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Abstract

We hypothesize that enhancing computer tutors to re-
spond to student uncertainty over and above correctness
is one method for increasing both student learning and
self-monitoring abilities. We explore this hypothesis us-
ing data from an experiment with a wizarded spoken
tutorial dialogue system, where tutor responses to un-
certain and/or incorrect student answers were manipu-
lated. Our results suggest that monitoring and respond-
ing to student uncertainty has the potential to improve
both cognitive and metacognitive student abilities.

Introduction
Speech and language researchers have shown that speaker
uncertainty is associated with linguistic signals (Liscombe,
Venditti, and Hirschberg 2005; Nicholas, Rotaru, and Lit-
man 2006; Dijkstra, Krahmer, and Swerts 2006; Pon-Barry
2008), while tutoring researchers have hypothesized that tu-
tors use such signals to detect and address student uncer-
tainty in order to improve performance metrics including
student learning, persistence, and system usability (Tsuka-
hara and Ward 2001; Aist et al. 2002; Litman et al.
2009). For example, VanLehn et al. (2003) propose that both
student uncertainty and incorrectness signal “learning im-
passes”, i.e. student learning opportunities. While correla-
tional studies have shown a link between student uncertainty
and learning in tutorial dialogue (Craig et al. 2004; Forbes-
Riley, Rotaru, and Litman 2008), few controlled experi-
ments have investigated whether responding to student im-
passes involving uncertainty improves learning (e.g. (Pon-
Barry et al. 2006)); most computer dialogue tutors respond
based only on student correctness.

In prior work, we experimentally compared learning gains
and efficiency across four versions of a wizarded spoken
tutorial dialogue system that differed in whether and how
it adapted to student uncertainty (Forbes-Riley and Litman
2009a). Uncertainty and correctness were manually anno-
tated in real-time by a human “Wizard”. In two experimen-
tal conditions, the system provided additional knowledge at
places of uncertainty. In two control conditions, the sys-
tem either did not provide this knowledge, or provided such
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knowledge randomly. Our results suggested that respond-
ing to student uncertainty, over and above correctness, did
indeed lead to performance improvements along cognitive
dimensions. Here we turn our attention to student metacog-
nition. In particular, we present empirical evidence suggest-
ing that by responding to student uncertainty in new ways,
our computer tutor has the potential to further improve both
cognitive and metacognitive performance.

System and Data
This research uses a corpus of 405 dialogues between 81
students and wizarded versions of ITSPOKE (Intelligent
TutoringSPOKEn dialogue system), a speech-enabled ver-
sion of the Why2-Atlas qualitative physics tutor (VanLehn et
al. 2002). The corpus was collected in our prior experiment
evaluating the utility of enhancing ITSPOKE to respond to
impasses involving student uncertainty, over and above cor-
rectness (Forbes-Riley and Litman 2009a).

Motivated by research that views uncertainty as well as
incorrectness as signals of “learning impasses” (VanLehn,
Siler, and Murray 2003), ITSPOKE was modified to asso-
ciate one of four impasse states with every student answer.
The four impasse states correspond to all possible combi-
nations of (binary) uncertainty (uncertain (U), nonuncer-
tain (nonU)1) and correctness (incorrect (I), correct (C)), as
shown in Figure 1.

Nominal State: InonU IU CU CnonU
Scalar State: 3 2 1 0
Severity Rank: most less least none

Figure 1: Different Impasse State Severities

The incorrectness component of each state reflects the ac-
tual accuracy of the student’s answer, while the uncertainty
component reflects the tutor’s perception of the student’s
awareness of this accuracy. The scalar ranking of impasse
states in terms of severity combines these two components
and will be discussed below.

The experimental procedure for collecting the corpus used
a semi-automatic version of ITSPOKE, where a human

1A ‘nonuncertain’ answer may be certain or neutral.



ITSPOKE1: If the force of the man weren’t greater than
the force of gravity, the pumpkin wouldn’t be tossed up into
the air. But we know that it is. So the direction of the net
force must be upwards. Does the pumpkin accelerate while
the man is tossing it? If yes, please specify the direction of
the acceleration.

