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Abstract—Memristor, a long postulated yet missing circuit ele-
ment, has recently emerged as a promising device in non-volatile
memory technologies. However, beyond its use as memory cell,
it is challenging to integrate memristor in modern architectures
for general purpose computation.

In this paper we propose a non-conventional use of memristor
and demonstrate its applicability to enhancing cache replace-
ment policy. We design a memristor-based saturation counter
which can track cache access history at low cost. Based on our
counter design, we develop a cache replacement framework that
is both reconfigurable and adaptive (MRAC). Our evaluation
demonstrates MRAC’s reconfigurability and adaptivity, which
result in better performance (up to 57.9% more cache miss
reduction) and more robust performance improvement.

I. INTRODUCTION

Memristor, a long postulated yet missing circuit element,
has recently emerged as a promising device in non-volatile
memory technologies. [8]. Memristor has unique accumula-
tive characteristic that allows it to memorize access history.
However, beyond its use as memory cell, it is challenging
to integrate memristor in modern architectures for general
purpose computation.

In this paper, we propose a novel, non-conventional use
of memristor and demonstrate its applicability to enhancing
cache replacement policy. By leveraging memristor’s unique
ability of memorizing history, our design is the first work that
integrates memristor in modern architectures for general pur-
pose computation. We design a memristor-based saturation
counter, which can be used to track cache access history at
low cost. Instead of simply using memristor to store multi-
bit data, we use calibrated pulses to alter memristor’s state
directly, and use matrix scanner to find largest or smallest
counter within a set. We then construct a reconfigurable
and adaptive cache replacement framework (MRAC) based
on our counter design. Our evaluation on various workloads
demonstrates MRAC’s reconfigurability and adaptivity, which
result in not only better performance but also more robust
performance improvement.

II. BACKGROUND OF MEMRISTOR

Memristor was theoretically predicted by L. Chua in
1971 [1] as the fourth circuit element in addition to resistor,
capacitor and inductor. Memristor shares many advantages
with other new memory technologies such as non-volatility,
high density and zero leakage [8]. What makes memristor
unique is its ability to memorize history of inputs. The

memristor’s state (i.e., resistance) depends on the amount of
flux flowing through the device, i.e., the integral of voltage
over time. Therefore, by controlling voltage pulses, one
can control a memristor’s resistance continuously between
the smallest Ron and the largest Roff values. In addition,
changes caused by multiple voltage pulses on a memristor
cell are accumulated, meaning that access history is memo-
rized as the accumulated change in resistance.

III. MEMRISTOR-BASED SATURATION COUNTER

Memristor’s large off-to-on resistance ratio (10,000) [6]
allows one cell to store multi-bit data. Since a memristor
can accumulate the effect of multiple voltage pulses, and
its resistance saturates at two ends, it is natural to treat a
memristor as a saturation counter.

In this paper we use memristors as saturation counter to
track cache access history. A simple use of memristors as
conventional multi-bit counter would always perform analog-
digital conversion between a memristor’s resistance and its
represented value before any operation. This would require
sophisticated sensing circuit and precise control of voltage
pulse. For example, finding the largest value from 32 counters
requires a multi-stage comparator that tends to be slow and
costly.

In our design, instead of translating a memristor’s resis-
tance to digital value back and forth, we apply calibrated
pulses to alter the cell’s state directly. For comparison
operations, we design a semi-analog comparator based on
matrix scanner (Fig. 1 through Fig. 3) to support sorting out
the largest (or smallest) one among a set of counters. The
inaccuracy of our semi-analog implementation is tolerable as
cache access counter does not have to be very accurate (e.g.
picking a counter that is close to the largest one does not
usually make much difference on miss rate).

IV. MRAC FRAMEWORK

Using our memristor-based saturation counter, we con-
struct a cache replacement framework (MRAC) that supports
both reconfigurability and adaptivity. Fig. 4 illustrates an
overview of MRAC.

MRAC has a configurable “policy pool”, in which
each policy candidate is described by a parameter vec-
tor [InitPos, HitPromo, Aging, AFlag, BIP].
Each field of the parameter vector describes one aspect
of replacement policy: InitPos indicates the initial lo-
cation (counter value) when a new cache line is inserted,
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Figure 1. Block diagram of semi-analog comparator.
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Figure 2. Analog to digital translation.
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Figure 3. Matrix scanner.
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Figure 4. MRAC overview.

HitPromo indicates how to promote a cache line when it
gets a hit, AFlag and Aging describe how counters age
(LRU-style or RRIP-style), and BIP indicates whether to
enable Bimodal Insertion [5] to defeat thrashing.

MRAC leverages the idea of set dueling [5] and constructs
a three-entity tournament to choose favorable policy at run-
time. The tournament includes two dynamic candidates which
are picked from the policy pool, and a baseline policy (RRIP)
to ensure bottom line performance. The two dynamic policies
are changed over time based on the results of tournament, and
the final winner of the tournament is selected and applied to
the follower sets of the cache. MRAC can also be extended
to support share cache on multi-core systems (TA-MRAC) in
a similar way as in TA-RRIP [3].

V. EVALUATION

We evaluated MRAC using a PIN-based [4] trace-driven
simulator. L1 and L2 caches are 32KB and 256KB respec-
tively, and MRAC is implemented in L3 cache (4MB). We ex-
perimented with various workloads from SPEC CPU2006 [2].
The policy pool is configured based on profiling information.
For shared cache studies, we modeled a 4-core system with
private L1/L2 caches and shared L3 cache, and generated
500 mixes of different programs to form multiprogrammed
workloads.

Fig. 5 and Fig. 6 show MRAC performance for single-
and multi-core cases respectively. As we can see MRAC not
only achieves better performance than baseline (up to 57.9%
more cache miss reduction), but also delivers more robust
performance improvement.

VI. CONCLUSIONS

This paper presents a non-conventional use of memristor.
We design a memristor-based saturation counter to track
cache access history, and used the counter design to construct
MRAC, a low-cost reconfigurable and adaptive cache re-
placement framework. Evaluation of MRAC demonstrated its
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Figure 5. Cache miss reduction % comparing to LRU.
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Figure 6. S-curve of Weighted Speedup [7] on shared cache.

benefits in accommodating different workloads and delivering
more stable performance improvement.
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