
extended their measure to detect lexical convergence, and intro-
duced further modifications to help isolate the effects of lexical
priming. We showed lexical convergence both before and after
these “no-choice” and “topic” adjustments. We next extended this
measure to detect acoustic/prosodic convergence by using a thresh-
old to identify primes. We showed evidence for convergence of
max and mean RMS. Evidence for the success of these measures
comes from the negative slope of their fitted regression lines on
ordered data, from the significant p-values of those lines, and from
their lack of false-positive results on randomized data.

Our “no-choice” and “topic” adjustments were no doubt only
partially successful in isolating the effects of lexical priming. We
hope to improve these measures by, for instance, removing not
only “no-choice” words but also a set of “most-frequent” words
taken from a large corpus. However, while separating the effects
of the various levels of priming is interesting from a theoretical
perspective, it may not be necessary for the measures described to
be useful in dialog systems. We have shown in separate work, [6]
for example, that several of the measures described here are useful
predictors of learning in tutorial dialog. In particular the slope of
the lexical response line with a window size of 20 was a useful pre-
dictor of learning in two separate corpora of tutoring dialogs, one
with a computer and the other with a human tutor. Also, the slope
of the mean RMS response line was found to predict learning for
students with high pre-test scores, for both human and computer
tutors. We are currently extending this work to include different
tutors, in different tutoring domains. Following that, we hope to

make the ITSPOKE tutor aware of student convergence behavior
and able to adjust instruction based on the amount of convergence
measured.

6. Acknowledgments
This research is supported by the NSF (0325054), and by an An-
drew Mellon Predoctoral Fellowship. We gratefully thank Joel
Tetreault and the ITSPOKE group for many helpful comments.

7. References
[1] R. Coulston, S. Oviatt, and C. Darves, “Amplitude conver-

gence in children’s conversational speech with animated per-
sonas,” in Proceedings of the 7th International Conference
on Spoken Language Processing, 2002.

[2] L. Bell, J. Gustafson, and M. Heldner, “Prosodic adapta-
tion in human-computer interaction,” in Proceedings of the
15th International Congress of Phonetic Sciences (ICPhS
03), Barcelona, Spain, 2003.

[3] D. Buller and R. Aune, “The effects of speech rate similarity
on compliance: Application of communication accommoda-
tion theory,” Western Journal of Communication, vol. 56, pp.
37–53, 1992.

[4] M. J. Pickering and S. Garrod, “Toward a mechanistic psy-
chology of dialogue,” in Behavioral and Brain Sciences,
vol. 27, 2004.

[5] S. Brennan, “Lexical entrainment in spontaneous dialog,” in
Int. Symposium on Spoken Dialog, 1996, pp. 41–44.

[6] A. Ward and D. Litman, “Dialog convergence and learning,”
in Proceedings 13th International Conference on Artificial
Intelligence Education (AIED), Los Angeles, Ca., 2007.

[7] D. Reitter, F. Keller, and J. Moore, “Computational mod-
elling of structural priming in dialogue,” in Proceedings of
the Human Language Technology Conference of the NAACL,
companion volume, 2006, pp. 121–124.
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