STUDENT1: um... up. [CU]

ITSPOKE2: Fine. [FEEDBACK]

Figure 2: Example ofNormal ITSPOKE Response toCU
Answers

ITSPOKE1: If the force of the man weren’t greater than
the force of gravity, the pumpkin wouldn’t be tossed up into
the air. But we know that it is. So the direction of the net
force must be upwards. Does the pumpkin accelerate while
the man is tossing it? If yes, please specify the direction of
the acceleration.

STUDENT1: Yes, uh vertically ... up, well, yeah, verti-
cally up. [CU]

ITSPOKE2: Right. [FEEDBACK] To analyze the pump-
kin’s acceleration we will use Newton’s Second law. What’s
the definition of this law? [REMEDIATION SUBDIA-
LOGUE]

Figure 3: Example ofBasicUncertainty Adaptation (forCU
Answers only)

“wizard” performed speech recognition, as well as correct-
ness and uncertainty annotation. That is, each student turn
was annotated in real-time by the wizard during the experi-
ment, using binary studentUncertainty(U, nonU) andCor-
rectness(C, I) tags2. Subjects who had never taken college
physics: read a short physics text; took a multiple-choice
pretest; worked 5 problems (i.e. engaged in 5 dialogues)
with ITSPOKE; took a survey; took an isomorphic posttest.

The experiment had two control and two experimental
conditions. Thenormal control condition remediated only
incorrectness impasses (InonU, IU), as in the original IT-
SPOKE. An example dialogue excerpt from this condition
is shown in Figure 2. As shown,ITSPOKE2 provides cor-
rectness feedback for theCU answer, and ignores the uncer-
tainty.

In contrast, the two experimental conditions remediated
both uncertainty and incorrectness impasses (InonU, IU,
CU), but each used a different approach. Thebasicexperi-
mental condition used the same remediation for all impasse
types, with only feedback phrases varying based on answer
correctness (e.g. “That’s right” versus “That’s wrong”). An
example dialogue excerpt is shown in Figure 3. As shown,
ITSPOKE2 provides correctness feedback for theCU an-

2This wizard displayed interannotator agreement of 0.85 and
0.62 Kappa on labeling correctness and uncertainty, respectively,
in prior studies (Forbes-Riley and Litman 2008).

swer, then responds to the uncertainty by providing the same
remediation subdialogue (i.e., a series of additional ques-
tions) that would have been provided if the student answer
were incorrect. Only the first question in this remediation
subdialogue is shown. Note thatIU and InonU answers
already receive this remediation subdialogue (because they
are incorrect), therefore thebasicuncertainty adaptation im-
pacts onlyCU answers.

In contrast to thebasicexperimental condition, theem-
pirical experimental condition used different dialogue act
presentations of the incorrect answer content (e.g. remedia-
tion subdialogue questions versus “bottom out” statements)
and different feedback phrases (e.g. “That’s exactly right,
but you seem unsure” forCU versus “Great try, but I think
you know there is a mistake in your answer” forIU) to re-
spond to each impasse type (CU, IU, InonU). Example dia-
logue excerpts for each impasse type are shown in Figure 4.
As shown, in each caseITSPOKE2 provides feedback re-
sponding to the specific impasse type of the answer, then
provides the same additional content responding to the un-
certainty of the answer, but the dialogue act used to present
this additional content depends on the specific impasse type
of the answer.3

Finally, the randomcontrol condition treated a percent-
age of random correct answers as incorrect, to control for
the additional content in the experimental conditions. The
motivation for and further details of each experimental con-
dition are discussed in detail elsewhere (Forbes-Riley and
Litman 2009a).

Metacognitive Measures
In this section we introduce several ways of combining the
corpus uncertainty and correctness annotations into single
quantitative performance measures. Note that all measures
are computed on a per student basis (over all five dialogues).

Our first measure is based on a ranking of impasses by
severity. In particular, we first associate a scalarimpasse
severity value with each student answer in our corpus, based
on our wizard’s correctness and uncertainty annotations. We
then compute an average impasse severity per student, ac-
cording to whether the impasses were due to uncertainty,
incorrectness, or both. Our severity values were proposed
in our earlier work (Forbes-Riley, Litman, and Rotaru 2008)
and are shown in Figure 1. According to our ranking, the
most severe type of impasse (severity 3) occurs when a stu-
dent is incorrect but not aware of it. States of severity 2 and
1 are of increasingly lesser severity: the student is incorrect
but aware that s/he might be, and the student is correct but
uncertain about it, respectively. Finally, no impasse exists
when a student is correct and not uncertain about it (severity
0). These severity rankings reflect our belief that to resolve
an impasse, a student must first perceive that it exists. In-
correctness simply indicates that the student has reached an
impasse, while uncertainty - in a correct or incorrect answer

3The dialogue act variations were developed based on analysis
of human tutor responses to uncertainty in a human tutoring corpus
(see (Forbes-Riley and Litman 2009a) for further details)



ITSPOKE1: If the force of the man weren’t greater than
the force of gravity, the pumpkin wouldn’t be tossed up into
the air. But we know that it is. So the direction of the net
force must be upwards. Does the pumpkin accelerate while
the man is tossing it? If yes, please specify the direction of
the acceleration.

STUDENT1: It accelerates upwards?? [CU]

ITSPOKE2: Great answer, but you don’t sound very cer-
tain so let’s go over it.[FEEDBACK] The pumpkin does
have an acceleration and it points vertically up. We would
use Newton’s Second law to prove this (Net Force = Mass
* Acceleration). Since the net force on the pumpkin is non-
zero and points up, this law tells us its acceleration must also
be non-zero and point up.[NEW BOTTOM OUT]

STUDENT1: Vertically?? [IU]

ITSPOKE2: I’m sorry. It sounds like you already know
there’s an error. Let’s work it out.[FEEDBACK]The pump-
kin does have an acceleration and it points vertically up.
Let’s work through the proof of this step by step.[NEW BOT-
TOM OUT] To analyze the pumpkin’s acceleration we will
use Newton’s Second law. What’s the definition of this law?
[REMEDIATION SUBDIALOGUE]

STUDENT1: Yes, negative 9.8 meters per second
squared. [InonU]

ITSPOKE2: Good try, but there’s a mistake in your answer
that we need to work through.[FEEDBACK]To analyze the
pumpkin’s acceleration we will use Newton’s Second law.
What’s the definition of this law?[REMEDIATION SUBDI-
ALOGUE]

Figure 4: Example ofEmpiricalUncertainty Adaptation for
CU, IU, and InonU Answers

- indicates that the student perceives s/he has reached an im-
passe.

The rest of our measures are taken from the metacognitive
performance literature. The knowledge monitoring accuracy
measure that we use is the Harmann coefficient(HC) (Niet-
feld, Enders, and Schraw 2006).4 This measure has previ-
ously been used to measure the monitoring accuracy of one’s
own knowledge (“Feeling of Knowing” (FOK)), which is
closely related to uncertainty. Psycholinguistics research
has shown that speakers display FOK in conversation using
linguistic cues (Smith and Clark 1993), and that listeners
can use the same cues to monitor the FOK of someone else
(“Feeling of Another’s Knowing” (FOAK)) (Brennan and
Williams 1995). High and low FOK/FOAK judgments have
also been associated with speaker certainty and uncertainty,
respectively (Dijkstra, Krahmer, and Swerts 2006).

4While the Gamma measure is often also used, there is a lack of
consensus regarding the relative benefits of Gamma versus HC(Ni-
etfeld, Enders, and Schraw 2006), and we have found HC to be
more predictive for our corpus.

Correct Incorrect
Nonuncertain CnonU InonU

Uncertain CU IU

Figure 5: Measuring Student Metacognitive Performance

HC is computed from our wizard’s correctness and uncer-
tainty annotations as follows:

HC =
(CnonU+IU)−(InonU+CU)
(CnonU+IU)+(InonU+CU)

HC ranges in value from -1 (no monitoring accuracy) to 1
(perfect monitoring accuracy).

To illustrate the reasoning behind HC and the other
metacognitive performance measures used in this paper,
consider an FOK-type experimental paradigm, where sub-
jects 1) respond to a set of general knowledge questions,
2) take a survey, judging whether or not5 they think they
would be uncertain about the answer to each question in
a multiple choice test, and 3) take such a multiple choice
test. In FOAK-type paradigms such as ours, thewizardan-
notates the correctness and uncertainty for each student an-
swer. As shown in Figure 5, such FOK or FOAK data can
be summarized in an array where each cell represents a mu-
tually exclusive option: the row labels represent the possible
uncertainty judgments (Nonuncertain or Uncertain), while
the columns represent the possible correctness results of the
multiple choice test (Correct or Incorrect). Given such an
array, various relationships between the correctness of an-
swers, and the judged uncertainty of the answers, can then
be computed.

Following (Saadawi et al. 2009), who investigate the
role of immediate feedback and other metacognitive scaf-
folds in a medical tutoring system, we additionally measure
metacognitive performance in terms ofbias anddiscrimi-
nation (Kelemen, Frost, and Weaver 2000). As with HC,
we compute these measures using our wizard’s correctness
and uncertainty annotations. Bias scores greater than and
less than zero indicate overconfidence and underconfidence,
respectively, with zero indicating best metacognitive perfor-
mance:

bias =
CnonU+InonU

CnonU+InonU+CU+IU
−

CnonU+CU

CnonU+InonU+CU+IU

In contrast, discrimination scores greater than zero in-
dicate higher metacognitive performance, in terms of cer-
tainty for correct responses and uncertainty for incorrectre-
sponses:

discrimination =
CnonU

CnonU+CU
−

InonU

InonU+IU

To illustrate the computation of our metacognitive perfor-
mance metrics, suppose the annotated dialogue excerpt in
Figure 4 represented our entire dataset (from a single stu-
dent). Then we would have the following values for our
metrics for that student:

5Likert scale rating schemes are also possible.



HC =
(0+1)−(1+1)
(0+1)+(1+1) = −

1
3

bias =
0+1

0+1+1+1 −

0+1
0+1+1+1 =

1
3 −

1
3 = 0

discrimination =
0

0+1 −

1
1+1 =

0
1 −

1
2 = −

1
2

Results
In this section we investigate whether the measures intro-
duced in the previous section differ across our experimen-
tal conditions, and/or predict student learning gains. We
first ran a one-way ANOVA with condition as the between-
subject factor, along with a planned comparison for each
pair of conditions, hypothesizing the following performance
ranking: empirical > basic > random> normal. Even
though our experiment was designed to only impact learn-
ing gain, we hypothesized that the experimental conditions
might still reduce impasse severity: by responding contin-
gently to uncertainty the tutor resolved more impasse types.
For similar reasons, we hypothesized that the experimental
conditions might also improve student accuracy in monitor-
ing their own uncertainty (i.e., FOK), particularly in the em-
pirical condition where the tutor’s feeling of the student’s
uncertainty (i.e., FOAK) was explicitly stated. Our HC
metric measures inferred (rather than actual) student self-
monitoring accuracy (because it was derived from our wiz-
ard’s uncertainty labels, rather than student judgments of
their own uncertainty). We had similar hypotheses for bias
and discrimination.

The “Means” columns in Table 1 show the means per
condition. As predicted, both experimental conditions had
lower average impasse severity thanrandom, and random
was lower thannormal. While a one-way ANOVA with
post-hoc Tukey showed no statistically significant differ-
ences or trends among these means (p = .19), paired con-
trasts showed trends for individual differences betweenran-
domandnormal (p = .10),basicandnormal (p = .06), and
betweenempirical and normal (p = .08). With respect to
both inferred self-monitoring accuracy (HC) and bias, the
ANOVAS showed no statistically significant differences or
trends across conditions. However, for HC the paired con-
trasts showed a trend for differences betweenbasicandnor-
mal (p = .06), andrandomand normal (p = .06), in the
predicted directions. With respect to discrimination, the
ANOVA indicated a trend for a difference among the means
(p = .09), with paired contrasts showing significant differ-
ences betweenbasicandempirical (p = .04), and between
randomandempirical(p = .02); note, however, that contrary
to our predictions, discrimination was lowest in the empiri-
cal condition.

Although we only find weak support for differences in
metacognitive performance between conditions, we still
hypothesize that lower impasse severities, higher self-
monitoring accuracies, less bias, and better discrimination
are better for students from a learning perspective. To sup-
port this view, we computed a partial Pearson’s correla-
tion over all 81 students between each measure and posttest
score, controlled for pretest score to measure learning gain.

The last two columns in Table 1 show the Pearson’s Correla-
tion Coefficient (R) of the partial correlation, and the signif-
icance of the correlation (p). As predicted, average impasse
severity is significantly negatively correlated with learning,
while inferred self-monitoring accuracy (HC) and discrimi-
nation are significantly positively correlated with learning.
There is also a trend for bias to be negatively correlated
with learning, suggesting that underconfidence is better than
overconfidence.

Discussion
We presented an analysis of student metacognitive perfor-
mance using data from a wizarded dialogue tutor that adapts
to student uncertainty. The performance measures examined
include several traditional measures of metacognitive perfor-
mance, as well as a new learning impasse severity measure
we derived from a theory of uncertainty and incorrectness
as learning impasses. While our prior work demonstrated
that remediating after uncertainty impasses improves learn-
ing (Forbes-Riley and Litman 2009a), the results in Table 1
suggest that further investigation into better ways of remedi-
ating student uncertainty holds promise for further improv-
ing student cognitive as well as metacognitive abilities.

Our correlations show that bothaverage impasse sever-
ity and (tutor perception of)self-monitoring accuracy and
discrimination significantly predict student learning (neg-
atively, positively, and positively respectively). Although
correlation does not imply causality, our findings motivate
future modifications of our system to increase student learn-
ing. For example, we plan to develop remediations that are
better optimized for each impasse type, particularly for im-
passes with the highest severity. We also plan to enhance our
tutor to not only remediate domain content after impasses
(as in the current experiment), but to also remediate inferred
student knowledge monitoring abilities.

While our ANOVAS show thatimpasse severity doesn’t
differ significantly across conditions, the means are consis-
tent with our predictions, and there are statistical pairwise
trends suggesting improvement between all conditions and
normal (the original system). We also see similar results
for basicand randomcompared tonormal with respect to
inferred self-monitoring accuracy (HC). These are promis-
ing findings, as our current interventions were designed to
improve only student correctness on the posttest, not to re-
duce impasse severity or increase monitoring accuracy. In
the future we would like to enhance our interventions to
directly target student knowledge monitoring, and to bet-
ter measure such improvements by incorporating FOK rat-
ings into our testing. There is increasing interest in using
intelligent tutoring systems to teach metacognition, and we
plan to build on this literature (e.g. (Aleven and Roll 2007;
Roll and Aleven 2008; Saadawi et al. 2009)).

We found it surprising that neither experimental condition
outperformedrandom. We hypothesize that this is because
CU impasses are sometimes adapted to inrandom; in future
versions of our system, we will only randomly remediate
after only CnonU answers (non-impasse states). We also
plan to revisit how we designed ourempirical experimen-



Measure Means Correlation (81)
normal (21) random (20) basic (20) empirical (20) R p

Average Impasse Severity .73 .60 .59 .59 -.56 .00
Monitoring Accuracy .52 .62 .62 .58 .42 .00

Bias -.02 -.01 -.03 -.01 -.21 .06
Discrimination .41 .48 .46 .34 .32 .00

Table 1: Means Across Experimental Conditions, and PartialCorrelations with Posttest, for Impasse Severity, Monitoring
Accuracy, Bias, and Discrimination

tal condition, as it did not yield the expected performance
improvements.

Finally, we plan to replicate the analyses in this study,
using a dialogue corpus that was recently collected using a
fully automated version of ITSPOKE that detects and adapts
to student uncertainty. We also recently found interactions
between learning and user classes based on user domain ex-
pertise and gender in the wizarded corpus (Forbes-Riley and
Litman 2009b); we will investigate whether the interactions
with these classes extend to the student metacognitive met-
rics discussed in this paper.
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